

Flood Risk Assessment & Drainage Strategy

December 2016

Waterco Ltd, Eden Court, Lon Parcwr Business Park, Ruthin, Denbighshire LL15 1NJTel: 01824 702220Email: enquiries@waterco.co.ukWeb: www.waterco.co.uk

w10232-161215-FRA&Drainage Strategy

DOCUMENT VERIFICATION RECORD

CLIENT:	Eloquent Global Ltd.
SCHEME:	Proposed mixed use development at Brassey Street, Liverpool – Flood Risk Assessment & Drainage Strategy
INSTRUCTION:	The instruction to carry out this Flood Risk Assessment & Drainage Strategy was received from Mr John McCarthy of Eloquent Global Ltd.

DOCUMENT REVIEW & APPROVAL

AUTHOR:	Ifan Jones BSc (Hons) MSc
CHECKER:	Johanne Williams LLB (Hons) PgDip
APPROVER:	Aled Williams BSc (Hons)

ISSUE HISTORY

ISSUE DATE	COMMENTS
18/11/2016	First issue
15/12/2016	Second issue

Contents

Introduction
Existing Conditions
Development Proposals
Flood Zone Classification and Policy Context
Consultation 4
Sources of Flooding and Probability5
Surface Water Management7
Surface Water Treatment 11
Maintenance
Foul Drainage
Other Considerations
Conclusions
Recommendations

Appendices

Appendix A – Location Plan & Aerial Image
Appendix B – Development Plan & Topographical Data
Appendix C – United Utilities Sewer Plan and Correspondence
Appendix D – Council Correspondence
Appendix E – Environment Agency Flood Maps
Appendix F – SFRA Maps
Appendix G – MicroDrainage Runoff and Storage Estimates

Appendix H – Maintenance Schedule

Tables

Fable 1 – Pollution Hazard Indices11

Introduction

Waterco Consultants have been commissioned to undertake a Flood Risk Assessment and Drainage Strategy in relation to a proposed mixed use development at Brassey Street, Liverpool, L8 5XP.

The purpose of this report is to outline the potential flood risk to the site, the impact of the proposed development on flood risk elsewhere, and the proposed measures which could be incorporated to mitigate the identified risk. This report has been prepared in accordance with the guidance contained in the National Planning Policy Framework (NPPF) and the National Planning Practice Guidance (NPPG).

From April 2015, Liverpool City Council as a Lead Local Flood Authority (LLFA) is a statutory consultee for major planning applications in relation to surface water drainage, requiring that all planning applications are accompanied by a Sustainable Drainage Strategy. The aim of the Sustainable Drainage Strategy is to identify water management measures, including Sustainable Drainage Systems (SuDS), to provide surface water runoff reduction and treatment.

Existing Conditions

The 1.109ha development site is located at National Grid reference: 335164E, 388833N. A location plan and an aerial image are included in Appendix A.

Approximately 4,830m² of the total site area will be developed with the remaining 6,260m² retained as parkland.

The site is currently undeveloped. However, historic mapping indicates that the site was previously occupied by industrial units with associated parking and yard area. Building slabs are still present on site. The previous buildings were demolished between 2003 and 2005. The site is bordered by industrial units to the north, residential properties and Gore Street to the east, residential properties and Hill Street to the south, and Brassey Street and industrial premises to the west. Access to the site is provided from Brassey Street.

The site is intersected by a railway tunnel, with an open section of tunnel located immediately east of the developable site area.

Consultants

Local Topography

Topographic levels to metres Above Ordnance Datum (m AOD) have been derived from a 1m resolution Environment Agency (EA) composite 'Light Detecting and Ranging' (LiDAR) Digital Terrain Model (DTM). A review of LiDAR data shows that the 4,830m² development site slopes from approximately 22.2m AOD in the north-east to approximately 21m AOD in the west. A LiDAR extract is included in Appendix B.

Ground Conditions

Reference to the British Geological Survey online mapping (1:50,000 scale) indicates that the site is underlain by bedrock geology consisting of the Helsby Sandstone Formation. No superficial deposits are identified.

The Environment Agency's (EA) Groundwater Mapping indicates that the sandstone bedrock is classified as a 'Principle Aquifer' defined as 'layers of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer.'

The EA's online 'Groundwater Source Protection Zones' map indicates that the site is not located within a Groundwater Source Protection Zone.

The Cranfield University 'Soilscapes' map indicates that the site is underlain by 'freely draining sandy soils'.

Local Drainage

Public sewer records have been requested from United Utilities (UU) and are included in Appendix C. The sewer records show that there is a 550mm x 900mm public combined sewer crossing the northern extent of the site from east to west. This sewer joins a 550mm x 900mm public combined sewer which originates from Brassey Street and flows north through the western extent of the site before becoming 675mm x 1050mm.

There is also a 550mm x 900mm public combined sewer crossing through the centre of the site from east to west. This sewer becomes a 225mm public combined sewer before joining the 550mm x 900mm public combined sewer which originates from Brassey Street in the western extent of the site.

Finally, there is a 675mm x 1050mm public combined sewer immediately south of the site. This sewer flows west within Hill Street.

Development Proposals

The proposed development is for the erection of two buildings to include 246 apartments and commercial space. The buildings will be accompanied by 180 subterranean car parking spaces over two levels, bike spaces, landscaped amenity space and enhancement works to the adjacent public park. Development plans are included in Appendix B.

The proposed development will introduce hardstanding areas in the form of buildings, access roads, car parking, bike parking and courtyard area. Hardstanding will comprise 4,830m² of the site area.

Flood Zone Classification and Policy Context

The Environment Agency (EA) 'Flood Map for Planning – Rivers and Sea' included in Appendix E shows that the site is located within Flood Zone 1 - an area outside of the extreme flood extent, considered to have a less than 0.1% annual probability of flooding from rivers or the sea.

In accordance with Table 2 of the NPPG: Flood Risk and Coastal Change, residential development is classified as 'more vulnerable', commercial development is classified as 'less vulnerable'. Table 3 of the NPPG states that 'more vulnerable' and 'less vulnerable' developments are considered appropriate within Flood Zone 1. The development therefore passes the flood risk Sequential Test and the Exception Test does not need to be applied.

Local guidance documents including the Liverpool City Council Strategic Flood Risk Assessment (SFRA) (January 2008) and the Liverpool City Council Preliminary Flood Risk Assessment (PFRA) (June 2011) have been reviewed for site specific information.

The Liverpool City Council 'Greenfield / Brownfield Sites Surface Water Management Guidance' document outlines what is required for a Flood Risk Assessment:

The following list sets out key information that should be submitted within a FRA for developments:

- A location plan that includes geographical features, street names and identifies the catchment, watercourses or other bodies of water in the vicinity.
- A plan of the site showing existing site; development proposals; and identification of any structures (e.g. embankments), which may influence local flood flow overland or in any watercourses (e.g. culverts) present on the site.
- Site levels of both existing and proposed. Reference to Ordnance Datum, may be required where details of context of the site to its surroundings is needed.
- Details of the existing surface water drainage arrangements on site (if any) and the receptor e.g. soakaway, sewer, canal, watercourse etc.
- Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the development
- Information about the surface water disposal measures already in place and estimates of the rates of run-off generated by the surfaces drained.
- An assessment of the volume of surface water run-off likely to be generated from the proposed development and confirmation of how any excess volumes would be retained within the development.
- Information regarding how the proposed drainage design will perform under the increased frequency and intensity of rainfall that is predicted as a result of climate change (30% for residential development & 20% for non- residential).
- Information about other potential sources of flooding, if any, that may affect the site e.g. streams, surface water run-off, sewers, groundwater, reservoirs, canals and other artificial sources or any combination of these; including details on how these sources of flooding will be managed safely within the development proposal.

Consultation

A pre-planning opinion request has been submitted to UU and the LLFA in November 2016.

Correspondence from United Utilities, included in Appendix C, states that 'The foul water flows emanating from the site will be allowed to drain freely in to the public combined sewerage system... The surface water flows generated from this site must drain to soakaway or some other form of infiltration system but if ground conditions confirm that this is not a viable solution then suface water may drain to the adjacent public combined water sewer at a maximum pass forward flow of 38 l/s... A

public sewer crosses this site and we will require unrestricted access of the sewer for maintenance purposes, we would ask that you maintain a minimum clearance of 6m (refer to table 2.1 SFA) which is measured 3m from the centre line of the pipe. If you cannot achieve this then you may wish to consider diverting the public sewer'.

Correspondence from representatives of the LLFA, included in Appendix D, states that the site will be classified as a greenfield major development that is less than a hectare. Therefore, in accordance with Liverpool City Council 'Greenfield / Brownfield Sites Surface Water Management *Guidance' 'if a site is greenfield the flow rates from the development will be limited to the equivalent greenfield runoff rates.* A minimum flow of 5 l/s can be used when the greenfield run off rate falls below 5 l/s'.

Sources of Flooding and Probability

Fluvial

The nearest watercourse is the River Mersey which is located approximately 790m west of the site. The River Mersey flows north in this location. There are no other watercourses in the immediate vicinity of the site.

The site is situated at a minimum of 21m AOD and is approximately 15m above the River Mersey. Therefore, any potential flooding of this watercourse would not reach the site. The site is located outside of the 0.1% annual probability flood extent on the EA 'Flood Map for Planning (Rivers and Sea)' and is therefore considered to be at low risk of fluvial flooding.

Tidal

The site is situated at a minimum of 21m AOD and is significantly above sea level. The SFRA 'Predicted Extreme Tide Levels in 2115' map (Appendix E) shows that the site is located outside of the tidal flood extent when applying climate change up to the year 2115. Therefore, the site is at very low risk of tidal flooding.

Surface Water

Surface water flooding occurs when rainwater does not drain away through the normal drainage system or soak into the ground. It is usually associated with high intensity rainfall events, but can also occur with lower intensity rainfall or melting snow where the ground is saturated, frozen or developed, resulting in overland flow and ponding in depressions in topography. Surface water

flooding can occur anywhere without warning. However, flow paths can be determined by consideration of contours and relative levels.

The EA 'Flood Risk from Surface Water' map (Appendix E) indicates that the majority of the site is at very low risk of surface water flooding, meaning it has a less than 0.1% annual probability of flooding. An isolated area of the site, local to the open section of railway tunnel is shown at 'low' risk of surface water flooding, meaning it has between a 1% and 0.1% annual probability of flooding.

There are no records of surface water flooding at or near to the site. Any potential surface water flooding arising at or near to the site would be directed west, away from the site, following the local topography.

It can therefore be concluded that the site is at low risk of surface water flooding.

Sewer Flooding

Flooding from sewers can occur when a sewer is overwhelmed by heavy rainfall, becomes blocked, is damaged, or is of inadequate capacity. Flooding is mostly applicable to combined and surface water sewers.

The SFRA 'Historical Sewer Flooding' map (Appendix F) shows that there are no records of sewer flooding within the site's postcode sector in the ten years prior to 2008. Any potential flooding arising from the sewer network in Brassey Street to the west or Hill Street to the south of the site would be contained within the highway and directed south-west, away from the site, following the local topography.

It can therefore be concluded that the risk of sewer flooding is low.

Groundwater Flooding

Groundwater flooding occurs when water levels underneath the ground rise above normal levels. Prolonged heavy rainfall soaks into the ground and can cause the ground to become saturated. This results in rising groundwater levels which leads to flooding above ground.

The PFRA states that 'records do not show any instances of groundwater flooding'. The Mersey Catchment Flood Management Plan (CFMP) (December 2009) states that 'there is no known documented evidence of surface flooding from groundwater in the Mersey Estuary CFMP area. We consider the current risk of flooding from this source to be low compared to other sources of flooding'.

There are no records of groundwater flooding at or near to the site and it can therefore be concluded that the risk of groundwater flooding is low.

Artificial Sources of Flooding

There are no canals within the vicinity of the site. The EA 'Flood Risk from Reservoirs' map (Appendix E) shows that the site is not at risk of flooding from reservoirs.

It can therefore be concluded that there is no risk of flooding from artificial sources.

Summary of Potential Flooding

It can be concluded that the site is at low risk of flooding from all sources. Therefore, no site specific mitigation measures are considered necessary. However, finished ground floor levels of the properties should be set 150mm above surrounding ground levels. The threshold level of the ramp to the subterranean car park should be a minimum of 150mm above adjacent road levels

Surface Water Management

The site is not currently formally drained, however it is assumed that historically surface water drained to the public sewer system in Brassey Street.

The development will introduce 4,830m² of formally drained area in the form of buildings, pathways and courtyards. In order to ensure the proposed development will not increase flood risk elsewhere, surface water discharge from the site will be controlled.

As the site is not currently formally drained, the existing runoff regime is likely to replicate that of the greenfield scenario. Existing greenfield runoff rates have been estimated using the ICP SuDS (Flood Studies Report) method within MicroDrainage (see Appendix E). The existing QBAR Greenfield rate for the 4,830m² developable site area is 2.5 l/s. The 1 in 100 year runoff is 5.2 l/s.

In accordance with council requirements, it is proposed to utilise a flow rate of 5 l/s for the proposed development. This rate ensures that the drainage system is self-cleansing.

Attenuation Storage

In order to achieve a discharge rate of 5 l/s, attenuation storage will be required. A storage estimate is included in Appendix E. An estimated storage volume of 227m³ will be required to accommodate

the 1 in 100 year plus 30% Climate Change (CC) event. The storage estimate is based on storage within a tank or pond structure, an impermeable drainage area of 4,830m², a design head of 1m and hydro-brake flow control.

Discharge Method

Paragraph 080 of the NPPG: Flood Risk and Coastal Change sets out the following hierarchy of drainage options: into the ground (infiltration); to a surface water body; to a surface water sewer, highway drain or another drainage system; to a combined sewer.

Infiltration

The first consideration for the disposal of surface water is infiltration (soakaways and permeable surfaces). As described above the site is underlain by bedrock geology consisting of the Helsby Sandstone Formation. The soil is also described as freely draining sandy soils.

Infiltration tests should be undertaken in accordance with the BRE365 specification to determine the suitability of soakaways.

In accordance with Building Regulations, soakaways should be located a minimum of 5m from buildings. As such, and when considering the subterranean car park and railway tunnel, there may be limited space on site to accommodate soakaways.

Watercourse

Where soakaways are not suitable a connection to watercourse is the next consideration.

The nearest watercourse is the River Mersey which is located approximately 790m west of the site. The site is separated from the River Mersey by urbanised third party land. Therefore, a connection to the River Mersey will not be achievable.

Sewer

As disposal of surface water to watercourse is not possible, a connection to the public sewer system is the final consideration. A connection to the public sewer network in Brassey Street appears feasible. UU have confirmed that a connection to the public combined sewer would be acceptable should all other means of discharge not be viable. UU Correspondence is included in Appendix C.

Consultants

Public combined sewer manhole 1801 located immediately north-west of the site has an identified invert level of 16.7m AOD. The minimum site level is approximately 21m AOD, an as such, a gravity connection appears feasible.

Sustainable Drainage Systems

Attenuation storage should be provided in the form of Sustainable Drainage Systems (SuDS) where practical. The following SuDS options have been considered:

Soakaways

As described above, the use of soakaways should be determined by carrying out infiltration tests in accordance with the BRE 365 specification. However, given that the site will be occupied by a subterranean car park, and considering the proximity to a railway tunnel, there may be insufficient space for soakaways.

Swales, detention basins and ponds

The site will be occupied by buildings, a courtyard and a subterranean car park. Therefore space restrictions restrict the use of above ground drainage features such as ponds, basins or swales.

An open surface water attenuation feature such as a pond, basin or a swale in a residential area presents a safety risk.

Rainwater Harvesting

The attenuation benefits provided through the use of rainwater harvesting are considered to be limited, and would only be realised when the tanks were not full. However, rainwater harvesting techniques could be incorporated within the final design.

Green Roofs

The proposed development plans do not identify green roofs.

Porous / Permeable Paving

Attenuation storage can be provided within the sub-grade of permeable paving. Permeable paving could be used within the courtyard area. The amount of storage provided within permeable paving is subject to site gradients and the depth of the sub-grade.

The use of permeable paving will be fully investigated at the detailed drainage design stage.

Underground Attenuation Tanks

Storage could be provided within an underground attenuation tank. The location of the tank will be confirmed once the location of the subterranean car park is confirmed. The tank could be located beneath the car park, resulting in a pumped solution for surface water drainage.

Pumped Solution

Where a pumped solution is necessary, subject to the level of the subterranean car park and siting of the attenuation storage tank, attenuation will be required in the event of pumping system failure. 125m³ of attenuation is required for every 10,000m² of impermeable area, therefore a volume of 60m³ will be required to accommodate for the failure of the pumping station. This volume is based on an impermeable area of 0.4830ha.

An overall attenuation volume of 227m³ is required to accommodate the 1 in 100 year plus 30% climate change allowance event. This volume can accommodate the 60m³ storage requirement in the event of pumping station failure.

The risk of pump failure can be reduced by provision of a stand-by pump, an automated pump exercise regime and pump failure alarm system.

Exceedance Event

Storage will be provided for the 1 in 100 year plus 30% CC event. Storm events in excess of the 1 in 100 year plus 30% CC event should be permitted to produce temporary shallow depth flooding within open courtyard areas or within the car park.

Concept Surface Water Drainage Scheme

Where soakaways are not feasible, surface water runoff will be discharged to the public sewer network in Brassey Street. Surface water runoff up to the 1 in 100 year plus 30% climate change allowance event will be attenuated on site. A total attenuation volume of 227m³ will be required to achieve the discharge rate and will be provided in the form of an attenuation tank.

The proposed surface water drainage scheme will ensure no increase in runoff over the lifetime of the development.

Consultants

Surface Water Treatment

In accordance with the CIRIA C753 publication 'The SuDS Manual' (2015), residential roofs have a 'very low' pollution hazard level, non-residential car parking is classified as having a 'medium' pollution hazard level. Table 1 below shows the pollution hazard indices for each land use.

Table 1 – Pollution Hazard Indices

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential Roofs	Very Low	0.2	0.2	0.05
Non- residential parking	Medium	0.7	0.6	0.7

Table extract taken from the CIRIA C753 publication 'The SuDS Manual' – Table 26.2 * Indices values range from 0-1.

Should attenuation be provided in a below ground system (tank storage), treatment will need to be provided by a suitably sized separator.

Maintenance

Maintenance of communal drainage features such as an attenuation tank will be the responsibility of the site owner. Maintenance of shared surface water drainage systems can be arranged through appointment of a site management company.

A maintenance schedule for an attenuation tank is included in Appendix H.

Foul Drainage

Foul flows should be discharged to the public sewer network. UU have stated that foul flows will be allowed to freely drain to the public combined sewerage system. A gravity connection can be achieved.

Other Considerations

Public combined sewers cross through the northern and central extents of the site. UU have stated (see Appendix C) that a 6m clearance, 3m from the centre line of the sewers, should be applied. Where the required easement is not achievable the alternative is to divert the sewers.

12

w10232-161215-FRA&Drainage Strategy

Conclusions

The proposal is for the development of two buildings comprising 246 apartments and commercial space. The buildings will be accompanied by 180 subterranean car parking spaces over two levels, with bike spaces, landscaped amenity space and enhancement works to the adjacent public park.

The site is located within Flood Zone 1 on the Environment Agency (EA) 'Flood Map for Planning (Rivers and Sea)' – an area considered to have the lowest probability of fluvial and tidal flooding. The site is shown to be located outside of the extreme 0.1% annual probability flood extent.

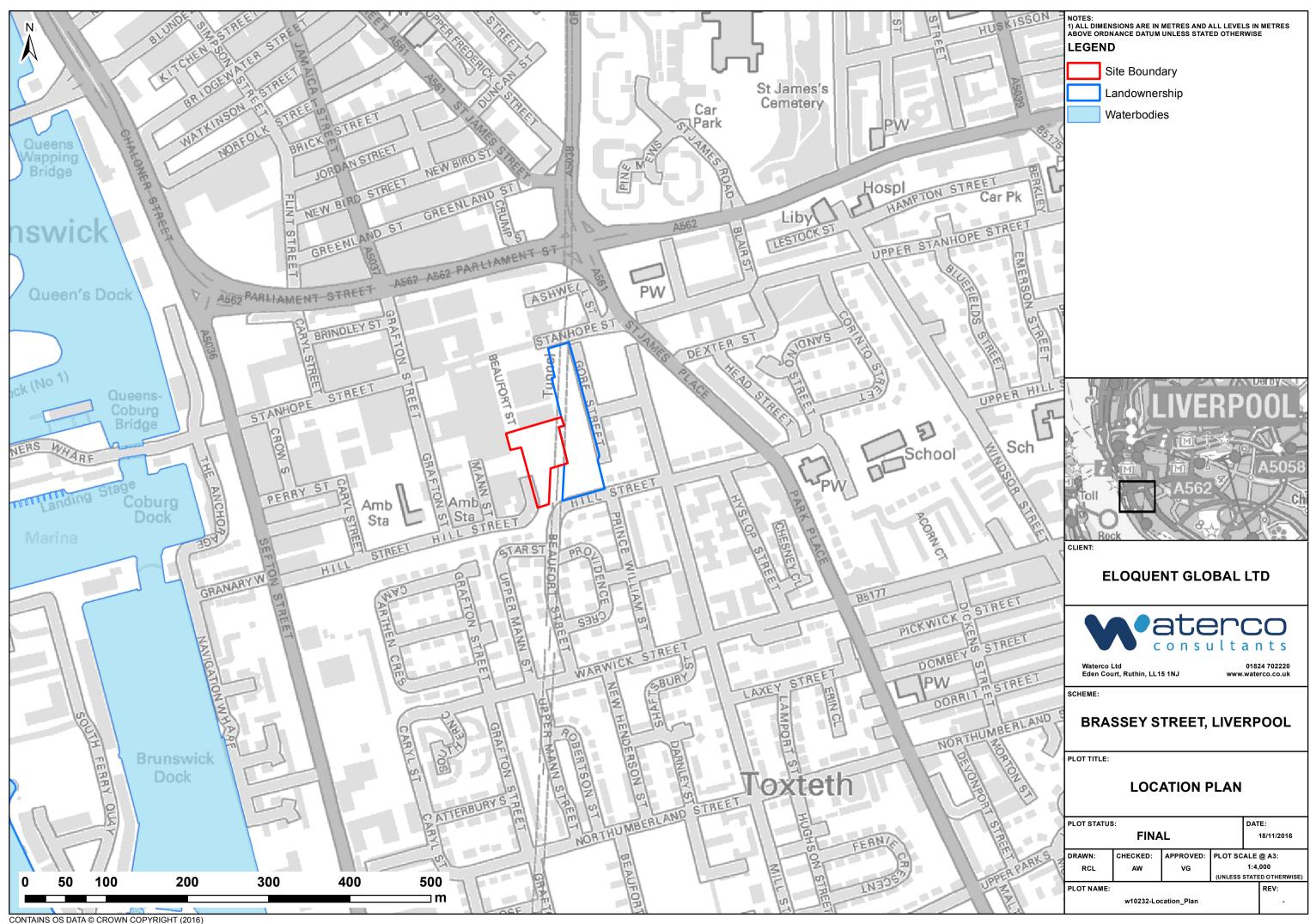
The risk of flooding from all sources has been assessed and the flood risk to the site is considered to be low.

The proposed development will introduce impermeable drainage area in the form of buildings, access roads, car parking, bike parking and court yard area. In order to ensure surface water runoff generated by the development will not increase flood risk elsewhere, flow control will be used and attenuation provided on site to accommodate storm events up to and including the 1 in 100 year plus 30% climate change event.

All methods of surface water discharge have been assessed. Where soakaways are not possible, discharge of surface water to the public sewer network appears to be a feasible option.

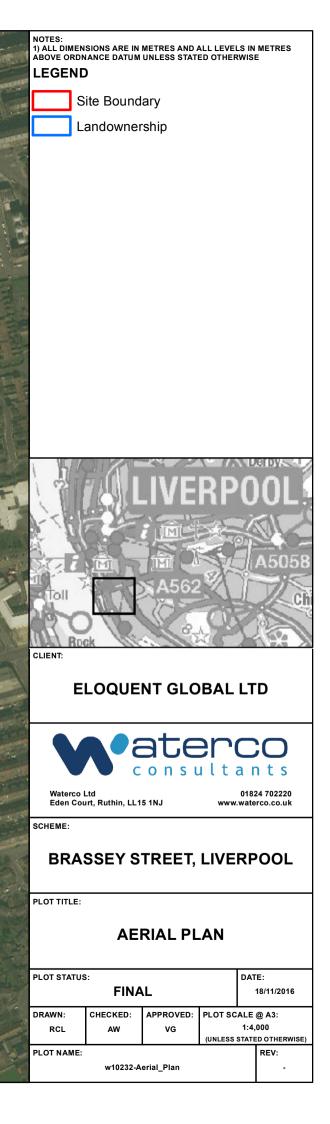
Attenuation storage will be required on site in order to restrict surface water discharge to 5 l/s. Attenuation can be provided in the form of attenuation tank.

Foul flows should be discharged to the public sewer network.

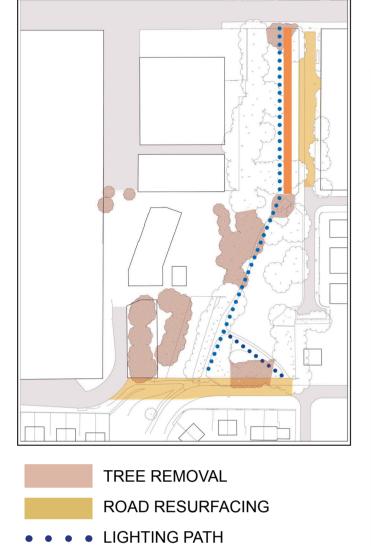


Recommendations

- 1. Submit this Flood Risk Assessment and Drainage Strategy to the Planning Authority in support of the Planning Application;
- 2. Undertake BRE 365 infiltration testing to determine the suitability of infiltration techniques;
- 3. Verify the attenuation volumes included in this report when undertaking detailed drainage design;
- 4. Make provision on site for attenuation storage features;
- Provide a 3m easement from the centreline of the public combined sewers which cross through the site.


Appendix A – Location Plan & Aerial Image

CONTAINS OS DATA © CROWN COPYRIGHT (2016) BASEMAP: WORLD IMAGERY. SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, GIS USER COMMUNITY


Appendix B – Development Plan & Topographical Data

GREEN SPACE: URBAN FACILITATOR

PARK INTERVENTIONS:

KEY CHANGES

NEW PATHWAY

The park encompasses seveal types of green spaces, that enhance and facilitate the urban usages of adjacent plots;

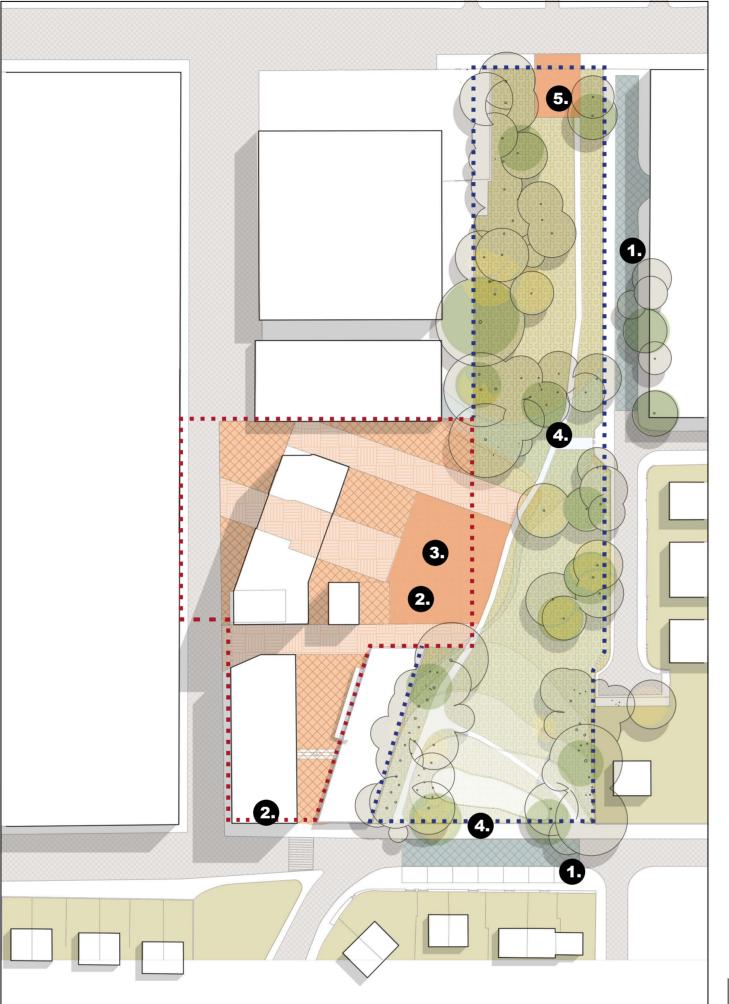
- PASSING POINT & ROUTE
- HIDDEN/SERENE
- MEETING POINT
- COMMUNITY NODE
- HERITAGE

With these characteristics in mind, our proposal to open up the park is based on the following design principles;

- VISIBILITY
- SAFETY
- BONDARY CONNECTION FACILITATED ACTIVITIES

These will be achieved with the following simple measures; TREE TRIMMING OR REMOVAL

- LIGHTING
- SHARED SURFACES/IMPROVED SURFACES
- CROSSING POINTS


1. INTERFACE:

Interfaces with existing residents should provide privacy whilst also creating a strong link. At Gore Street new trees should be planted for privacy and a partial road closure would prevent unwanted traffic and create a link to the park edge. At Hill street the removal of some trees will provide a visual link for the houses across the road. With the suggested opening of Hill Street, traffic should be calmed using general measures as well as a shared surface that would again blur the park edge.

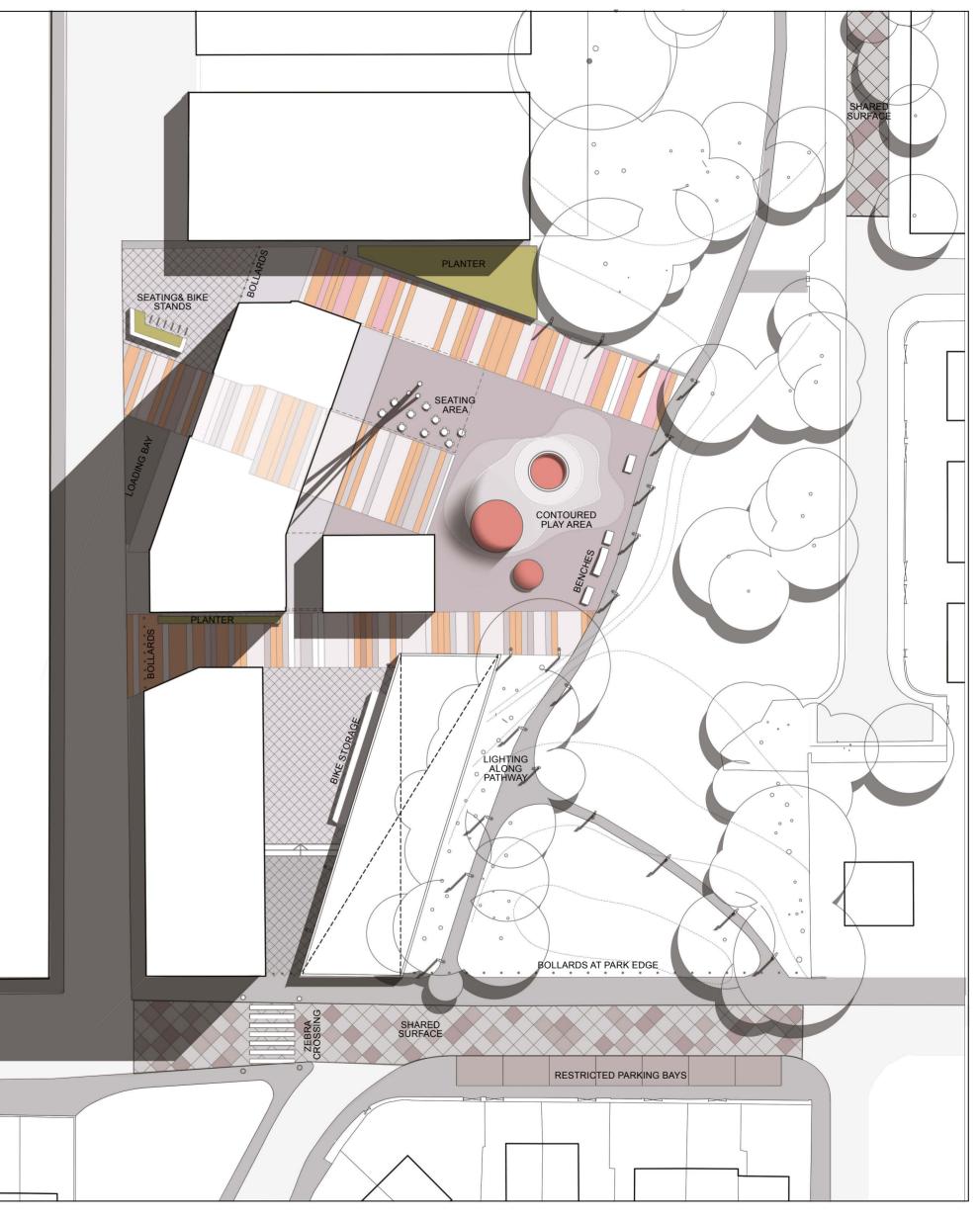
2. HERITAGE/COMMUNITY:

Within the urban block there have been various historical community uses that the park make reference to firstly in bringing it back into use and secondly with the types of uses proposed. The proposed community space at Hill Street makes reference to the social function of Public Houses that used to line Hill Street. The play area within the park references Caryl Street gardens, a historical community play area located in the area.

KEY NODES: EDGES AND INTERFACES

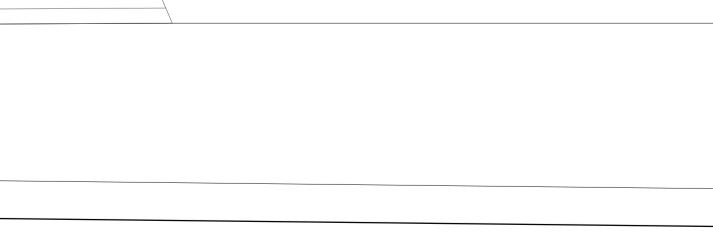
3. HIDDEN/SERENE:

To this point the park has been relativley unknown to those who do not live in the immediate area. This characteristic should be enhanced to provide a different type of space within the urban block. The focal point is located in the centre of the park, at the interface between the development and the current park boundary. The form of the building, the wall to the railway and the trees enclose a small urban plaza and play area.

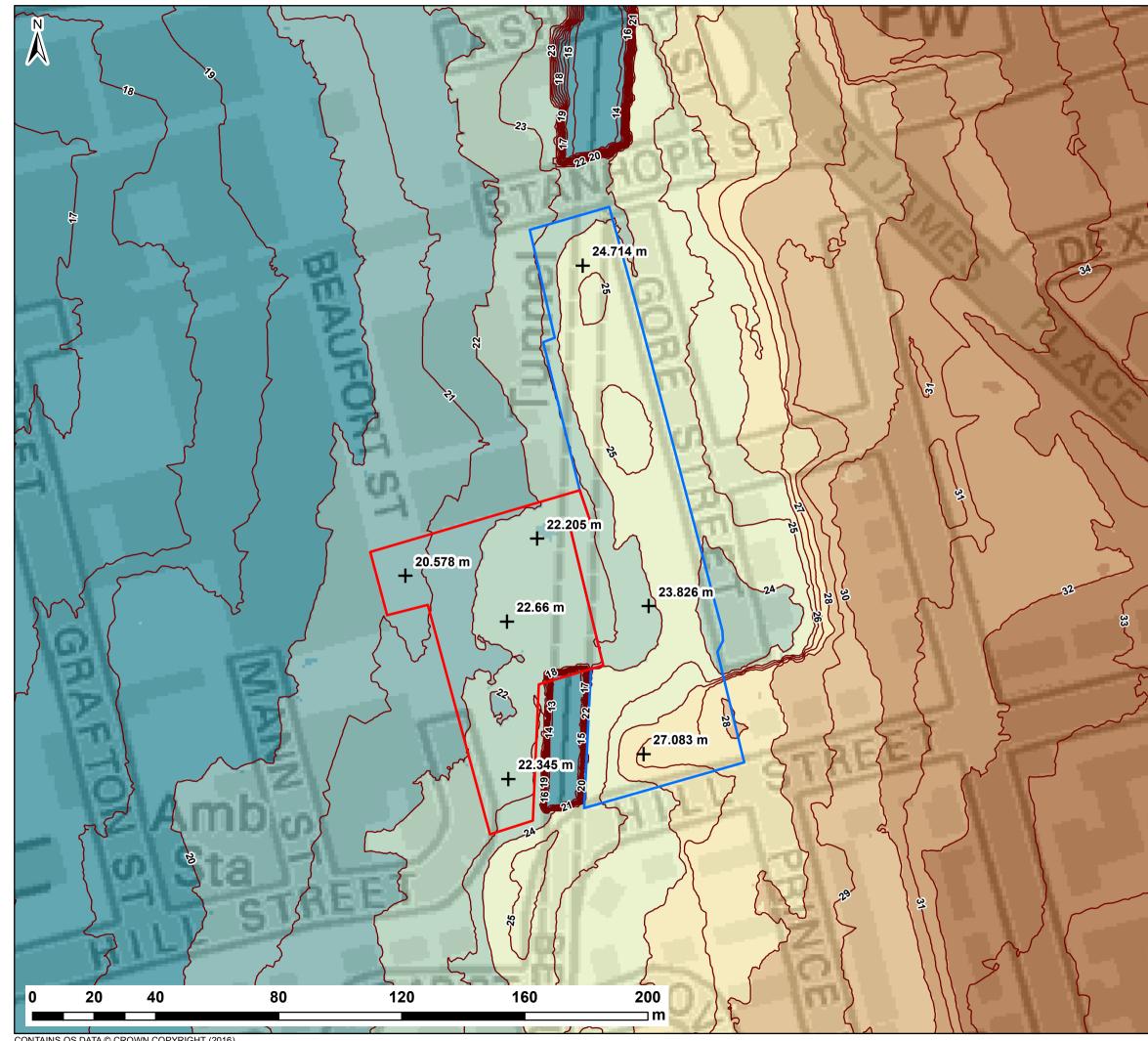

4. PASSING POINT & ROUTE:

At Hill Street, the entrance for local residents is key, as this will become a route through to the station & city centre. At this point safe access and visibility is important. The path through the park needs to be well defined and safely lit, using street lamps or building lighting.

5. MEETING POINT:


The North entrance to the park, opposite what will be James Street station will serve as a key entrance and meeting point from the station. This will be the first or maybe the only interface with the park for many people and should give a glimpse through the whole park.

BRASSEY STREET


scale 1:200 0

RET

S

НЦ

2. Do	is drawing not scale	i is copyright of BLOK archit from this drawing dimensions only	tecture Ltd				
-	-	-					-
rev.	date					drn	auc
drav	ving status		LANNIN	G			
	ond Floor vard Pavilic ert Dock	on					
Albe	rpool				3L(K
Albe Live L3 4							
Albe Live L3 4 015 info	1 958 0200 @blokarch) nitecture.co.uk nitecture.co.uk					
Albe Live L3 4 015 info	1 958 0200 @blokarch v.blokarch	nitecture.co.uk		Scale		ecked Date	Issue
Albe Live L3 4 015 info www	1 958 0200 @blokarch v.blokarch	itecture.co.uk itecture.co.uk				10.11.16	

CONTAINS OS DATA © CROWN COPYRIGHT (2016) © ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT (2016). ALL RIGHTS RESERVED.

Appendix C – United Utilities Sewer Plan and Correspondence

Waterco Ltd

Eden Court Lon Parcwr Business Park Ruthin LL15 1NJ

United Utilites Water Limited

Property Searches Ground Floor Grasmere House Lingley Mere Business Park Great Sankey Warrington WA5 3LP DX 715568 Warrington Telephone 0370 751 0101

Property.searches@uuplc.co.uk

 Your Ref:
 W10232

 Our Ref:
 16/ 1252597

 Date:
 29/11/2016

FAO: Johanne Williams

Dear Sirs

Location: Brassey Street Liverpool L8 5XP

I acknowledge with thanks your request dated 28/11/16 for information on the location of our services.

Please find enclosed plans showing the approximate position of our apparatus known to be in the vicinity of this site.

The enclosed plans are being provided to you subject to the United Utilities terms and conditions for both the wastewater and water distribution plans which are shown attached.

If you are planning works anywhere in the North West, please read our access statement before you start work to check how it will affect our network. http://www.unitedutilities.com/work-near-asset.aspx.

I trust the above meets with you requirements and look forward to hearing from you should you need anything further.

If you have any queries regarding this matter please telephone us on 0370 7510101.

Yours Faithfully,

immonds.

Amanda Simmonds Property Searches Manager

TERMS AND CONDITIONS - WASTERWATER & WATER DISTRIBUTION PLANS

These provisions apply to the public sewerage, water distribution and telemetry systems (including sewers which are the subject of an agreement under Section 104 of the Water Industry Act 1991 and mains installed in accordance with the agreement for the self-construction of water mains) (UUWL apparatus) of United Utilities Water Limited "(UUWL)".

TERMS AND CONDITIONS:

- 1. This Map and any information supplied with it is issued subject to the provisions contained below, to the exclusion of all others and no party relies upon any representation, warranty, collateral contract or other assurance of any person (whether party to this agreement or not) that is not set out in this agreement or the documents referred to in it.
- This Map and any information supplied with it is provided for general guidance only and no representation, undertaking or warranty as to its accuracy, completeness or being up to date is given or implied.
- 3. In particular, the position and depth of any UUWL apparatus shown on the Map are approximate only and given in accordance with the best information available. The nature of the relevant system and/or its actual position may be different from that shown on the plan and UUWL is not liable for any damage caused by incorrect information provided save as stated in section 199 of the Water Industry Act 1991. UUWL strongly recommends that a comprehensive survey is undertaken in addition to reviewing this Map to determine and ensure the precise location of any UUWL apparatus. The exact location, positions and depths should be obtained by excavation trial holes.
- 4. The location and position of private drains, private sewers and service pipes to properties are not normally shown on this Map but their presence must be anticipated and accounted for and you are strongly advised to carry out your own further enquiries and investigations in order to locate the same.
- 5. The position and depth of UUWL apparatus is subject to change and therefore this Map is issued subject to any removal or change in location of the same. The onus is entirely upon you to confirm whether any changes to the Map have been made subsequent to issue and prior to any works being carried out.
- 6. This Map and any information shown on it or provided with it must not be relied upon in the event of any development, construction or other works (including but not limited to any excavations) in the vicinity of UUWL apparatus or for the purpose of determining the suitability of a point of connection to the sewerage or other distribution systems.
- 7. No person or legal entity, including any company shall be relieved from any liability howsoever and whensoever arising for any damage caused to UUWL apparatus by reason of the actual position and/or depths of UUWL apparatus being different from those shown on the Map and any information supplied with it.
- 8. If any provision contained herein is or becomes legally invalid or unenforceable, it will be taken to be severed from the remaining provisions which shall be unaffected and continue in full force and affect.
- 9. This agreement shall be governed by English law and all parties submit to the exclusive jurisdiction of the English courts, save that nothing will prevent UUWL from bringing proceedings in any other competent jurisdiction, whether concurrently or otherwise.

WASTE WATER SYMBOLOGY

Combined	Foul	Surface	Overflow	
•	٠	٠	٠	Manhole
•	•	-	•	Manhole, side entry
-	-	-	-	Public sewer
	->	-	-> -	Private sewer
-				S104 sewer
	+++-	<u>+ - № </u>	+ + + + + + + + + + + + + + + + + + + +	Rising Main, public
	н ч н	н 🖣 н	нМн-	Rising Mian, private
-			-	Rising main, S104
				Highway Drain, private
IC	IC	IC		WW Pumping Station
ES	ES	ES		Inspection Chamber
HS	Hs	HS		Extent of Survey Head of System
so	•	SO RE		Soakaway
RE	RE	RE		Rodding Eye
ЦН	LH	ЦН		Lamp Hole
- 1 -		LH		T Junction/Saddle
GU	GU	GU		Gulley
AV	AV	AV		Air Valve
NRV	NRV	NRV		Non Return Valve
SO RE LH AV NRV	-	-		Sewer Overflow
CA	CA	CA		Cascade
FM	FM	FM		Flow Meter
HA	HA	HA		Hatch Box
HY	HY	HY		
	IN	IN		Hydrobrake
				Inlet
	(A)	Ŵ		Bifurcation
	\sim	(CA) OI		Catchpit
PE		OI PE		Oil Interceptor
e CM	•			Penstock
SM VA VO	SM	SM VA		Summit
VA •	VA	VA •		Valve
6	₩0	(vc)		Valve chamber
•		wo		Washout Chamber
● ^{DS}	DS •	DS		Drop Shaft
WwTW	WwTW			WW Treatment Works
ST T	ST			Septic Tank
-		■		Vent Column
				Network Storage Tank
OP •	OP	OP ●		Orifice Plate
	Ø	٢		Vortex Chamber
0	0	0		Penstock Chamber
Ħ	#		DP	Screen Chamber
DP	● ●	DP	•	Discharge Point
Ç	Ę	\leq	Ę	Outfall

MANHOLE FUNCTION		SEWER	SEWER SHAPE					
FO	Foul	CI	Circular	SQ	Square			
SW	Surface Water	EG	Egg	TR	Trapezoidal			
со	Combined	OV	Oval	AR	Arch			
OV	Overflow	FT	Flat Top	BA	Barrel			
		RE	Rectangular	HO	Horse Shoe			
SEWER MATERIAL				U	Unspecified			
AC	Asbestos Cement	DI	Ductile Iron					
BR	Brick	VC	Vitrified Clay					
со	Concrete	PP	Polypropylene					
CSB	Concrete Segment	PF	Pitched Fibre					
CSU	Concrete Segment	MA	Masonary, Coursed					
СС	Concrete Box Culverted	MA	Masonary, Random					
PSC	Plastic	RP	Reinforced Plastic					
GR	Glass Reinforced	CI	Cast Iron					
GRP	Glass Reinforced	SI	Spun Iron					
PVC	Polyvinyl Chloride	ST	Steel					
PE	Polyethtlene	U	Unspecified					

Control Kiosk

ABANDO	ABANDONED PIPE									
→	Public Sewer									
-+	Rising Main									
- + -	Private Sewer									
<u> </u>	Sludge Main									

Printed By: Property Searches

OS Sheet No: SJ3588NW

Scale: 1:1250 Date: 29/11/2016

Refno 0501 0502 0503	Cover Func 21.09 CO 21.36 CO 21.68 CO		1067 1025	1676	EG	GRF GRF	Length 946.32 9 11.4 9.49	Grad 26	Refno 4811 4901 4902	Cover Func 39.12 CO 37.74 CO 35.59 CO	Invert 36.76	Size.xSize.y 300
0503 0504 0505 0506 0507	22 CO 21.25 CO 19.26 CO 20.01 CO	0 17.15	300	900	CI	VC	9.49 21.84 40.54	145	4902 4903 4904 4905 4908	35.59 CO 35.59 CO 36.8 CO 38.51 CO FO	32.06 35.22	550 950 225
0601 0602 0604 0605	20.2 CO 20.78 CO 19.18 CO 19.36 CO	16.19 16.64					53.85 56.75	126	4909 4912 4913 4914	FO CO CO CO		150 100 100
0605 0607 0650 0701	20.89 CO 20.89 CO 19.05 CO	19.29 16.8	225 550	900	CI EG		11.18 9.22	58	0500 0805 0909		0 15.73 0	300 550 900 1100 1700
0702 0703 0704 0705	20.95 CO 19.74 CO 21.45 CO 21.66 CO	17.5 16.24		900 1070			46.32 9.85	26	0910 0911 1500 1501	CO CO CO CO	0 0 0	1125 1650 1030 1720 1676 375
0706 0801 0802 0803	CO 18.07 CO 18.94 CO 17.56 CO	14.23 15.44 13.95	550		EG EG EG	CO	59.67 50.7 42.47	80	1507 1816 1817 1905	CO CO CO CO	0	1080 1690
0901 0902 0903 0904	19.56 CO 19.47 CO 18.2 CO 17.2 CO	15.47 15.13	675	1050	EG	BR	10.82 22.56		1903 1908 1910 1911 2505		0	1000 1090
0907 1503 1504 1505	19.85 CO 23.39 CO 25.05 CO CO	19.76 22.41		700	EG CI CI	VC	9 11.7 19.42 14.47	65	2604 2814 2905 2908	CO CO CO CO	0	150 1060 1700
1506 1509 1511	23.01 CO 24.96 CO 24.64 CO	21.06		1676				30	2913 3513 3607	CO CO CO	0	1090 1740 550 900
1516 1601 1602 1603	22.06 CO 22.32 CO CO	18.46	150 540	920	CI EG		2.25 22.8	57	3610 3614 3615 3811	CO SW SW CO	0	1067 1676
1607 1608 1650 1651	22.9 CO 22.65 CO 24.91 CO 24.64 CO	18.9 22.93 22.59	300	820	EG CI CI	VC	8.54 44.64 52.01	154 173	3812 3813 3908 3909	CO CO CO CO	0	225
1701 1702 1750	22.55 CO 22.31 CO 24.87 CO	19.13 18.74 22.28	675 550		EG	BR CO	101.16 32.28 41.3	118	4504 4607 4608		0	220
1751 1752 1753	24.91 CO 24.92 CO 24.99 CO								4609 4807 4809	CO CO CO	0 0	1060 1650 1050 1650
1801 1802 1803	20.51 CO 20.9 CO 22.2 CO	16.7 17.3 19.25	700 550 550	900 900 900	EG EG EG	CO CO	20.62 11.18 19.65	23	4813 4814 4815	CO CO CO	0	700 1050 150
1804 1805 1806 1807	21.78 CO 23.12 CO 22.43 CO CO	17.84 20.09		900 900	EG EG CI	CO	9.06 26.93 13.61		4906 4907 6000 0508	CO CO CO CO	33.13 33.39 0	550 900 350 1676
1807 1808 1809 1891		0	225 550	900	CI EG	VC	20.62 11				0	1067 1676
1901 1902 1903	24.08 CO 22.96 CO 24.26 CO	19.52 19.91	1120 550	2060 900	EG EG	VC	19.67 29.95	1	0707 0708 0709	CO CO CO	0	540 920
2501 2502 2503 2504	30.07 CO 26.83 CO CO CO	26.31 23.25	1067 560	1676 900	EG EG	GRF GRF	932.28 9 7.28		0905 0906 1508		0	1100 1700
2506	CO CO 30.59 CO	0 29.04	460 450	750 750	EG EG	GRF	5.83	25	1510 1512 1513			
2510 2512 2601 2602	30.06 CO 30.52 CO 29.29 CO CO	28.51 27.13 28.26	300 460 225 150	750	EG CI		49.73 13.34 10.2	116	1515 1609 1706 1810		0	675 1050 675 1050
2603 2605	CO 29.68 CO 29.97 CO	26.19 26.5	500 450	900 730	EG		9 21.84 17.46		1813 1814 1815		0 0	700 900 550 900
2606 2607 2609 2610	29.94 CO 29.2 CO	27.71 27.12	150 225 225		CI CI CI	VC VC VC	12.28 25.71 12.37	58	$\begin{array}{c} 0509\\ 0510\\ 0606\\ 0707\\ 0708\\ 0905\\ 0906\\ 1508\\ 1510\\ 1512\\ 1513\\ 1515\\ 1609\\ 1706\\ 1810\\ 1813\\ 1814\\ 1815\\ 1906\\ 2507\\ 2508\\ 2511\\ 2608\\ 2611\\ 2706\\ 2711\\ 2810\\ 2811\\ 2706\\ 2511\\ 2608\\ 2611\\ 2706\\ 3508\\ 3509\\ 3511\\ 3608\\ 3509\\ 3511\\ 3608\\ 3509\\ 3511\\ 3608\\ 3509\\ 3511\\ 3606\\ 1610\\ 1611\\ 1612\\ 1704\\ 1605\\ 1606\\ 1610\\ 1611\\ 1612\\ 1704\\ 1705\\ 3603\\ 3603\\ 3704\\ 3801\\ 3603\\ 3704\\ 3891\\ 4502\\ 4606\\ \end{array}$			
2612 2613 2650 2651	CO CO 26.61 CO 27.56 CO	24.49 24.15	150 150 225		CI	VC VC VC	5.7 40.8 31.05	30 97	2508 2511 2608 2611		0	470 900 450 730
2652 2704	27.79 CO 27.62 CO 28.45 CO	24.65	470	900	EG	VC	44.38		2706 2711 2810	CO CO CO		
2705 2709 2710 2712	CO CO 28.98 CO 26.33 CO	0 25.31	225 550	900	CI EG		15.52 20.88	50	2811 2813 2815 2000		0	550 900 550 900
2750 2751 2801 2802	26.33 CO 26.84 CO 30.37 CO 29.72 CO	29.68	550	900	EG	co	6.32	50	2909 2911 3506 3508		0	300
2802 2804 2805 2806	24.63 CO 23.53 CO 23.53 CO	20.93 20.08	550 300	900	EG CI	CO VC	46.84 12		3509 3511 3606	CO CO CO	0	1067 1676
2807 2808 2809	25.1 CO CO CO	22.66 0 0	300 225 900		CI CI CI	VC VC VC	28.19 13.6 13.34	11	3612 3704 3807	CO CO CO	0	550 900
2816 2850 2901	CO 24.8 CO 27.35 CO	0 22.93	100 1090	1710	CI EG	VC BR	48.27 9.22	19	3808 3814 3905	CO CO CO	0	550 900
2902 2903 2904 2906	28.87 CO 24.59 CO 25.69 CO 26.18 CO	19.81	550	900	EG	CO	9.22		3907 4703 4800			
3501 3502	34.59 CO 35.31 CO	29.61 31.26	1067 550 225	1676 900	EG	GRF BR	67.21 8.08	20 16	4808 4810 4812 4915		0	675 1050
3503 3504 3505 3507	32.93 CO 35.72 CO 35.66 CO 35.74 CO	32 31.43 31.49	550 600 600	900 860 900	EG EG EG	BR BR CO	59.2 5.1 13	81	1505 1604 1605			
3601 3602 3603	34.42 CO 34.41 CO CO	30.94	550	820	EG	BR	19.24		1606 1610 1611	CO CO CO		
3604 3605 3608	32.91 CO CO CO	0	225 150		CI CI	VC VC	15.81 11.83		1612 1704 1705	22.59 CO CO		
3609 3611 3701 3702	CO CO 32.93 CO CO	29.13	100 600	950	CI EG	VC CO	6.46 61.27	191	1710 3603 3608 3702			
3800 3801 3802	CO 33.21 CO CO	0 28.81	550 600	900 920	EG EG	CO CO	78.12 11.4		3702 3703 3704 3802	CO CO 31.79 CO		
3803 3804 3805	CO CO 32.04 CO	0 28.18	675 550	900	CI EG	co co	12.84 47.8	17	3891 4502 4606	CO CO CO		
3806 3809 3810 3815	33.68 CO CO CO CO	30	475	825	EG	CO	19.65					
3901 3902 3903	33.97 CO 31.39 CO 32.46 CO	27.69	600	950	EG	CO	5.1					
3904 4501 4503 4600	31.57 CO 36.71 CO 36.23 CO 36.16 CO	33.01 32.21			CI CI		37.11 21.84	49 109				
4600 4601 4602 4603	36.6 CO 34.27 CO 33.79 CO		550	900	EG	BR	947.93 10.2 3.61					
4604 4610 4700	34.3 CO 35.94 CO 33.58 CO	32.1	150		CI	со	21.21	76				
4701 4702 4801	35.92 CO 34.38 CO 36.74 CO	0 31.82	550	900	EG	CO	42.05 43.31	127				
4802 4803 4804 4805	34.65 CO 36.83 CO 36.95 CO CO	33.5	550 440 1050	500	EG	BR	8.25 33.24 10.44	43				
4806	СО											

WASTE WATER SYMBOLOGY

Foul	Surface	Combined	Overflow
•	•	•	-
•	•	—	T
			-
			— - -
_	_	_	
b	b		

Foul Surface Combined

Manhole Manhole,Side Entry MainSewer, Public MainSewer, Private MainSewer, S104 Rising Main, Public Rising Main, Private Rising Main, S104 Highway Drain, Private

								o	o combi	WW Site Termination				
							 ●	AV	AV	Air Valve			Sludge Main, Public Sludge Main, Private	
							CA	CA	CA.	Cascade			Sludge Main, S104	
							NRV	NRV	NRV	Non Return Valve				
							ES	ES	ES	Extent of Survey				
							FM	FM	FM	Flow Meter			MainSewer Rising Main	
							GU	GU	GU	Gulley		→	Highway Drain	
							HA	на	HA	Hatch Box		<u> </u>	Sludge Main	
							HS	HS	HS	Head of System				
ert S 76		Size.y			Length 80.96	Grad 63	HY	HY	HY	Hydrobrake / Vortex				
06	550	950	FG	0	2		N	.IN	N	Inlet				
22	225	550	CI	VC	26.25	109	IC	IC	IC	Inspection Chamber				
	150		ov	CI	10.32		\oplus	\oplus	\square	Bifurcation				
	100 100		OV OV	CI CI	8.09 12.39		(CA)	(CA)	0	Catchpit				
73		900 1700		BR	20.59 45.61 32.29	26	Ŭ	്		Contaminated Surfac	e Water			
1	1125 1030	1650 1720	EG EG	BR BR	32.99 3.16		A			WW Pumping Station				
	1676 375		CI CI	VC VC	22.11 16.28		A			Sludge Pumping Stati	on			
		1000	50		10.10				→⊡→	- Sewer Overflow				
1	1080	1690	EG	vC	16.43		凸	酉	凸	T Junction/Saddle				
			~				LH	LH	LH	LampHole				
	150		CI	VC	16.63		ě	•	e e	OilInterceptor				
		1700 1740			5.39 10.2	21	● ^{PE}	PE	e e	PenStock				
					18.97 44.25					Pump				
	.501	0	_0	r	20		.RE	e RE	e RE	RoddingEye				
								• ⁵⁰	● ^{SO}	Soakaway				
	225		СІ	VC	22.8		SM	•SM	• SM	Summit				
							● ^{VA}	e ^{VA}	eva eva	∨alve				
1	1060	1650	EG	со	37.57 18.7		vc	vc	vc	Valve Chamber				
					18.7 8.25	46		•	.wo	Washout Chamber				
13		900		CO	6.17 3.16		DS	.DS	.DS	DropShaft				
39			CI CI	CO	13 13.19	10	WVT#		Ē	WW Treatment Work	s			
1	1067	1676	EG	GRP	9.62		ST		ST	Septic Tank				
	540	920	EG	со	17.72		-		- T	Vent Column				
										Network Storage Tank				
1	1100	1700	EG	BR	3.16		• ^{OP}	OP	• ^{OP}	Orifice Plate				
							٢	O	0	Vortex Chamber				
	075	1050	50		10.0		0			Penstock Chamber				
	6/5	1050	EG	BR	10.2 60.88 8.25		0	0	0	Blind Manhole				
	675						Foul	Surface		Verflow				
	675 700		EG	CO	45.61				Combined (H H			CZ Control Kingle	
	675 700		EG	со						Screen Chamber			CK Control Kiosk	
	675 700 550	900			45.61					H H			CK Control Kiosk Cnspecified	
	675 700 550 470	900 900	EG	VC						Screen Chamber Discharge Point Outfall	п			
	675 700 550 470 450	900 900 730	EG EG	VC VC	45.61 40.26 30.81		⊞ • `			 ■ Screen Chamber ● Discharge Point → Outfall LEGEN 	D			
	675 700 550 470 450 550	900 900 730	EG EG	VC VC CO	45.61 40.26 30.81 38.08		₩ →	■ → HOLE Foul		 ■ Screen Chamber ● Discharge Point → Outfall LEGEN 	D			
	675 700 550 470 450 550	900 900 730 900	EG EG	VC VC CO	45.61 40.26 30.81 38.08		₩ • •	■ → HOLE Foul	FUNCTION	 ■ Screen Chamber ● Discharge Point → Outfall LEGEN 	D			
	675 700 550 470 450 550	900 900 730 900	EG EG EG	VC VC CO	45.61 40.26 30.81 38.08		MAN FO SW	HOLE Foul Surface	FUNCTION ce Water ined	 ■ Screen Chamber ● Discharge Point → Outfall LEGEN 	D			
	675 700 550 470 450 550 550 550 300	900 900 730 900 900	EG EG EG CI	VC VC CO CO VC	45.61 40.26 30.81 38.08 5.1		MAN FO SW CO OV SEW	HOLE Foul Surfac Overfi ER SHA	FUNCTION ce Water ined low	 Screen Chamber Discharge Point Outfall 	D			
· · · · · · · · · · · · · · · · · · ·	675 700 550 470 450 550 550 550 300	900 900 730 900 900 900	EG EG EG CI EG	VC VC CO CO VC GRP	45.61 40.26 30.81 38.08 5.1 27.53 9.49		₩ FO SW CO OV SEW CI	HOLE Foul Surfac Comb Overfi ER SHA	FUNCTION ce Water ined low	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal	D			
· · · · · · · · · · · · · · · · · · ·	675 700 550 470 450 550 550 300 1067 550	900 900 730 900 900 900	EG EG CI EG EG	VC VC CO CO VC GRP CO	45.61 40.26 30.81 38.08 5.1 27.53		MAN FO SW CO OV SEW	HOLE Foul Surfac Overfi ER SHA	FUNCTION ce Water ined low	 Screen Chamber Discharge Point Outfall 	D			
· · · · · · · · · · · · · · · · · · ·	675 700 550 470 450 550 550 300 1067 550	900 900 730 900 900 900	EG EG CI EG EG	VC VC CO CO VC GRP CO	45.61 40.26 30.81 38.08 5.1 27.53 2.9.49 4.12		₩ FO SW CO OV SEW CI EG	HOLE Foul Surfac Comb Overfi ER SHA Circula	FUNCTION ce Water ined low APE ar	Screen Chamber Discharge Point Outfall LEGEN	D			
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩ FO SW CO OV SEW CI EG OV	HOLE Foul Surface Comb Overfi ER SHA Circula Egg Oval	FUNCTION ce Water ined low APE ar	Screen Chamber Discharge Point Outfall LEGEN TR TR AR Arch BA Barrel	D			
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 2.9.49 4.12		₩AN FO SW CO OV SEW CI EG OV FT RE SQ	HOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square	FUNCTION ce Water ined low APE ar	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe	D			
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩ FO SW CO OV SEW CI EG OV FT RE SQ SEW	HOLE Foul Surface Comb Overfit ER SHA Circula Egg Oval Flat To Rectar Square ER MAT	FUNCTION ce Water ined low APE ar	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified		Ductilo less	✤ Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩AN FO SW CO OV SEW CI EG OV FT RE SQ SEW AC	IHOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe	FUNCTION Ce Water ined low APE ar p ngular e FERIAL estos Ceme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified	D DI PVC	Ductile Iron Polyvinyl C	✤ Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩ FO SW CO OV SEW CI EG OV FT RE SQ SEW	HOLE Foul Surface Comb Overfit ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick	FUNCTION Ce Water ined low APE ar p ngular e FERIAL estos Ceme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified	DI	Ductile Iron Polyvinyl C Cast Iron	✤ Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩ FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR	HOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square Square ER MAT Asbe Brick Polye	FUNCTION Ce Water ined low APE ar p ngular e FERIAL estos Ceme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified	DI PVC	Polyvinyl C	✤ Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩AN FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO	HOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polyo Rein Cono	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme stos Ceme stos Ceme forced Plas prete	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified	DI PVC CI SI ST	Polyvinyl C Cast Iron Spun Iron Steel	Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩AN FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB	IHOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat Tc Rectar Square ER MAT Asbe Brick Polyu Rein Conc	FUNCTION ce Water ined low APE ar p ngular e FERIAL estos Ceme forced Plas prete rete Segme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI ST VC	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla	 Unspecified hloride 	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩ FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU	HOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete forced Plas rete rete Segme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI ST VC PP	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle	 Unspecified hloride 	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		HIII → FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC	IHOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polyu Rein Conc Conc Conc	FUNCTION Ce Water ined low APE ar P ngular e FERIAL estos Ceme forced Plas rete forced Plas rete rete Segme rete Segme rete Segme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI ST VC PP PF	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre	Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		₩ FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU	HOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete forced Plas rete screte rete Segme rete Segme rete Segme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI ST VC PP	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C	Unspecified hloride y ene oursed	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC	IHOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat Tc Rectar Square ER MAT Asbe Brick Polyu Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete forced Plas rete screte rete Segme rete Segme rete Segme	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI ST VC PP PF MAC	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre	Unspecified Horide y ene oursed andom	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The posit	HOLE Foul Surfac Comb Overfi ER SHA Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme forced Plas rete Segme rete Segme	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified nt tic Matrix ent Bolted ent Unbolted ulverted mposite d Concrete <u>d Plastic</u> rground apparatus show	DI PVC CI SI VC PP PF MAC MAR U n on thi	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified	Unspecified hloride y ene oursed andom pproximate only and is give	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordan	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme forced Plas rete Segme rete Segme	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified nt tic Matrix ent Bolted ent Unbolted ulverted mposite d Concrete <u>d Plastic</u> rground apparatus show	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable.	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme forced Plas rete Segme rete Segme	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified IN Unspecified IN Unspecified IN Unspecified IN Unspecified IN Unspecified IN Unspecified	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable. I on being	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit g different fr	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme forced Plas rete Segme rete Segme	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified nt tic Matrix ent Bolted ent Unbolted ulverted mposite d Concrete <u>d Plastic</u> rground apparatus show information currently ava- used by the actual position	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable. I on being	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit g different fr	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme forced Plas rete Segme rete Segme	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified nt tic Matrix ent Bolted ent Unbolted ulverted mposite d Concrete <u>d Plastic</u> rground apparatus show information currently ava- used by the actual position	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable. I on being	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit g different fr	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar p ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme re	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable. U on being ance Su	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit g different fr rvey 10002	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar p ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme re	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified nt tic Matrix ent Bolted ent Unbolted ulverted mposite d Concrete <u>d Plastic</u> rground apparatus show information currently ava- used by the actual position	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable. U on being ance Su	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit g different fr rvey 10002	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI VC PP PF MAC MAR U n on thi ailable. I on being ance Su	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI VC PF MAC MAR U n on thi ailable. I on being ance Su	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002:	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN UNSPECIENT IN UN	DI PVC CI SI VC PF MAC MAR U n on thi ailable. I on being ance Su Da D: SJ Da 5 NC	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002: J3588 ate: 29/	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN Unspecified	DI PVC CI SI VC PF MAC MAR U n on thi ailable. I on being ance Su Da D: SJ Da 5 NC	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002:	Unspecified Unspecified	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN UN	DI PVC CI SI ST VC PP PF MAC MAR U n on thi ailable. I on being ance Su DI DI S MAC MAR	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002	• Unspecified hloride y ene oursed andom pproximate only and is give ies Water will not accept lia om those shown. 2432. NWV 11/2016	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN UNSPECIENT IN UNSPECIENT I	DI PVC CI SI ST VC PP PF MAC MAR U n on thi ailable. I on being ance Su DI SI SI SI SI SI SI SI SI SI SI SI SI SI	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002. J3588 ate: 29/ odes of 1	• Unspecified hloride y ene oursed andom pproximate only and is give ies Water will not accept lia om those shown. 2432. NVV 11/2016	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN UNSPECIENT IN UNSPECIENT I	DI PVC CI SI ST VC PP PF MAC MAR U n on thi ailable. I on being ance Su DI SI SI SI SI SI SI SI SI SI SI SI SI SI	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002. J3588 ate: 29/ odes of 1	• Unspecified hloride y ene oursed andom pproximate only and is give ies Water will not accept lia om those shown. 2432. NVV 11/2016	
, , , , , , , , , , , , , , , , , , ,	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN UNSPECIENT IN UNSPECIENT I	DI PVC CI SI ST VC PP PF MAC MAR U n on thi ailable. I on being ance Su DI SI SI SI SI SI SI SI SI SI SI SI SI SI	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, Ra Unspecified is plan is a United Utilit different fr rvey 10002. J3588 ate: 29/ odes of 1	• Unspecified hloride y ene oursed andom pproximate only and is give ies Water will not accept lia om those shown. 2432. NVV 11/2016	
1	675 700 550 470 450 550 550 300 1067 550 550	900 900 730 900 900 1676 900	EG EG EG CI EG EG EG	VC VC CO VC GRP CO CO	45.61 40.26 30.81 38.08 5.1 27.53 9.49 4.12 21.84		H FO SW CO OV SEW CI EG OV FT RE SQ SEW AC BR PE RP CO CSB CSU CC PSC GRC GRP The positi accordant for any lo	HOLE Foul Surfac Comb Overfi ER SH/ Circula Egg Oval Flat To Rectar Square ER MAT Asbe Brick Polye Rein Conc Conc Conc Conc Conc Conc Conc Con	FUNCTION ce Water ined low APE ar op ngular e FERIAL estos Ceme forced Plas rete Segme rete Segme r	Screen Chamber Discharge Point Outfall LEGEN TR Trapezoidal AR Arch BA Barrel HO HorseShoe UN Unspecified IN UN	DI PVC CI SI ST VC PP PF MAC MAR U n on thi ailable. I on being ance Su DI DI S NC 1 U U U I I I I I I I I I I I I I I I I	Polyvinyl C Cast Iron Spun Iron Steel Vitrified Cla Polypropyle Pitch Fibre Masonry, C Masonry, R Unspecified is plan is a United Utilit different fr rvey 10002 J3588 ate: 29/ odes of 1 ited	Unspecified Unspecified	

Johanne Williams

From: Sent: To: Cc: Subject: Attachments:	Lunt, John <john.lunt@uuplc.co.uk> Friday, December 2, 2016 3:58 PM Johanne Williams Wastewater Developer Services Pre Development Enquiry for Brassey St, Liverpool - Our ref: DE2913 DE2913 FW: w10232-Brassey St, Liverpool-Developer enquiry</john.lunt@uuplc.co.uk>
Importance:	High
Categories:	Information received

Dear Johanne,

We have carried out an assessment of your application which is based on the information provided; this pre development advice will be valid for 12 months.

Foul

The foul water flows emanating from the site will be allowed to drain freely in to the public combined sewerage system.

Surface Water

The surface water flows generated from this site must drain to soak away or some other form of infiltration system but if ground conditions confirm that this is not a viable solution then surface water may drain to the adjacent public combined water sewer at a maximum pass forward flow of 38 l/s.

Connection Application

Although we may discuss and agree discharge points & rates in principle, please be aware that you will have to apply for a formal sewer connection. This is so that we can assess the method of construction, Health & Safety requirements and to ultimately inspect the connection when it is made. Details of the application process and the form itself can be obtained from our website by following the link below

http://www.unitedutilities.com/connecting-public-sewer.aspx

Sewer Adoption Agreement

You may wish to offer the proposed new sewers for adoption. United Utilities assess adoption application based on Sewers adoption 6th Edition and for any pumping stations our company addenda document. Please refer to link below to obtain further guidance and application pack:

http://www.unitedutilities.com/sewer-adoption.aspx

Existing Sewers Crossing the Site

A public sewer crosses this site and we will require unrestricted access to the sewer for maintenance purposes, we would ask that you maintain a minimum clearance of (6m refer to table 2.1 SFA) which is measured 3m from the centre line of the pipe. If you cannot achieve this then you may wish to consider diverting the public sewer.

Please refer to the link below to obtain full details of the processes involved in sewer diversion.

http://www.unitedutilities.com/sewer-diversion.aspx

Please be aware that on site drainage must be designed in accordance with Building Regulations, National Planning Policy, and local flood authority guidelines, we would recommend that you speak and make suitable agreements with the relevant statutory bodies.

Please note, if you intend to put forward your wastewater assets for adoption by United Utilities, the proposed detail design will be subject to a technical appraisal by an Adoption Engineer as we need to be sure that the proposals meets the requirements of Sewers for adoption and United Utilities Asset Standards. The proposed design should give consideration to long term operability and give United Utilities a cost effective proposal for the life of the assets. Therefore, further to this enquiry should you wish to progress a Section 104 agreement, we strongly recommend that no construction commences until the detailed drainage design, submitted as part of the Section 104 agreement, has been assessed and accepted in writing by United Utilities. Any works carried out prior to the technical assessment being approved is done entirely at the developers own risk and could be subject to change.

Regards,

John

John Lunt Developer Query Engineer Developer Services and Planning Operational Services T: 01925 679411 (Int; 79411) E-mail: <u>wastewaterdeveloperservices@uuplc.co.uk</u> United Utilities.com

EMGateway3.uuplc.co.uk made the following annotations

The information contained in this e-mail is intended only for the individual to whom it is addressed. It may contain legally privileged or confidential information or otherwise be exempt from disclosure. If you have received this Message in error or there are any problems, please notify the sender immediately and delete the message from your computer. You must not use, disclose, copy or alter this message for any unauthorised purpose. Neither United Utilities Group PLC nor any of its subsidiaries will be liable for any direct, special, indirect or consequential damages as a result of any virus being passed on, or arising from the alteration of the contents of this message by a third party.

United Utilities Group PLC, Haweswater House, Lingley Mere Business Park, Lingley Green Avenue, Great Sankey, Warrington, WA5 3LP Registered in England and Wales. Registered No 6559020

www.unitedutilities.com www.unitedutilities.com/subsidiaries

Appendix D – Council Correspondence

Johanne Williams

From: Sent: To: Subject: Attachments:	Jackson, David <david.jackson3@amey.co.uk> Wednesday, December 14, 2016 3:58 PM Johanne Williams Re: w10232-Brassey Street, Liverpool NON STATUTORY STANDARDS - INFO REQUIREMENTS.pdf; LCC BROWNFIELD- GREENFIELD-FRA ADVICE.docx</david.jackson3@amey.co.uk>
Categories:	Information received

Johanne

The site will be classed as greenfield for drainage purposes unless it can be demonstrated that the site (or part of) is served by a drainage system connected to the public sewer network.

If the site is under 1 ha I can confirm this site will not require a FRA but as it is classed as major development a drainage design statement / information will be required in line with guidance note attached.

This is classed as a major development, and for your information I have attached the relevant part of the Non Statutory Technical Standards for Sustainable Drainage: Practice Guide, which has been produced by DEFRA as a supporting document to NPPF, on which the requirements (where applicable) for a planning application for major development with regards to surface water drainage are shown

Thanks

DAVE JACKSON

Engineer | Consulting

Amey

t: 0151 498 6825 | m: 0780 9313978 | e: <u>david.jackson3@amey.co.uk</u>

Unit 3 | Matchworks | 142 Speke Road | Garston | Liverpool | L19 2PH

De la de parte de la devenir de anticia de la devenir de la defenira de la devenira de la defenira de la defenira de la defenirada.	
	h hand my seek happy. Tak happy has happy happ

From: Johanne Williams < Johanne.Williams@waterco.co.uk> Sent: 09 December 2016 14:14 To: Jackson, David Subject: w10232-Brassey Street, Liverpool

Proposed mixed use development at Brassey Street, Liverpool, L8 5XP. National Grid reference: 335164E, 388833N.

Dear David,

We have been instructed to undertake a Flood Risk Assessment and Drainage Strategy for the above development and I have been passed your details by Liverpool City Council. Development plans can be provided. The proposed development is for the erection of two buildings to include 246 apartments and commercial space, with below ground parking.

Please could you provide me with pre-planning comments for a site at the above address in relation to flood risk and drainage. Please could you advise if you have any specific requirements regarding discharge rates and Climate Change allowance for attenuation volumes.

If you have any questions or require any further information, please do not hesitate to contact me.

Kind Regards,

Johanne Williams LLB (Hons) PGDip MCIWEM

Flood Risk Consultant

01824 702220

Ruthin - Chester - Manchester - Hyderabad

Assessment, Modelling, Design

For email confidentiality, limitations and company details please see our <u>disclaimer webpage</u>. Registered in Wales under company no. 3577754. Waterco Ltd, Eden Court, Ruthin LL15 1NJ

LCC GREENFIELD / BROWNFIELD SITES SURFACE WATER MANAGEMENT GUIDANCE

If the site has previously been developed it should be demonstrated that the drainage system is still operational for it to be classed as brownfield. Information should be obtained on the system, e.g. pipe diameters, levels, gradients, lengths, hydraulic controls, etc. These details should be used, along with the contributing area characteristics of the site, to set up a drainage model (or to inform another assessment method) in order to evaluate the peak flow rates at the outfalls from the existing site for the design return period events. The maximum allowed flow from the site should then be derived using the 1:2yr critical rainfall event with a 30% reduction applied to offer improvement.

The limiting discharge figure for the proposed development should be used in the design of the drainage system for the minimum requirement that flows for up to the 1:30yr critical rainfall event are retained within the system and that for the 1:100yr+30% climate change allowance, critical rainfall event there will be no flooding to any buildings and any excess volumes of water will be retained on site.

Notwithstanding the above, the existing site drainage constraints will also be taken into account when agreeing any discharge limits and the proposed flow should not exceed existing pipe capacity. For example if the existing site outfall was a 150mm dia pipe, irrespective of the area being drained, it would have a maximum flow capacity which may be lower than any proposed flows calculated using the above criteria, assuming a free discharge. Therefore discharge to the existing drainage system from the development would be effectively increased from the existing situation which is contrary to Environment Agency and National Planning Policy Framework guidance for flood risk and surface water management.

Where records of the previously developed system are not available and system characteristics cannot otherwise be determined, or if the drainage system is broken or blocked (or no longer operational), then the run-off characteristics should be defined as greenfield.

If a site is classed as greenfield the flow rates from the development will be limited to the equivalent greenfield run off rates. For example the flow rate from the development for the 1:30yr critical rainfall event should not exceed the greenfield run off rate for the site for the 1:30 year rainfall event, likewise for the 1:2 & 1:100 year scenarios. A minimum flow of 5 l/s can be used when the greenfield run off rate falls below 5 l/s.

It should be noted that this discharge figure will satisfy planning requirements but the applicant should consult United Utilities to determine if they have any discharge restrictions, which could be more restrictive.

For all development s over 1ha a FRA (Flood Risk Assessment) will be required which should be based on the requirements as detailed in Environment Agency (Greater Manchester, Merseyside & Cheshire) Local Planning Standing Advice and NPPF guidance. The detail and technical complexity of a FRA will reflect the scale, nature and location of the development. Where available, reference should be made to the Strategic Flood Risk Assessment (SFRA) for locally specific guidance and information.

The following list sets out key information that should be submitted within a FRA for developments

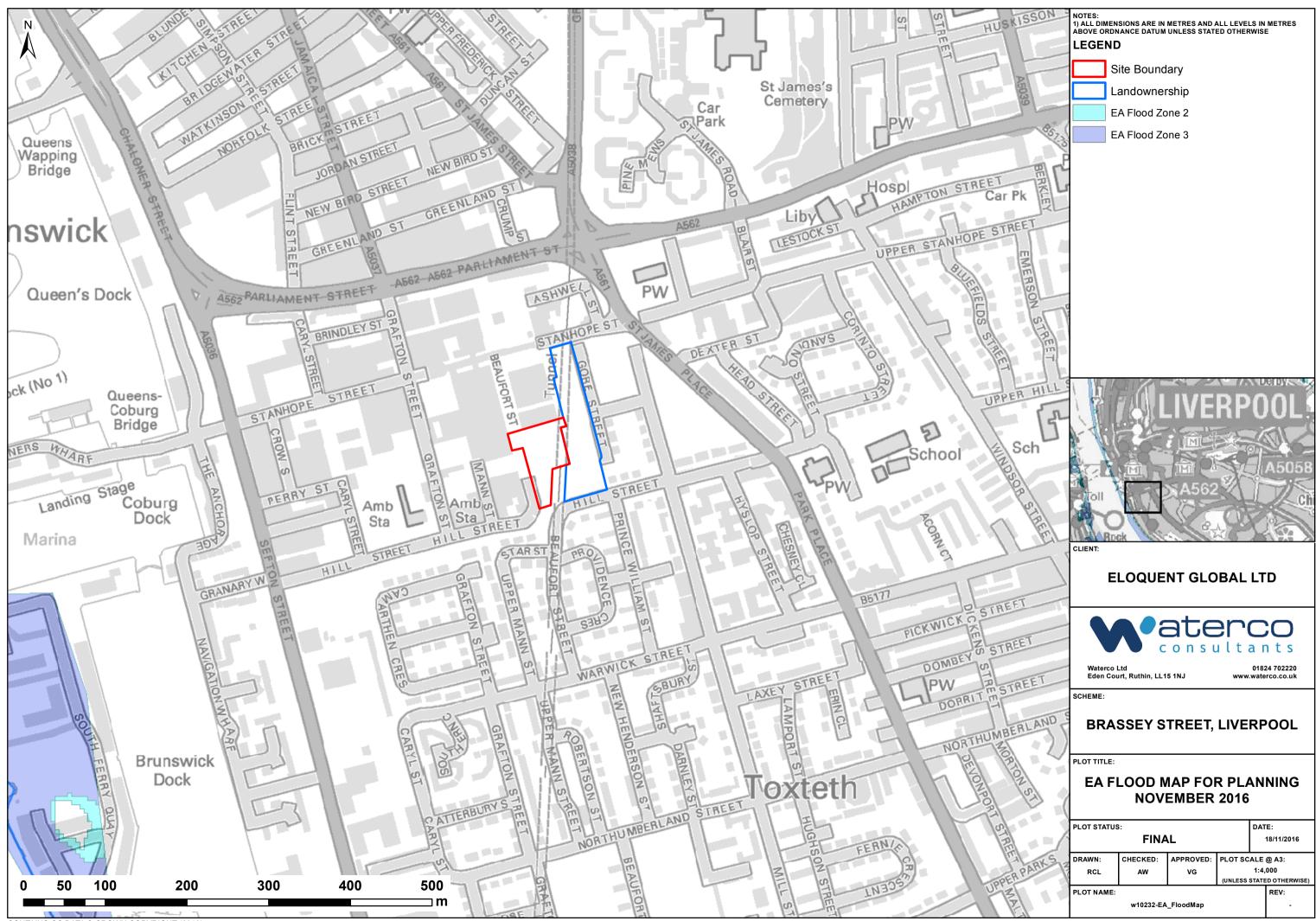
- A location plan that includes geographical features, street names and identifies the catchment, watercourses or other bodies of water in the vicinity.
- A plan of the site showing existing site; development proposals; and identification of any structures (e.g. embankments), which may influence local flood flow overland or in any watercourses (e.g. culverts) present on the site.
- Site levels of both existing and proposed. Reference to Ordnance Datum, may be required where details of context of the site to its surroundings is needed.
- Details of the existing surface water drainage arrangements on site (if any) and the receptor e.g. soakaway, sewer, canal, watercourse etc.
- Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the development
- Information about the surface water disposal measures already in place and estimates of the rates of run-off generated by the surfaces drained.
- An assessment of the volume of surface water run-off likely to be generated from the proposed development and confirmation of how any excess volumes would be retained within the development.
- Information regarding how the proposed drainage design will perform under the increased frequency and intensity of rainfall that is predicted as a result of climate change (30% for residential development & 20% for non- residential).
- Information about other potential sources of flooding, if any, that may affect the site e.g. streams, surface water run-off, sewers, groundwater, reservoirs, canals and other artificial sources or any combination of these; including details on how these sources of flooding will be managed safely within the development proposal.

It should be noted that the above list is not exhaustive but provides a framework for the FRA to be prepared.

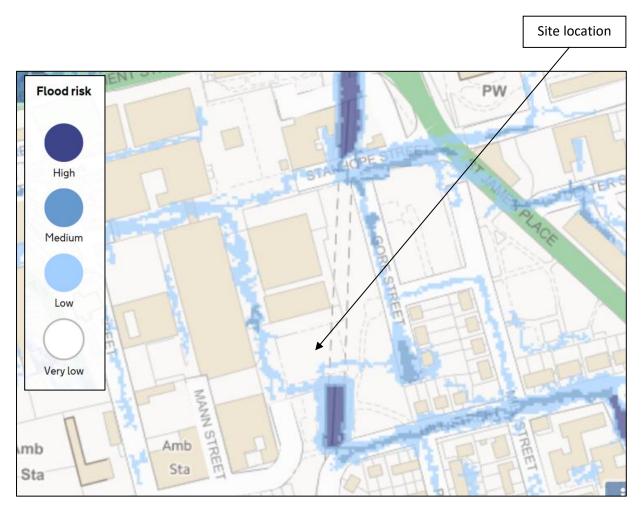
For developments less than 1 ha a FRA will not be required but a drainage design statement should be provided proportional to the scale of the development and follow the same design principles with regards to the calculating the maximum design flow rates for the site.

In line with NPPF (National Planning Policy Framework) the development of a site should look towards the use of SUDS techniques as a method of reducing the run off from the site, as a

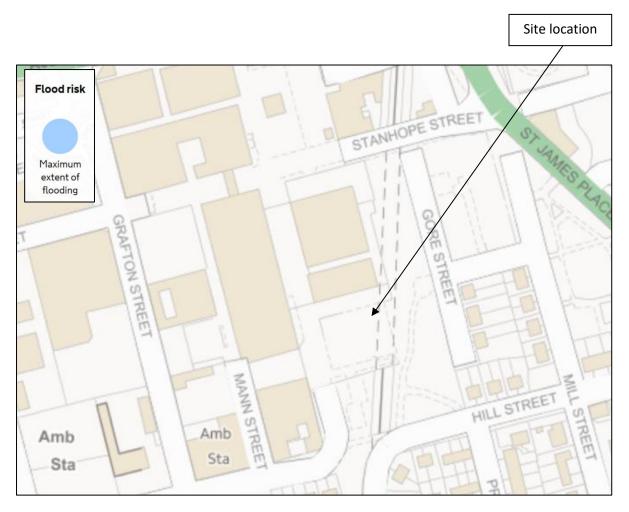
result of the development. Government policy strongly encourages a hierarchical approach to the use of sustainable drainage systems in new developments and infiltration methods for private drainage should be used where possible.


For residential developments greater than 0.5 ha and where the floor space of any building is greater than 1000m² ground Investigations should be carried out to BRE 365 to determine if infiltration drainage methods are practicable and suitable for the sites. A soils report including ground percolation test results and recommendations will need to be submitted within the drainage design statement or FRA, for approval, although any detailed soakaway design information is not required at this stage. If this proves that infiltration drainage is not a viable option, then a positive piped system of surface water run off disposal will need to be provided.

Any soakaway design and the sub ground strata of the sloping site areas shall be considered so as not to cause flooding to any adjoining third party land.

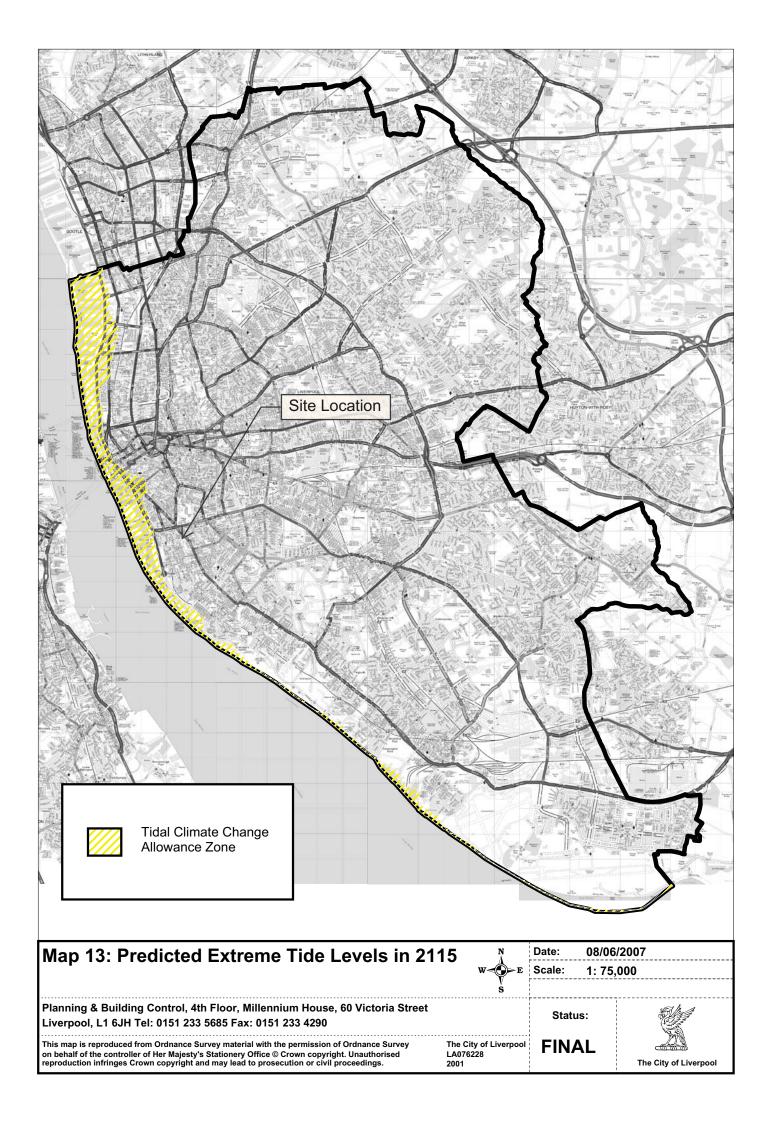

For developments containing prospectively adoptable surface water sewers the following document published by United Utilities should be referred to for guidance related to SUDS

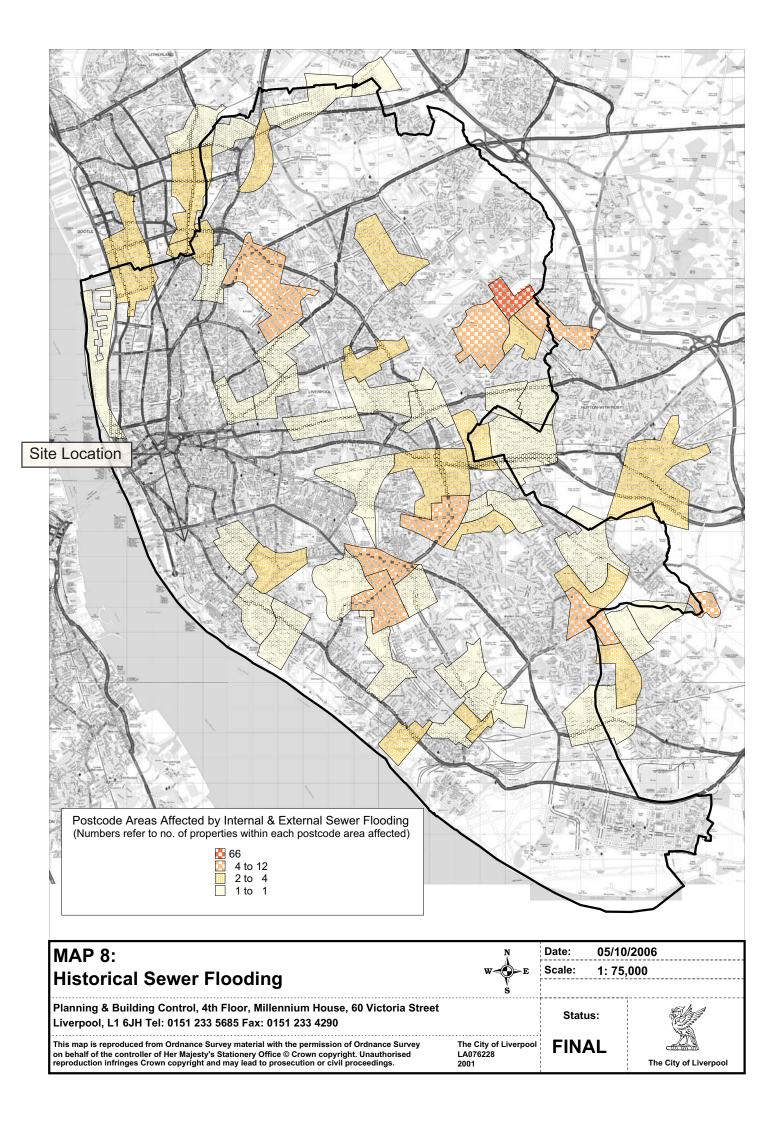
http://www.unitedutilities.com/documents/7010b S104 Guide adoption sewers 2016 W EB ACC.pdf **Appendix E – Environment Agency Flood Maps**


CONTAINS OS DATA © CROWN COPYRIGHT (2016) © ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT 2016. ALL RIGHTS RESERVED. SOME FEATURES OF THIS MAP ARE BASED ON DIGITAL SPATIAL DATA FROM THE CENTRE FOR ECOLOGY AND HYDROLOGY, © NERC (CEH). © CROWN COPYRIGHT AND DATABASE RIGHTS 2004 ORDNANCE SURVEY 100024198

Environment Agency Flood Risk from Surface Water

(December 2016)


Environment Agency Flood Risk from Reservoirs


(December 2016)

Appendix F – SFRA Maps

A aterco

Appendix G – MicroDrainage Runoff and Storage Estimates

Waterco Ltd		Page 1
Eden Court	Brassey Street	
Lon Parcwr Business Park	Liverpool	L.
Denbighshire LL15 1NJ	Greenfield Runoff Rates	Micro
Date 17/11/2016	Designed by IJ	Desinado
File	Checked by AW	Diamacje
XP Solutions	Source Control 2016.1	

ICP SUDS Mean Annual Flood

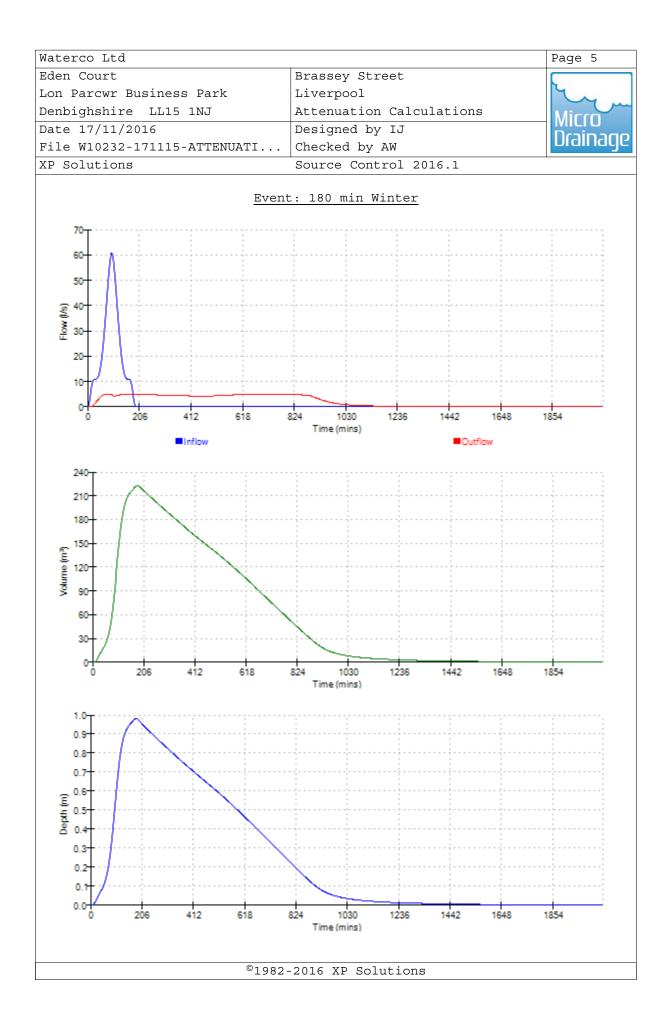
Input

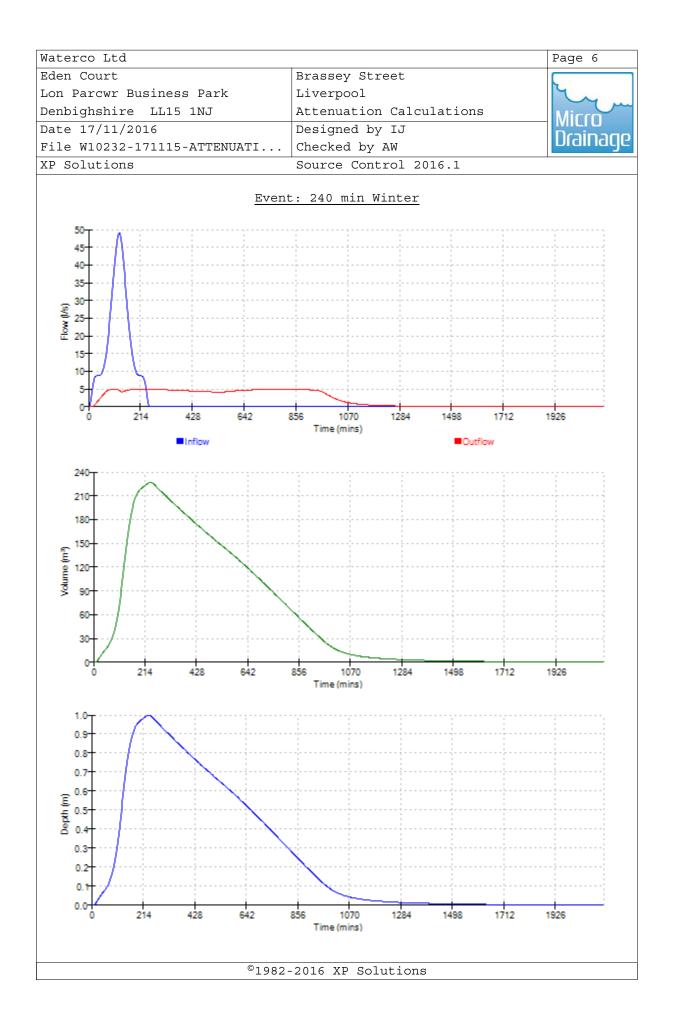
Return Period (years	100	Soil	0.450
Area (ha	0.483	Urban	0.000
SAAR (mm	800	Region Number	Region 10

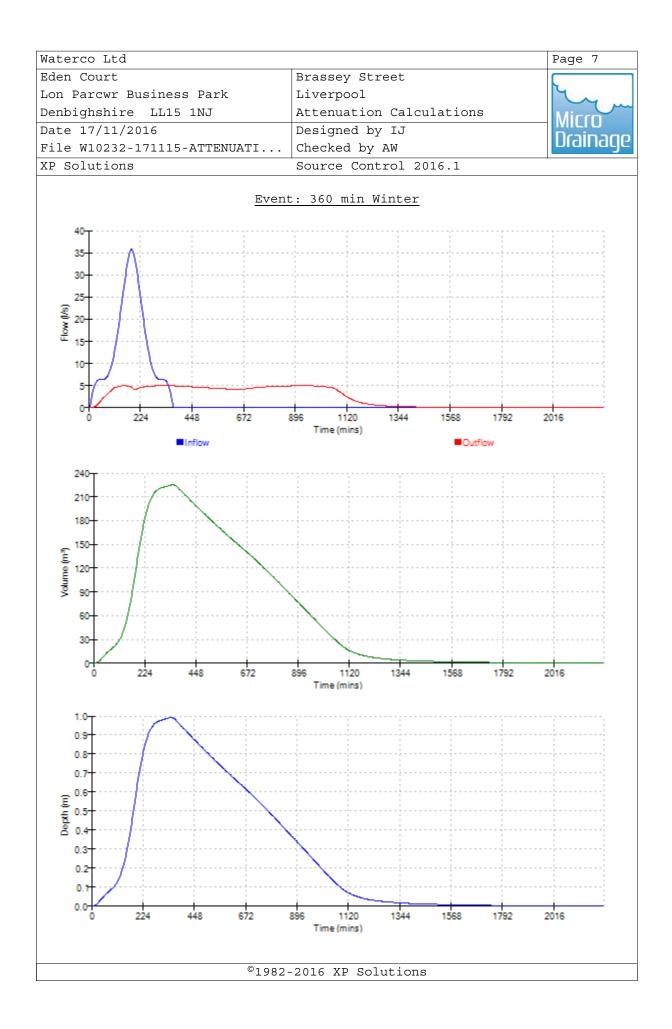
Results 1/s

QBAR Rural 2.5 QBAR Urban 2.5 Q100 years 5.2 Q1 year 2.2 Q30 years 4.2 Q100 years 5.2

©1982-2016 XP Solutions


Waterco Ltd						Page 1
Eden Court	B	rasse	y Stre	et		
Lon Parcwr Business Park		iverp				4
Denbighshire LL15 1NJ		ttenua	M			
Date 17/11/2016			ed by			- MICLO
File W10232-171115-ATTENUATI		-	d by A			Draina
XP Solutions			-	ol 2016	1	
	5	Juice	conci	01 2010	• -	
Summary of Results	for	100	vear R	Return P	eriod (+30%)	
<u>builling</u> of Rebuilds	101	100	year r		<u>erioa (1900)</u>	-
Storm	Max	Max	Max	Max	Status	
Event L	evel	Depth	Contro	l Volume		
	(m)	(m)	(l/s)	(m ³)		
15 min Summer 9	.447	0.447	5.	0 101.4	ОК	
30 min Summer 9					O K	
60 min Summer 9			5.		Flood Risk	
120 min Summer 9					Flood Risk	
180 min Summer 9 240 min Summer 9			5. 5.		Flood Risk Flood Risk	
360 min Summer 9			5.		Flood Risk	
480 min Summer 9			5.		Flood Risk	
600 min Summer 9 720 min Summer 9					Flood Risk Flood Risk	
720 min Summer 9 960 min Summer 9			5. 5.		Flood Risk Flood Risk	
1440 min Summer 9			5.			
2160 min Summer 9			5.	0 113.6	O K	
2880 min Summer 9			5.			
4320 min Summer 9 5760 min Summer 9			4. 4.		O K O K	
7200 min Summer 9					ОК	
8640 min Summer 9	0.101	0.101	3.	8 23.0	O K	
10080 min Summer 9				4 20.5	O K	
15 min Winter 9 30 min Winter 9				0 114.2 0 149.3	O K O K	
		0.000	5.	0 11010	0 11	
Storm Event	Rai	n Flo hr) Vo		Volume	Time-Peak (mins)	
Event	(11111/1	-	m ³)	(m ³)	(mind)	
15 min Summer 30 min Summer	117. [°]		0.0 0.0	106.5 140.0	26 40	
	48.5		0.0	175.8	68	
120 min Summer	29.4		0.0	213.5	126	
180 min Summer	21.		0.0	236.3	184	
240 min Summer	17.4		0.0 0.0	252.6 275.2	242 332	
	12 4				22	
360 min Summer 480 min Summer	12.0 10.0		0.0	292.5	390	
360 min Summer	10.0				390 454	
360 min Summer 480 min Summer 600 min Summer 720 min Summer	10.0 8.4 7.3	096 164 325	0.0 0.0 0.0	292.5 306.5 318.3	454 520	
360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer	10.0 8.4 7.3 5.8	096 164 325 328	0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7	454 520 660	
360 min Summer 480 min Summer 600 min Summer 720 min Summer	10.0 8.4 7.3 5.8 4.2	096 164 325	0.0 0.0 0.0	292.5 306.5 318.3	454 520	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer</pre>	10.0 8.4 7.3 5.8 4.2 3.0	096 464 325 328 215	0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4	454 520 660 940	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer</pre>	10.0 8.4 7.3 5.8 4.2 3.0 2.4 1.7	096 464 325 328 215 044 414 738	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4 396.9 419.6 453.3	454 520 660 940 1308 1672 2340	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer</pre>	10.0 8.4 7.3 5.8 4.2 3.0 2.4 1.7	096 464 325 328 215 044 414 738 376	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4 396.9 419.6 453.3 478.4	454 520 660 940 1308 1672 2340 3008	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer 7200 min Summer</pre>	10.0 8.4 7.3 5.8 4.2 3.0 2.4 1.3 1.3	096 464 325 328 215 044 414 738 376 147	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4 396.9 419.6 453.3 478.4 498.5	454 520 660 940 1308 1672 2340 3008 3680	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer</pre>	10.0 8.4 7.3 5.8 4.2 3.0 2.4 1.7 1.3 1.5	096 464 325 328 215 044 414 738 376	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4 396.9 419.6 453.3 478.4	454 520 660 940 1308 1672 2340 3008	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer 7200 min Summer 8640 min Summer 10080 min Summer 15 min Winter</pre>	10.0 8.4 7.3 5.8 4.2 3.0 2.4 1.7 1.3 1.3 0.9 0.8 117.7	096 464 325 328 215 044 414 738 376 147 988 371 771	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4 396.9 419.6 453.3 478.4 498.5 515.4 530.0 119.3	454 520 660 940 1308 1672 2340 3008 3680 4408 5144 26	
<pre>360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer 7200 min Summer 8640 min Summer 10080 min Summer</pre>	10.0 8.4 7.3 5.8 4.2 3.0 2.4 1.7 1.3 1.5 0.9 0.8	096 464 325 328 215 044 414 738 376 147 988 371 771	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	292.5 306.5 318.3 337.7 366.4 396.9 419.6 453.3 478.4 498.5 515.4 530.0	454 520 660 940 1308 1672 2340 3008 3680 4408 5144	


			200-1	0+	+			
on Parcwr				' Stree	L			2
			Liverpool					2
Denbighshire LL15 1NJ			tenua	tion C	alculat	cions		Micc
ate 17/11,	/2016	De	signe	ed by I	J			
	2-171115-ATTENUATI.	Ch	ecked	l by AW				Drair
IP Solution				Contro		1		
ir Solucio	15	50	urce	COIICIO	1 2010	• 土		
	Summary of Pogult	a for	100 .	ioar Po	turn D	oriod	(1208)	
	Summary of Result	S LOL	100 }	/ear ke	curn Pe	ariou	(+303)	_
	Storm	Max	Max	Max	Max	Stat		
	Event			Control		Stat	us	
		(m)	(m)	(1/s)	(m ³)			
		. ,	. ,		. ,			
	60 min Winter				182.8			
	120 min Winter				211.3			
	180 min Winter				222.7			
	240 min Winter 360 min Winter				227.0 225.0			
	480 min Winter				225.0			
	600 min Winter				218.5			
	720 min Winter				205.5			
	960 min Winter				190.9			
	1440 min Winter				160.3	Flood 3	Risk	
	2160 min Winter	9.476	0.476	5.0	108.1		ΟK	
	2880 min Winter						ОК	
	4320 min Winter						ОК	
	5760 min Winter						ОК	
	7200 min Winter 8640 min Winter						ок ок	
	10080 min Winter			2.0			0 K	
	Storm	Rain		oded Di	-			
	Storm Event	Rain (mm/hi	r) Vol	lume V	olume	Time-Pe (mins)		
			r) Vol		-			
		(mm/hı	r) Vo] (1	lume V	olume			
	Event	(mm/h) 48.50	r) Vo: (1 53	lume V m³)	Volume (m³)	(mins))	
	Event 60 min Winter 120 min Winter 180 min Winter	(mm/h) 48.56 29.48 21.75	r) Vo: (r 53 35 53	lume V n ³) 0.0 0.0 0.0	Colume (m ³) 196.9 239.1 264.7	(mins) 1 1	68 24 82	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/h) 48.56 29.48 21.75 17.43	r) Vo: (1 53 53 53 53 88	lume V n ³) 0.0 0.0 0.0 0.0	Volume (m ³) 196.9 239.1 264.7 282.9	(mins) 1 1 2	68 24 82 38	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66	r) Vo (1 53 53 53 53 58	lume V n ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 196.9 239.1 264.7 282.9 308.3	(mins) 1 1 2 3	68 24 82 38 46	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66 10.05	r) Vo (r 53 35 53 38 58 58 58	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>/olume (m³) 196.9 239.1 264.7 282.9 308.3 327.6</pre>	(mins) 1 2 3 4	68 24 82 38 46 42	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter	(mm/h) 48.56 29.48 21.79 17.43 12.66 10.09 5.8.46	r) Vo: (r 53 53 53 53 53 53 53 58 56 56 56	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>/olume (m³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3</pre>	(mins) 1 2 3 4 4	68 24 82 38 46 42 78	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/h) 29.48 21.79 17.43 12.66 10.09 8.46 7.32	r) Vo: (r 53 53 53 53 53 53 53 55 54 25	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>/olume (m³) 196.9 239.1 264.7 282.9 308.3 327.6</pre>	(mins) 1 1 2 3 4 4 5	68 24 82 38 46 42	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter	(mm/h) 29.48 21.79 17.43 12.66 10.09 8.46 7.32 5.82	r) Vol (r 53 335 53 38 88 96 54 225 28	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5	(mins) 1 2 3 4 4 5 7	68 24 82 38 46 42 78 54	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 600 min Winter 720 min Winter 960 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66 10.05 8.46 7.32 5.82 4.25	r) Vol (r 53 335 53 38 88 96 54 25 28 15	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5 378.2	(mins) 1 2 3 4 4 4 5 7 7 10	68 24 82 38 46 42 78 54 10	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66 10.05 8.46 7.32 5.82 4.25 3.04 5.42	r) Vo: (r 53 35 53 38 53 53 53 53 53 53 53 53 53 53 53 53 53	lume V n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5 378.2 410.3 444.5 470.1	(mins) 1 2 3 4 4 4 5 7 10 13 17	68 24 82 38 46 42 78 54 10 18 96 36	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 4320 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66 10.09 8.46 7.32 5.82 4.22 3.04 2.42 1.73	r) Vo: (r 53 35 53 38 53 53 53 53 53 53 53 53 53 54 25 28 15 44 14 38	lume V n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5 378.2 410.3 444.5 470.1 507.7	(mins) 1 2 3 4 4 4 5 7 10 13 17 23	68 24 82 38 46 42 78 54 10 18 96 36 40	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter	(mm/ha 48.56 29.48 21.75 17.43 12.66 10.09 8.46 7.32 5.82 4.22 3.04 2.42 3.04 2.42 1.73 5.82 4.23 5.82 4.23 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	r) Vo: (1 53 53 55 53 53 53 53 53 53 53 53 53 53	lume V n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5 378.2 410.3 444.5 470.1 507.7 535.8	(mins) 1 2 3 4 4 4 5 7 10 13 17 23 29	68 24 82 38 46 42 78 54 10 18 96 36 40 76	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter 7200 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66 10.09 8.46 7.32 5.82 4.22 3.04 2.42 3.04 1.75 1.35 1.14	r) Vo: (1 53 53 55 53 55 53 55 53 55 53 55 55 55	lume V n³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5 378.2 410.3 444.5 470.1 507.7 535.8 558.3	(mins) 1 2 3 4 4 4 5 7 10 13 17 23 29 36	68 24 82 38 46 42 78 54 10 18 96 36 40 76 80	
	Event 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 2800 min Winter 5760 min Winter	(mm/h) 48.56 29.48 21.75 17.43 12.66 10.09 8.46 7.32 5.82 4.23 3.04 2.43 1.75 1.75 1.74 0.98	r) Vo: (1 53 53 55 53 55 53 55 53 55 55 55 55 55	lume V n ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	rolume (m ³) 196.9 239.1 264.7 282.9 308.3 327.6 343.3 356.5 378.2 410.3 444.5 470.1 507.7 535.8	(mins) 1 2 3 4 4 4 5 7 10 13 17 23 29 36 44	68 24 82 38 46 42 78 54 10 18 96 36 40 76	


©1982-2016 XP Solutions

Waterco Ltd		Page 3
Eden Court	Brassey Street	
Lon Parcwr Business Park	Liverpool	4
	Attenuation Calculations	1 m
Denbighshire LL15 1NJ		Micro
Date 17/11/2016	Designed by IJ	Drainage
File W10232-171115-ATTENUATI	Checked by AW	
XP Solutions	Source Control 2016.1	
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	100Cv (Summer)0.7and and WalesCv (Winter)0.818.500Shortest Storm (mins)0.400Longest Storm (mins)100	15
Tin	ne Area Diagram	
Tota	al Area (ha) 0.483	
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.161	4 8 0.161 8 12 0.161	
	OOLC ND Colothan	
©1982-	-2016 XP Solutions	

laterco Ltd					Page	4
den Court	Brass	ey Street			5	
on Parcwr Business Park	Liver	pool			2	4
enbighshire LL15 1NJ	Atten	uation Ca	lculation	S	Mico	
Date 17/11/2016	Desig	ned by IJ	Г		Dcai	
File W10232-171115-ATTENUATI	Check	ed by AW			Urai	Idly
(P Solutions	Sourc	e Control	2016.1		_	
<u>T</u>	is Online Co ank or Pon Invert Leve) Area (m²)	d Structu 1 (m) 9.00 Depth (m)	<u>lre</u> O Area (m²)			
<u>Hydro-Bra</u>	ake Optimu	um® Outflo	ow Control	<u>-</u>		
In Minimum Outlet Pipe Suggested Manhole Contro Design Poin Mean Flow o The hydrological calculations ha	Applicat Sump Availa Diameter (nvert Level e Diameter (e Diameter (ol Points t (Calculate Flush-F Kick-F ver Head Ran ave been bas	(m) //s) lo™ ive Minim ion ble mm) (m) mm) Head (m ed) 1.00 lo™ 0.29 lo® 0.63 nge sed on the 1	C ise upstrea a) Flow (1/ 00 5 06 5 06 5 07 4 - 4 Head/Discha	1.000 5.0 alculated m storage Surface Yes 105 8.995 150 1200 a) .0 .0 .1 .3 rge relati		
Hydro-Brake Optimum® as specific Hydro-Brake Optimum® be utilised invalidated						han a
Depth (m) Flow (l/s) Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)
0.100 3.6 1.200	5.4	3.000	8.4	7.000		12.5
0.200 4.8 1.400			9.0	7.500		12.9
0.300 5.0 1.600		4.000	9.6	8.000		13.3
0.400 4.9 1.800			10.1			13.7
0.500 4.7 2.000			10.6			14.1 14.5
0.600 4.3 2.200 0.800 4.5 2.400			11.1 11.6			14.3
0.800 4.5 2.400 1.000 5.0 2.600			11.6 12.1			
© 1	.982-2016	XP Soluti	ons			

Appendix H – Maintenance Schedule

Operation and Maintenance Requirements for Attenuation Storage

Tanks

Maintenance Schedule	Required Action	Typical Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary	Annually
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove If necessary	Every 5 years or as required

Ref. Table 21.3, CIRIA C753 'The SuDS Manual'

The maintenance requirements detailed above are to be undertaken by the site owner.

Name:

Position:

Data	
Date:	

Signed on behalf	
Of the site owner	