

Hydrock

Former "Rayware" Site, Speke Boulevard, Liverpool

Flood Risk Assessment and Surface Water Drainage Strategy

April 2016 Hydrock Ref: R/151811/F001

DOCUMENT CONTROL SHEET

Issued by:	Hydrock Consultants Limited
	St Baldred's Hall,
	239 Ashley Road,
	Hale,
	Cheshire
	WA15 9NE
	Tel: 0161 233 0746
	www.hydrock.com
Client:	T.J.Morris Ltd
Project:	Former "Rayware" Site, Speke Boulevard, Liverpool
Title:	Flood Risk Assessment and Surface Water Drainage Strategy
Status:	Final
Date:	April 2016

Document Production Record

Issue Number:	2	Name	Signature
Prepared		Eleanor Dale (BSc, MSc) Infrastructure Engineer	E. J. Dale
Checked		Paul Graveney (BEng, CEng, MICE) Senior Civil Engineer	C C C C C C C C C C C C C C C C C C C
Approved		Sarah Burrows (BEng, CEng, MICE, MCIHT) Infrastructure Director	SEBUMENS

Document Revision Record

Issue number	Date	Revision Details
1	07/03/2016	Draft
2	07/04/2016	Final

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above named Client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

Execut	ive Summary	1
1.0	Introduction	2
2.0	Development Description and Location	3
2.1	Site Location	3
2.2	Existing Site Description	3
2.3	Development Proposals	5
3.0	Planning Policy and Consultation	6
3.1	National Planning Policy Framework (NPPF)	6
3.2	Strategic Flood Risk Assessment (SFRA)	6
3.3	Statutory Authority Correspondence	7
4.0	Definition of Flood Hazard	9
4.1	Sources of information	9
4.2	Flooding from the Sea (Tidal)	9
4.3	Flooding from Rivers (Fluvial)	9
4.4	Flooding from the Land (Surface Water)	10
4.5	Flooding from Groundwater	11
4.6	Flooding from Sewers/Highway Drains	11
4.7	Flooding from Artificial Sources	12
5.0	Assessment of Flood Risk on Development Site (Probability)	13
5.1	Summary	13
6.0	Surface Water Drainage Strategy	14
6.1	External Consultation	14
6.2	Existing Surface Water Runoff	14
6.3	Geology	14
6.4	Sustainable Drainage Systems	14
6.5	Surface Water Drainage Strategy	17
6.6	Surface Water Drainage Proposals	18
6.7	Pollution Control	19
7.0	Management Measures, Off Site Impacts and Residual Risk	20
7.1	Flood Risk Management Measures	20
7.2	Off Site Impacts	20
7.3	Residual Risk	21

APPENDICES

APPENDIX A:	Site Plans
APPENDIX B:	Site Surveys
APPENDIX C:	Statutory Authority Correspondence
APPENDIX D:	United Utilities Sewer Records
APPENDIX E:	Hydrock Hydraulic Calculations
APPENDIX F:	Site Photographs

EXECUTIVE SUMMARY

Flood Risk

The proposal is for the construction of a new retail-led regeneration scheme at Speke Boulevard, Liverpool.

This report has considered the flood risk posed to the site from all sources, as defined by the National Planning Policy Framework (NPPF) and the local Strategic Flood Risk Assessment (SFRA). The development lies outside of any fluvial flood risk areas, holding a Fluvial Flood Zone 1 (low risk) classification. Therefore, the development passes the requirements of the sequential test and the exception test is not required.

The assessment has also found the site to be at low risk of flooding from tidal and groundwater sources. The majority of the site is at low risk of surface water flooding. There are areas at medium/high risk of surface water flooding associated with hardstanding areas around existing buildings. To ensure the risk to the proposed buildings is low, the development will include improved drainage systems to direct rainfall to the nearest channel and gully and away from the new buildings.

There is a public combined sewer that runs through the eastern part of the site. This public sewer is currently built over and at present will remain so for the development. However any "Build Over" agreement that may be in place does not automatically transfer under new ownership. It will therefore be necessary to apply to United Utilities for a new Build Over agreement or to divert the sewer.

There is no residual flood risk from the site to the surrounding area, due to the flow restriction which ensures that the development does not increase the risk of surface water flooding to other adjacent neighbourhoods. Out of chamber or gully flooding for the extreme 100 year plus climate change storm event, may potentially occur within the development site and is classed as exceedance flows. Flood water from such events will be contained within the site but away from the units.

Surface Water Drainage Strategy

The surface water drainage strategy, as agreed with United Utilities, is to restrict the surface water discharge from the development to 230l/s prior to discharge into the existing public combined sewer. In turn, this will generate attenuation volumes which will be retained in geocellular storage.

Sustainable Drainage Systems (SuDS) in the form of Pollution Prevention and Site Control methods will be incorporated. A surface water drainage strategy forms part of this report.

1.0 INTRODUCTION

- 1.1 This report has been prepared by Hydrock Consultants Limited (Hydrock) on behalf of our client T.J.Morris LTD, in support of a planning application to be submitted to Liverpool City Council for a proposed mixed use development on the former "Rayware" Site, Speke Boulevard, Liverpool.
- 1.2 Local Planning Authorities are advised by the Government's National Planning Policy Framework (NPPF) to consult the Environment Agency (EA) and Lead Local Flood Authority (LLFA) on development proposals in areas at risk of flooding and/or for sites greater than 1 hectare in area. The EA would require a Flood Risk Assessment to be submitted in support of the planning application for the proposed development.

To satisfy any potential concerns the EA and LLFA may have with the proposed commercial development on the Former "Rayware" Site, Speke Boulevard, Liverpool, this report has been prepared to assess the requirements of the *NPPF* through:

- Providing an assessment of whether the site is likely to be affected by flooding and whether it would increase flood risk elsewhere;
- Assessing whether the proposed development is appropriate in the suggested location;
- Detailing any measures necessary to mitigate any flood risk identified, to ensure that the proposed development and occupants would be safe, and that flood risk would not be increased elsewhere.

The report considers the requirements for undertaking a Flood Risk Assessment as stipulated in the *NPPF*. Only those requirements that are appropriate to a development of this nature have been considered in the compilation of this report.

This report has been prepared in accordance with current EA and LLFA policy. The EA's and LLFA's responses to the pre-development enquiries are included in Appendix C of this report.

F

2.0 DEVELOPMENT DESCRIPTION AND LOCATION

2.1 Site Location

2.1.1 The site is referenced in Table 1, and a location plan is provided in Figure 1.

Table 1: Site Referencing Information

Item	Brief Description
Site name	Former "Rayware" Site, Speke Boulevard, Liverpool
Site address and location	Former "Rayware Site", Speke Boulevard, Liverpool. Nearest postcode: L24 9HZ
Council Area	Liverpool City Council
Approximate Grid Reference	OS: 343051E, 383975N
General Locality	The site is located on brownfield land at the former "Rayware" Site, Speke Boulevard, Liverpool and is approximately 12.8km to the southeast of Liverpool City Centre.

2.2 Existing Site Description

2.2.1 Location Plan

Figure 1: Location Plan

2.2.2 Area

The site area is approximately 4.501ha.

2.2.3 Boundaries and Surrounding Land

Commercial development borders the site to the north, east and west. Speke Boulevard borders the site to the south, and beyond this lies residential properties. Evans Road lies along the western boundary. Pharmacy Road lies along the eastern boundary.

The site boundary is shown in the drawings contained within Appendix A of this report and also in Figure 1 above.

2.2.4 Existing Land Use and Access

The site is classed as brownfield.

Vehicular access is available via Speke Boulevard to the south of the site.

2.2.5 Elevation and Topography

A site specific topographical survey has been undertaken and indicates that the site is predominantly flat. The highest level is in the north of the site at circa 31.54m Above Ordinance Datum (AOD) with the lowest level of 29.40m AOD in the southeast. Figure 2 shows the general fall across the site with the full survey located in Appendix B.

F

2.3 Development Proposals

2.3.1 Outline

The proposed development is part of a hybrid planning application for comprehensive retail-led regeneration comprising: demolition of existing buildings and cessation of temporary airport car parking use; full planning application for erection of 1no. flagship retail unit for Home Bargains (Class A1 non-food retail use with 30% ancillary food and drink for consumption off the premises) with associated external garden centre, 1no. building for Class A1 non-food retail use, and 1no. leisure/café/restaurant unit for Class A3 or Class D2 uses along with access and servicing arrangements, car parking, landscaping and associated highway works; outline planning application for up to 9,000 square metres of employment uses (Classes B1(c), B2 and B8) including details of access with all other matters reserved. Further details can be found in the Site Layout in Appendix A.

3.0 PLANNING POLICY AND CONSULTATION

3.1 National Planning Policy Framework (NPPF)

3.1.1 The flood maps provided by the Environment Agency (EA) locate the site within Flood Zone 1, i.e. land defined as having an annual probability of fluvial flooding of less than 1 in 1000 (<0.1%) in any year. As a requirement of the NPPF (2012), the proposed development has to satisfy the requirements of the Sequential Test and, where applicable, the Exception Test.

3.1.2 Sequential Test

Under the NPPF (2012), Flood Zone 1 is defined as low probability flood risk. The proposal is for a commercial development, which, in line with Table 2 of the technical guidance document is classified as 'Less Vulnerable'. Thus, according to the criteria in Table 3 (Flood Risk Vulnerability and Flood Zone 'Compatibility'), the site is classed as a Less Vulnerable development within Flood Zone 1 and as such, the 'Development is Appropriate'.

In light of this, the Exception test is not required. Table 2 and Table 3, referred to above, can be found in the Technical Guidance to the NPPF.

3.2 Strategic Flood Risk Assessment (SFRA)

- 3.2.1 SFRA's assess the risk associated with all types of flooding and provide the information required to identify the amount of development permitted in an area, how drainage systems in the area should function and how risks in vulnerable areas can be reduced and/or mitigated. The NPPF states that regional planning bodies (RPB's) or local planning authorities should prepare SFRA's in consultation with the EA.
- 3.2.2 Liverpool City Council Planning Policy Department carried out a Strategic Flood Risk Assessment between June 2006 and January 2008, in accordance with Planning Policy Statement (PPS) 25 guidance (PPS 25 guidance is the previous planning document which has been superseded by the NPPF, the information in the SFRA is still valid). The purpose of the SFRA was to assess and map all known sources of flood risk including fluvial, surface water, sewer, groundwater and all impounded water bodies, whilst taking into account future climate change predictions.
- 3.2.3 A summary of the main elements from the SFRA are detailed below. The full report can be obtained from the Liverpool City Council website.
 - The SFRA provides a detailed understanding of flood risk across all areas and from all sources.
 - Full Sequential and Exception tests to be carried out (where applicable).

- Development should be designed so there is no flooding to the development in a 1 in 30 year event, and so there is no property flooding in a 1 in 100 year plus climate change event.
- Surface water management, including the use of Sustainable Drainage Systems (SuDS), should be incorporated.
- The majority of Liverpool is considered to be an aquifer, with a series of groundwater contour lines.
- From Speke to Hale there are low cliffs which rise to a height of about 15m. The water in the River Mersey reaches the cliffs at high tide levels and they can suffer damage during storms.
- The closest record of surface water flooding to the site was in September 2002 on Speke Road between Speke Hall Road and Speke Retail Park.
- Groundwater levels is a potential issue in Liverpool as the water table is rising. This is likely
 to be encountered in low-lying areas and on a site by site basis. However, there is no known
 documented evidence of flooding from groundwater in the Mersey Estuary catchment.
 Therefore, it is considered that the current risk of flooding from this source is small
 compared to other sources.
- Postcodes areas identified as having experienced internal or external sewer flooding show a very low number of properties affected. Information regarding areas at risk of sewer flooding is not currently available.

3.3 Statutory Authority Correspondence

- 3.3.1 In compiling this report, liaison has taken place with the relevant authorities. Correspondence has been received from the Environment Agency, the Lead Local Flood Authority and United Utilities. Listed below is a summary of the correspondence with the full responses located in Appendix C.
- 3.3.2 Mr Steve Sayce from the Environment Agency confirmed that the site lies entirely within Flood Zone 1 and so they would not have any specific flood risk requirements. The Lead Local Flood Authority should be contacted.
- 3.3.3 Mr Dave Jackson, Engineer at Amey (Lead Local Flood Authority for the Liverpool Area) stated that the site has no history of flooding and is subject to no notable flooding from the predicted 1:30 year and 1:200 year flooding models. There are no watercourses (culverted, open and historic) shown on our records and the area is not susceptible to high groundwater levels. The maximum allowed flow from the site should be derived using the 1 in 2 critical rainfall event with a 30% reduction. The limiting discharge figure for the proposed development should be used in the design of the drainage system for the minimum requirements that flows up to the 1 in 30 year critical rainfall event are retained within the system and that for the 1 in 100 year + 30%

F

allowance, critical rainfall event there will be no flooding to any buildings and any excess volumes of water will be retained on site.

3.3.4 Mr John Lunt, Developer Query Engineer at United Utilities stated that United Utilities will require the new development to be designed and served using a separate drainage system combining on site just prior to connecting to the public combined sewerage system. Based on the survey data submitted United Utilities would agree to an allowable discharge rate of 230l/s that can discharge into the 450mm combined sewer crossing the site. In addition, there is a public sewer currently crossing the site which appears to be built over by the existing factory. Any "Build Over" Agreements currently in place for the site do not automatically transfer under new ownership and therefore due consideration for either protecting the sewer and/or diverting it should be taken into account.

4.0 DEFINITION OF FLOOD HAZARD

4.1 Sources of information

The NPPF (2012) requires the developer to consider the impact of runoff, generated by the proposed development, onto the downstream catchment, and to assess the risk of runoff from the surrounding district impacting on the developments footprint. Further, the report is to consider flood risk from all other sources. The following section defines the flood risk receptors and anticipated flood risk.

Table 2: Sources of information used in the identification of flood risk

Source of Information	Details
Environment Agency	Indicative Flood Map
Liverpool City Council	Strategic Flood Risk Assessment
United Utilities	Sewer Plans

4.2 Flooding from the Sea (Tidal)

4.2.1 The site is over 2000m away from the tidally influenced River Mersey. Therefore, the site is not in close enough proximity to a coastline or a tidal river to be at risk of tidal flooding. As such the site is at low risk of tidal flooding.

4.3 Flooding from Rivers (Fluvial)

- 4.3.1 The River Mersey is located over 2000m to the south of the site. Rams Brook lies to the east of the site.
- 4.3.2 Figure 3 below locates the site on the Environment Agency's indicative floodplain map. The site boundary lies outside of the current statistical fluvial floodwater model footprint generated by any local watercourses i.e. probability of annual fluvial flooding of less than 1 in 1000 (<0.1%) in any one year. Based on information from the Environment Agency Flood Maps, there is no evidence of fluvial flooding affecting the site. Therefore the risk of fluvial flooding at the site is considered to be low.

The Site

EA's 100-year Indicative Floodplain EA's 1000-year Indicative Floodplain

4.4 Flooding from the Land (Surface Water)

- 4.4.1 The overland flow would naturally route towards the nearest watercourse, stream or ditch. However, the exact route taken is defined by the local topography. The site currently benefits from existing onsite drainage which conveys surface water runoff into the surrounding combined sewer network and away from the site.
- 4.4.2 Surface water runoff from the surrounding areas will be picked up by highway drainage in the surrounding roads and conveyed away from the site.
- 4.4.3 A further consultation of the Environment Agency Surface Water Flood map indicates that the majority of the site is at very low risk of surface water flooding. There is an area at medium/high risk associated with the hardstanding areas around the existing buildings.
- 4.4.4 In light of this, the risk of flooding from the land for most of the site is considered to be low.Furthermore, the development site will include improved drainage systems to direct rainfall to the nearest channel and gully and away from the new retail buildings.

Hydrock Consultants

Figure 4: The Environment Agency's Indicative Surface Water Floodplain Map

4.5 Flooding from Groundwater

Low Risk

- 4.5.1 According to the British Geological Survey Maps the site is underlain by the Chester Pebble Beds Formation, classified as a Principal Aquifer. These are layers of rick that comprise high intergranular and/or fracture permeability and usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. Glacial Till also underlies the site. These deposits are classified as Unproductive Strata and have negligible significance for water supply or river base flow. The site does not lie within a Groundwater Source Protection Zone (SPZ).
- 4.5.2 The SFRA states that groundwater levels could be an issue in Liverpool as the water table is rising. However, there is no known documented evidence of flooding from groundwater in the Mersey Estuary Catchment.
- 4.5.3 Based on the available information, groundwater flood risk is considered to be low.

4.6 Flooding from Sewers/Highway Drains

4.6.1 The review of the United Utilities (UU) public sewer records indicates that there is a public combined sewer that runs through the eastern part of the site. The necessary United Utilities easement will need to be applied to this pipe or it may be subject to a diversion, this is to be

Hydrock Consultants

F

agreed with United Utilities prior to detailed design stage. There is a public surface water sewer that runs through Evans Road to the west of the site.

4.6.2 The full extent of the existing UU sewers can be identified further in Appendix D. Therefore, the risk of flooding from sewers and highway drains is considered to be low.

4.7 Flooding from Artificial Sources

4.7.1 There are no canals or reservoirs in close proximity to the site. Therefore based on the available information the flood risk from artificial sources is considered to be low.

F

5.0 ASSESSMENT OF FLOOD RISK ON DEVELOPMENT SITE (PROBABILITY)

5.1 Summary

5.1.1 Table 3 considers each of the sources and defines in tabular format the probability of flood risk associated with each and the likely impacts.

Table 3:	Flood	Risk	Summary
----------	-------	------	---------

Source	Probability of Flood Risk	Impacts	Remarks
Tidal	Low	Low	Development site is not influenced.
Fluvial	Low	Low	Site is located within Flood Zone 1 and at low risk from flooding.
Surface (Overland Flood Flow)	Medium/High	Low	The Environment Agency surface water maps indicate that the majority of the site is at low risk of flooding. There is an area at medium/high risk associated with the hardstanding areas around the existing buildings. However improved drainage systems will ensure the risk to the developable area is low.
Sewers/Highway Drains	Low	Low	There is a public combined sewer within the east of the development. This sewer will either be associated with the necessary easements or will be diverted as part of the future development.
Groundwater	Low	Low	Based on the available information the risk from groundwater flooding is considered to be low.
Artificial Sources	Low	Low	Based on available data, flood risk from artificial sources is deemed to be low.

6.0 SURFACE WATER DRAINAGE STRATEGY

6.1 External Consultation

6.1.1 United Utilities have confirmed that an allowable discharge rate of 230l/s can discharge into the 450mm combined sewer crossing the site.

6.2 Existing Surface Water Runoff

6.2.1 The surface water runoff from the site currently discharges into the existing combined sewer that passes through the east of the site.

6.3 Geology

6.3.1 According to the BGS Maps the majority of the site apart from the northwestern corner is underlain by Glacial Till which typically comprises firm to stiff silty and clayey silts with varying amounts of sand, gravel, cobbles and occasional boulders. The site is also underlain by the Chester Pebble Beds formation of the Sherwood Sandstone Group. This layer is comprised of sandstone that is fine to coarse grained and commonly pebbly. Based on the geology, infiltration is a potentially viable SuDS technique and further infiltration tests should target the Chester Pebble Beds formation.

6.4 Sustainable Drainage Systems

6.4.1 SuDS Objectives

Sustainable drainage developed in line with the ideals of sustainable development is collectively referred to as Sustainable Drainage Systems (SuDS). At a particular site, these systems are designed to manage both the environmental risks resulting from the urban runoff and to contribute, wherever possible, to environmental enhancement. Therefore, SuDS objectives are to minimise the impacts from the development on the quantity and quality of the runoff and maximise amenity and biodiversity opportunities (CIRIA C753, 2015).

6.4.2 SuDS Design Themes

A strong design theme is essential if maximum aesthetic benefits are to be gained from the SuDS approach. At a more local scale SuDS should link with the individual plot structure, planting and amenity areas, gaining multiple benefits from a limited area of land.

6.4.3 The SuDS Management Train

The 'Management Train Approach' should be central to the surface water drainage strategy of a proposed site. The main objective is the treatment and control of runoff as near to source as possible, thus protecting downstream habitats and further enhancing the amenity value of the site. This concept uses a hierarchy of drainage techniques to incrementally reduce pollution, flow rates and volumes of storm water discharge from the site, and is as follows:

- 1. **Prevention** The use of good site design and housekeeping measures to prevent runoff and pollution and includes rainwater reuse.
- 2. **Source Controls** Control of runoff at source or as close to source as possible (e.g. soakaways, green roofs, pervious pavements).
- 3. **Site Control** Management of water in a local area and can include below ground storage/attenuation, detention basins, large infiltration devices.
- 4. **Regional Control** Management of water from a site or various sites and can include wetlands and balancing ponds.

The drainage techniques for this development will seek to include, where possible, pollution prevention and site control measures.

6.4.4 SuDS Site Constraints

SuDS techniques are not suitable for all sites; therefore an assessment of the existing site is required so that SuDS limitations can be determined.

- Land Use Characteristics The size and type of development plot enables a range of pollution prevention and site control SuDS devices to be considered both above and below ground.
- 2. **Site Characteristics** The use of infiltration a potentially viable SuDS technique, to be confirmed by further infiltration tests.
- 3. **Catchment Characteristics** The site is classified as 'brownfield'. Current guidance would limit the discharge rate from the post developed site to not exceed existing brownfield rates and ideally provide a betterment.
- 4. Environmental and Amenity Performance The inclusion of SuDS within the overall development is a key driver in providing both amenity and habitat creation. These will also assist in offsetting the loss of pre-developed natural habitat. Maintenance plans will be prepared for all SuDS devices.

6.4.5 SuDS Design Philosophy

The SuDS philosophy for a development site is the promotion of Pollution Prevention and Site Control Techniques:

The following design philosophy is proposed:

- Surface water treatment using the 'Management Train' approach to remove and isolate contamination at all SuDS facilities prior to conveyance to the existing private surface water sewerage system.
- Surface water discharge into the existing infrastructure in the east at a controlled rate.
- Pollution prevention measures.
- Site Control features, in the form of geocellular storage or oversized pipes, to accommodate the additional surface water runoff generated by the development site.
- Provision of suitable oil separators in line with Pollution Prevention Guidance 3 criteria (where applicable).
- Aim to limit, where possible, the impermeable fraction of development.

6.4.6 SuDS Parameters

It is proposed that the development site has two levels of treatment. Prevention and source control are considered as the first level of treatment and the site control as the second.

6.4.7 Prevention and Source Control – Principles and Objectives

The main objective of prevention and source control is the treatment and control of runoff as near to source as possible. Application of these techniques will require reduction of impermeable areas and techniques to restrict the runoff rates.

Prevention measures to be considered, where possible, as part of the overall approach to the management train at this site include rainwater harvesting. Typical examples are given in the SuDS Manual (Ciria C753) and are briefly described below. It must be noted that the effectiveness of each system is dependent on the final design as well as the actual site conditions.

Rainwater Harvesting - Similar to the use of water butts this prevention method stores rainwater runoff from roofs and external areas in below ground tanks. The water can then be used for irrigation purposes to the soft landscaping areas or alternatively pumped to an internal storage tank where the 'Grey' water can be used for WC's and washing machines.

Permeable surfacing - Block paved and/or specialised tar macadam provides a porous surfacing for the external areas that allows water to infiltrate through and into the underlying layers.

F

Water is temporally stored and either infiltrates to ground or is retained for controlled release into the drainage system.

6.4.8 Site Control – Principles and Objectives

Site control features such as ponds and basins can be designed to attenuate storm runoff and provide conditions for settlement of suspended solids. The benefits are that they satisfy the full range of SuDS requirements in terms of reducing the quantity of water, improving the quality of water and also providing the biodiversity enhancements.

Conventional piped drainage - Conventional piped drainage would be located in areas of the proposed scheme where 'over-the-edge' drainage is unsuitable. This would typically be in areas where kerbs are required, due to road user safety reasons, such as at roundabouts. Surface water runoff would be collected via conventional trapped gullies or combined kerb drainage systems, before discharging appropriately into SuDS units.

Geocellular Systems - Geocellular Systems can be used to control and manage runoff either as a soakaway or as a storage tank and can be tailored to suit the requirements of most sites. In addition they can be used for storing roof/rainwater before recycling. Geocellular Systems used for storage can be tailored to be used in contaminated land conditions to prevent infiltration.

6.5 Surface Water Drainage Strategy

- 6.5.1 Surface water arising from a developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere, taking climate change into account. This is in-line with current guidance and recommendations from the EA.
- 6.5.2 In light of the findings from the SuDS review in Section 6.4, the following surface water drainage strategy will be implemented.
 - 1. The SuDS management train approach will be incorporated.
 - 2. Prevention measures will be the initial means of retaining the runoff. Infiltration is a potentially viable option for the site, to be confirmed following further testing.
 - 3. Rainwater runoff from roofs and hard paved areas will be directed through the prevention measures and then via a new surface water gravity network to onsite geocellular storage. The new on-site storage will account for the additional surface water runoff generated by the site and prevent increased discharge for the extreme events.

4. Discharge from the development will be restricted 230 l/s as agreed with United Utilities.

6.6 Surface Water Drainage Proposals

- 6.6.1 Surface water runoff from the roof and external areas will be directed to the below ground gravity network. This water is considered to be generally clean and with limited contamination, and may be discharged directly to the existing drainage infrastructure and new SuDS Facilities. Silt is to be prevented from entering the drainage system by the use of trapped gullies, channels with silt traps, or by the use of sustainable drainage techniques.
- 6.6.2 Although it is envisaged that prevention measures may be included in the final scheme, for outline calculation purposes a gravity network, will serve the buildings, car park and highway, and direct runoff to "Site Control" geocellular storage prior to discharging into the combined sewer in the east of the site. The discharge rate from the geocellular storage will be restricted to 230 l/s as agreed with United Utilities.
- 6.6.3 Taking into account the allowable discharge rates, and assuming no preventative measures are incorporated and no infiltration to ground is possible then the worst case attenuation volumes are defined in Table 4. It is noted that these rates and volumes are preliminary for this outline assessment and are likely to alter at a detailed design stage when more site specific information is made available. The outline attenuation volumes in Table 4 have been derived using Micro Drainage Source Control Software.
- 6.6.4 The proposed impermeable areas for this site (quoted in Table 4 below) is based on 85% of the site area, taken from the Site Layout in Appendix A.

Estimated	Appro	blumes	
Impermeable Area (ha)	1yr Storm Event (230 l/s)	30yr Storm Event (230 l/s)	100yr Storm Event + 30% CC (230 l/s)
3.83	182m ³	420m ³	985m ³

Table 4: Outline Attenuation Volumes

6.6.5 The proposed drainage layout will be designed in accordance with Building Regulations guidance.SuDS guidance will be taken from Ciria C753. It is a requirement that the drainage systems be

designed to not flood any part of the site in a 1 in 30 year return period design storm (3.33% annual probability of occurrence). The below ground surface water design may require that some areas of the hard standing areas experience minor flooding in extreme conditions beyond the 30 year design criteria. This is classed as Exceedance flooding or Secondary Storage and is common for this type of development. Any such flood water will be directed away from commercial units, where it will discharge into the drainage infrastructure as water levels recede. All exceedance flood water will be retained on-site up to the 100 year return period to prevent flood impact to the adjoining neighbours. All drainage designs will include the appropriate climate change allowance, in this case a 30% increase in rainfall.

6.7 Pollution Control

6.7.1 Silt is to be prevented from entering the drainage system by the use of trapped gullies, channels with silt traps, french drains with silt traps or by the use of Sustainable Drainage techniques. If appropriate, oil separators in line with Pollution Prevention Guidance criteria will be provided.

7.0 MANAGEMENT MEASURES, OFF SITE IMPACTS AND RESIDUAL RISK

7.1 Flood Risk Management Measures

- 7.1.1 The report has determined that the site is at low risk of flooding from tidal, fluvial, groundwater, sewers and artificial sources.
- 7.1.2 The majority of the site is at low risk of surface water flooding. There are areas at medium/high risk of surface water flooding associated with hardstanding areas around existing buildings. To ensure the risk to the proposed buildings is low, the development will include improved drainage systems to direct rainfall to the nearest channel and gully and away from the new buildings.
- 7.1.3 The surface water drainage strategy for the new development site is to direct all the surface water runoff from the new commercial development to surface water networks that flows into the existing combined sewer in the east of the site. Geocellular storage will be situated on the network at the low points of the site to retain the excess rainwater due to the outflow restriction. The new private surface water networks will be designed in line with current British Standard guidance up to the 100 year storm return period including an allowance for climate change. Beyond the 30 year criteria, minor out of chamber flooding may occur with flood water directed away from the commercial developments buildings where it will then be directed back in to the drainage network as the pipe water levels recede. No flood water will be allowed to discharge off the development site.
- 7.1.4 The use of SuDS with controlled (restricted) outflow in line with the required runoff rates will help mitigate any flood risk impact to the surrounding areas.
- 7.1.5 A private management company will be responsible for maintaining the gullies and drain cleansing to ensure that the surface water drainage system will always operate at its maximum efficiency.
- 7.1.6 Access and egress arrangements to and from the new development, should exceedance flooding occur, will be through the main access off the existing estate road.

7.2 Off Site Impacts

- 7.2.1 The report has justified that the risk of flooding to the new development layout is low. Thus, once the previously discussed mitigation measures have been implemented, the site has a low risk of flooding from all sources.
- 7.2.2 By including SuDS into the drainage system and by restricting the surface water runoff at its point of discharge, this will reduce surface water flooding impact onto the downstream catchments.

7.2.3 As there is no flood displacement or increased rate of runoff from the proposed development, this will prevent surface water flooding impact from the development onto the downstream catchments.

7.3 Residual Risk

7.3.1 Flood risk to people and property can be managed but it can never be completely removed; a residual risk remains after flood management or mitigation measures have been put in place. This relates to a rainfall event beyond what can be fully quantified. Should this occur then some out of chamber flooding could occur.

<u> Appendix A – Site Plans</u>

CONTENTS		
Identifier	Name	
Bracewell Stirling Consulting	Proposed Masterplan. Drawing no. 4098/AL(0)100	

<u> Appendix B – Site Surveys</u>

CONTENTS	
Identifier	Name
Greenhatch	Topographical Survey. Drawing no: 22815_T
Greenhatch Underground Utility Survey. Drawing no: 22815_UG	

Appendix C – Statutory Authority Correspondence

CONTENTS							
Identifier	Name						
Environment Agency	Pre-development enquiry response email						
LLFA	Pre-development enquiry response email						
United Utilities	Pre-development enquiry response email						

Eleanor Dale

From:	Sayce, Stephen <stephen.sayce@environment-agency.gov.uk></stephen.sayce@environment-agency.gov.uk>
Sent:	11 December 2015 11:46
То:	Sophie Eaton
Subject:	RE: 151210/TB13 Pre Development Enquiry - Rayware Liverpool C151811

Hi Sophie

Its entirely FZ1 so we wouldn't have any specific flood risk requirements.

You should contact the Lead Local Flood Authority instead.

Kind Regards

Steve Sayce

The Environment Agency Sustainable Places (Liverpool City Region) Richard Fairclough House Knutsford Road Latchford, Warrington Cheshire WA4 1HT

Email: <u>stephen.sayce@environment-agency.gov.uk</u> Team email: <u>SPPlanning.RFH@environment-agency.gov.uk</u>.

We are now

Greater Manchester, Merseyside and Cheshire Area

From 1 April 2014 North West South Area has a new name. Covering the same geography, we will continue to work with our partners and customers to help protect and improve the environment.

We have moved to...

COV.UK

From: Sayce, Stephen On Behalf Of SPPlanning.RFH
Sent: 11 December 2015 11:35
To: Sayce, Stephen
Subject: FW: 151210/TB13 Pre Development Enquiry - Rayware Liverpool C151811

From: Enquiries, Unit Sent: 10 December 2015 16:32

To: <u>SophieEaton@hydrock.com</u> Subject: FW: 151210/TB13 Pre Development Enquiry - Rayware Liverpool C151811

Dear Sophie,

I have passed your enquiry to our Sustainable Places team for the relevant area and they will be in touch with you shortly.

The Freedom of Information Act and Environmental Information Regulations state that a public authority must respond to requests for information within 20 working days, but we aim to respond to all enquiries as quickly as we can.

You can find more information about our service commitment by clicking on the link below:

https://www.gov.uk/government/publications/environment-agency-customer-service-commitment

Should you wish to contact the Sustainable Places team directly, please use the contact details below. Please quote your Enquiry Reference 151210/TB13 in any correspondence with us regarding this matter.

Sustainable Places Environment Agency Greater Manchester, Merseyside and Cheshire Area Richard Fairclough House Knutsford Road Latchford Warrington WA4 1HT

Tel: 03708 506506

Kind Regards,

Thomas Brabbs Customer Advisor

NCCC – Part of National Operations Tel: 03708 506 506 Web Site: <u>www.gov.uk/environment-agency</u>

Environment Agency, Quadrant 2, 99 Parkway Ave, Parkway Business Park, Sheffield, S9 4WF

Click an icon to keep in touch with us:-

- - - in

So how did we do ...?

Our National Customer Contact Centre relies on customer feedback, so we really value your thoughts on how we are doing. We will always make changes where we can to improve our service. This will only take three minutes to complete:

http://feedback1.environmentagency.uk.com/s3/NCCCsurvey

From: Sophie Eaton [mailto:SophieEaton@hydrock.com]
Sent: 08 December 2015 14:40
To: Enquiries, Unit
Cc: Automate - Manchester; Eleanor Dale
Subject: 151210/TB13 Pre Development Enquiry - Rayware Liverpool C151811

Dear Sir/Madam,

We would be grateful if you could provide us with a Pre Development Response for the proposed development of the Former Rayware Site, Speake Boulevard, Liverpool.

The majority of the site falls within the category of 'Flood Zone 1'. The site is proposed for commercial units. The site boundary is indicated in Red on the attached site plan. It is our intention to limit the discharge rates from this development to equal greenfield run off.

Please find attached the following documents to assist with your response.

- Pre development Enquiry Form completed.
- Site plan indicating proposed areas of development edged in Red.

I trust the attached is acceptable however should you require any further information and/or wish to discuss these matters further please do not hesitate to call me on the direct line telephone number below.

Thank you for your time on this matter.

Kind Regards,

Sophie

Sophie Eaton Office Administrator

Hydrock

St Baldred's Hall, 239 Ashley Road, Hale, Cheshire WA15 9NE Office: (0161) 233 0746 Email: <u>SophieEaton@hydrock.com</u> www.hydrock.com

THE SUNDAY TIMES 1000 BEST COMPANIES TO WORK FOR 2015

Hydrock Consultants Limited, company number 3118932, Hydrock Contracting Limited, company number 3238802 and Nuclear Management Consultancy Limited, company number 05579646, are subsidiaries of Hydrock Group Limited, company number 6644687, registered in England and Wales at Over Court Barns, Over Lane, Almondsbury, Bristol, BS32 4DF.

Before printing this e-mail please think about the environment

Disclaimer: The information in this e-mail is confidential and may be read, copied or used only by the intended recipients. If you are not the intended recipient you are hereby notified that any perusal, use, distribution, copying or disclosure is strictly prohibited. If you have received this e-mail in error please advise us immediately by return e-mail at <u>manchester@hydrock.com</u> and delete the e-mail document without making a copy. Whilst every effort has been made to ensure this email is virus free, no responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent.

This message has been scanned and no issues discovered. Click \underline{here} to report this email as spam

Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else.

We have checked this email and its attachments for viruses. But you should still check any attachment before opening it.

We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes. Click <u>here</u> to report this email as spam

Eleanor Dale

From:	Jackson, David <david.jackson3@amey.co.uk></david.jackson3@amey.co.uk>
Sent:	11 December 2015 14:31
То:	Sophie Eaton
Subject:	SPEKE BOULEVARD - RAYWARE
Attachments:	LCC BROWNFIELD-GREENFIELD-FRA ADVICE.docx

Sophie

The site has no history of flooding and is subject to no notable flooding from the predicted 1:30yr & 1:200yr flooding models. There are no watercourses (culverted, open and historic) shown on our records and the area is not susceptible to high ground water levels.

I have attached a guidance note for the drainage requirements needed for a planning application.

If you need any further information then please contact me.

Thanks

DAVE JACKSON

Engineer | Consulting

Amey

t: 0151 498 6825 | m: 0780 9313978 | e: david.jackson3@amey.co.uk

Unit 3 | Matchworks | 142 Speke Road | Garston | Liverpool | L19 2PH

COMPANY PARTICULARS: For particulars of companies within the Amey Group, please visit

http://www.amey.co.uk/Home/Companyparticulars/tabid/182/Default.aspx. Amey plc, Registered Office: The Sherard Building, Edmund Halley Road, Oxford OX4 4DQ, Registered in England: 4736639

CONFIDENTIALITY NOTICE: This email message and accompanying data are for the sole use of the intended recipient(s) and may contain information that is confidential. If you are not the intended recipient, you are notified that any use, dissemination, distribution or copying of this message or data is prohibited. If you received this email message in error, please notify us immediately and erase all copies of this message and attachments.

Please note that Amey monitors incoming and outgoing mail for compliance with its Email Policy. This includes scanning emails for computer viruses.

LCC GREENFIELD / BROWNFIELD SITES SURFACE WATER MANAGEMENT GUIDANCE

If the site has previously been developed it should be demonstrated that the drainage system is still operational for it to be classed as brownfield. Information should be obtained on the system, e.g. pipe diameters, levels, gradients, lengths, hydraulic controls, etc. These details should be used, along with the contributing area characteristics of the site, to set up a drainage model (or to inform another assessment method) in order to evaluate the peak flow rates at the outfalls from the existing site for the design return period events. The maximum allowed flow from the site should then be derived using the 1:2yr critical rainfall event with a 30% reduction applied to offer improvement.

The limiting discharge figure for the proposed development should be used in the design of the drainage system for the minimum requirement that flows for up to the 1:30yr critical rainfall event are retained within the system and that for the 1:100yr+30% climate change allowance, critical rainfall event there will be no flooding to any buildings and any excess volumes of water will be retained on site.

Notwithstanding the above, the existing site drainage constraints will also be taken into account when agreeing any discharge limits and the proposed flow should not exceed existing flows. For example if the existing site outfall was a 150mm dia pipe, irrespective of the area being drained, it would have a maximum flow capacity which may be lower than any proposed flows calculated using the above criteria, assuming a free discharge. Therefore discharge to the existing drainage system from the development would be effectively increased from the existing situation which is contrary to Environment Agency and National Planning Policy Framework guidance for flood risk and surface water management.

Where records of the previously developed system are not available and system characteristics cannot otherwise be determined, or if the drainage system is broken or blocked (or no longer operational), then the run-off characteristics should be defined as greenfield. If the site is classed as greenfield the flow rates from the development will be limited to the equivalent greenfield run off rates. For example the flow rate from the development for the 1:30yr critical rainfall event should not exceed the greenfield run off rate for the site for the 1:30 year rainfall event, likewise for the 1:2 & 1:100 year scenarios.

It should be noted that this discharge figure will satisfy planning requirements but the applicant should consult United Utilities to determine if they have any discharge restrictions, which could be more restrictive.

For all development s over 1ha a FRA (Flood Risk Assessment) will be required which should be based on the requirements as detailed in Environment Agency (Greater Manchester, Merseyside & Cheshire) Local Planning Standing Advice and NPPF guidance. The detail and technical complexity of a FRA will reflect the scale, nature and location of the development. Where available, reference should be made to the Strategic Flood Risk Assessment (SFRA) for locally specific guidance and information. The following list sets out key information that should be submitted within a FRA for developments

- A location plan that includes geographical features, street names and identifies the catchment, watercourses or other bodies of water in the vicinity.
- A plan of the site showing existing site; development proposals; and identification of any structures (e.g. embankments), which may influence local flood flow overland or in any watercourses (e.g. culverts) present on the site.
- Site levels of both existing and proposed. Reference to Ordnance Datum, may be required where details of context of the site to its surroundings is needed.
- Details of the existing surface water drainage arrangements on site (if any) and the receptor e.g. soakaway, sewer, canal, watercourse etc.
- Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the development
- Information about the surface water disposal measures already in place and estimates of the rates of run-off generated by the surfaces drained.
- An assessment of the volume of surface water run-off likely to be generated from the proposed development and confirmation of how any excess volumes would be retained within the development.
- Information regarding how the proposed drainage design will perform under the increased frequency and intensity of rainfall that is predicted as a result of climate change (30% for residential development & 20% for non-residential).
- Information about other potential sources of flooding, if any, that may affect the site e.g. streams, surface water run-off, sewers, groundwater, reservoirs, canals and other artificial sources or any combination of these; including details on how these sources of flooding will be managed safely within the development proposal.

It should be noted that the above list is not exhaustive but provides a framework for the FRA to be prepared.

For developments less than 1 ha a FRA will not be required but a drainage design statement should be provided proportional to the scale of the development and follow the same design principles with regards to the calculating the maximum design flow rates for the site.

Eleanor Dale

From: Lunt, John [mailto:John.Lunt@uuplc.co.uk]
Sent: 12 February 2016 09:02
To: Eleanor Dale <EleanorDale@hydrock.com>
Subject: RE: (UU ref: DE1814) Former Rayware Site, Speke Boulevard, Liverpool C151858 - REPEAT due 29/02

Hi Eleanor,

In reply and from the survey data submitted I can confirm that UU would allow a surface water discharge rate of 230 I/s communicate with the 450mm public combined sewer crossing the site.

Regards,

John

From: Eleanor Dale [mailto:EleanorDale@hydrock.com]
Sent: 11 February 2016 16:19
To: Lunt, John <<u>John.Lunt@uuplc.co.uk</u>>
Cc: Automate - Manchester <<u>automatewa@hydrock.com</u>>
Subject: RE: (UU ref: DE1814) Former Rayware Site, Speke Boulevard, Liverpool C151858 - REPEAT due 29/02

Hi John,

I have attached the topographical survey for the Speke Boulevard site, with drainage runs marked on. There is more than one connection for this site.

Thanks,

Eleanor

Eleanor Dale Infrastructure Engineer

Hydrock

St Baldred's Hall, 239 Ashley Road, Hale, Cheshire WA15 9NE Office: 0161 233 0746 Mobile: 07469856545

www.hydrock.com

Hydrock Consultants Limited, company number 3118932, Hydrock Contracting Limited, company number 3238802 and Nuclear Management Consultancy Limited, company number 05579646, are subsidiaries of Hydrock Group Limited, company number 6644687, registered in England and Wales at Over Court Barns, Over Lane, Almondsbury, Bristol, BS32 4DF.

Before printing this e-mail please think about the environment

Disclaimer: The information in this e-mail is confidential and may be read, copied or used only by the intended recipients. If you are not the intended recipient you are hereby notified that any perusal, use, distribution, copying or disclosure is strictly prohibited. If you have received this e-mail in error please advise us immediately by return e-mail at <u>manchester@hydrock.com</u> and delete the e-mail document without making a copy. Whilst every effort has been made to ensure this email is virus free, no responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent.

From: Lunt, John [mailto:John.Lunt@uuplc.co.uk]
Sent: 11 February 2016 15:51
To: Eleanor Dale <<u>EleanorDale@hydrock.com</u>>
Cc: Wastewater Developer Services <<u>WastewaterDeveloperServices@uuplc.co.uk</u>>
Subject: RE: (UU ref: DE1814) Former Rayware Site, Speke Boulevard, Liverpool C151858 - REPEAT due 29/02

Hi Eleanor,

Could you forward a copy of the survey report please as we will need to assess the number and size of connections before giving any formal consent?

Regards,

John

From: Eleanor Dale [mailto:EleanorDale@hydrock.com]
Sent: 08 February 2016 16:37
To: Lunt, John <<u>John.Lunt@uuplc.co.uk</u>>
Cc: Wastewater Developer Services <<u>WastewaterDeveloperServices@uuplc.co.uk</u>>; Automate - Manchester
<<u>automatewa@hydrock.com</u>>
Subject: RE: (UU ref: DE1814) Former Rayware Site, Speke Boulevard, Liverpool C151858

Hi John,

Thank you for your response. We have had a drainage survey completed for the site which shows that all of the surface water currently discharges into the combined sewer that runs through the east of the site. We would look to reuse these existing connections. Could you please confirm the allowable runoff rate from the site?

Thanks,

Eleanor

Eleanor Dale Infrastructure Engineer

Hydrock

St Baldred's Hall, 239 Ashley Road, Hale, Cheshire WA15 9NE Office: 0161 233 0746 Mobile: 07469856545

www.hydrock.com

Hydrock Consultants Limited, company number 3118932, Hydrock Contracting Limited, company number 3238802 and Nuclear Management Consultancy Limited, company number 05579646, are subsidiaries of Hydrock Group Limited, company number 6644687, registered in England and Wales at Over Court Barns, Over Lane, Almondsbury, Bristol, BS32 4DF.

Before printing this e-mail please think about the environment

Disclaimer: The information in this e-mail is confidential and may be read, copied or used only by the intended recipients. If you are not the intended recipient you are hereby notified that any perusal, use, distribution, copying or disclosure is strictly prohibited. If you have received this e-mail in error please advise us immediately by return e-mail at <u>manchester@hydrock.com</u> and delete the e-mail document without making a copy. Whilst every effort has been made to ensure this email is virus free, no responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent.

From: Lunt, John [mailto:John.Lunt@uuplc.co.uk]
Sent: 27 January 2016 12:04
To: Eleanor Dale <<u>EleanorDale@hydrock.com</u>>
Cc: Wastewater Developer Services <<u>WastewaterDeveloperServices@uuplc.co.uk</u>>
Subject: (UU ref: DE1814) Former Rayware Site, Speke Boulevard, Liverpool

Hi Eleanor,

In reply, I can confirm that UU will require the new development to be designed and served using a separate drainage system combining on site just prior to communicating with the public combined sewerage system however please note, before UU could agree to any formal discharge rate the client will need to submit sufficient evidence of the previous developments drainage regime and the existing connectivity with the said public sewerage system taking in to consideration the number of connections and size of the same.

In addition to the comments above please note that there's a public sewer currently crossing the site which appears to be built over by the existing factory, I'm not aware if there's a formal build over agreement in place with UU for this and therefore just as an aide memoir, the client should be made aware that "Build Over" agreements do not transfer automatically under new ownership and therefore due consideration for either protecting the sewer and or diverting the same should be taken in to account.

If you have any queries or comments in relation to the above then please don't hesitate to get in touch.

Regards,

John

John Lunt Developer Query Engineer Developer Services and Planning Operational Services T: 01925 679411 (Int; 79411) E-mail: <u>wastewaterdeveloperservices@uuplc.co.uk</u> United Utilities.com

From: Eleanor Dale [mailto:EleanorDale@hydrock.com]
Sent: 13 January 2016 10:35
To: Wastewater Developer Services <<u>WastewaterDeveloperServices@uuplc.co.uk</u>>
Cc: Automate - Manchester <<u>automatewa@hydrock.com</u>>
Subject: Wastewater predevelopment enquiry Former "Rayware" Site, Speke Boulevard - C151811

Dear Sir/Madam,

Please find attached a completed Wastewater predevelopment enquiry for a proposed development at the Former "Rayware" Site, Speke Boulevard, Liverpool. The enquiry relates specifically to the allowable surface water discharge rate from the development and also where the surface water can discharge to. I have attached a site location plan with the site boundary marked in red. The proposed development will be a mixed use commercial development.

I look forward to hearing from you.

Yours faithfully,

Eleanor Dale

Eleanor Dale Infrastructure Engineer

Hydrock

St Baldred's Hall, 239 Ashley Road, Hale, Cheshire WA15 9NE Office: 0161 233 0746 Mobile: 07469856545

www.hydrock.com

Hydrock Consultants Limited, company number 3118932, Hydrock Contracting Limited, company number 3238802 and Nuclear Management Consultancy Limited, company number 05579646, are subsidiaries of Hydrock Group Limited, company number 6644687, registered in England and Wales at Over Court Barns, Over Lane, Almondsbury, Bristol, BS32 4DF.

Before printing this e-mail please think about the environment

Disclaimer: The information in this e-mail is confidential and may be read, copied or used only by the intended recipients. If you are not the intended recipient you are hereby notified that any perusal, use, distribution, copying or disclosure is strictly prohibited. If you have received this e-mail in error please advise us immediately by return e-mail at <u>manchester@hydrock.com</u> and delete the e-mail document without making a copy. Whilst every effort has been made to ensure this email is virus free, no responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent.

EMGateway3.uuplc.co.uk made the following annotations

The information contained in this e-mail is intended only for the individual to whom it is addressed. It may contain legally privileged or confidential information or otherwise be exempt from disclosure. If you have received this Message in error or there are any problems, please notify the sender immediately and delete the message from your computer. You must not use, disclose, copy or alter this message for any unauthorised purpose. Neither United Utilities Group PLC nor any of its subsidiaries will be liable for any direct, special, indirect or consequential damages as a result of any virus being passed on, or arising from the alteration of the contents of this message by a third party.

United Utilities Group PLC, Haweswater House, Lingley Mere Business Park, Lingley Green Avenue, Great Sankey, Warrington, WA5 3LP Registered in England and Wales. Registered No 6559020

www.unitedutilities.com www.unitedutilities.com/subsidiaries

Appendix D – United Utilities Sewer Records

CONTENTS					
Identifier	Name				
United Utilities	Sewer Records				

OS Sheet No: SJ4284SE

Scale 1:1250 Date: 12-Apr-2013

Printed by: Donna Camblin

Refno	Cover	Func	Туре	Invert	Size.x	Size.y	Shape	Matl	Grad	Length
5101	29.98	s	м	25.61	375		с	vc	345	31.05
5102	32.18	s	м	28.93	375		С	vc		92.7
5103	32.16	F	м	28.6	225		С	vc		102.53
5104		S	G		375		С	vc		10
5105		F	G		225	710	С	vc		25.08
5106		s	Q	25.52	375		С	со	400	32.02
5201	31.87	S	м	26.44	375		С	со	87	36.67
5202	32.5	С	м	25.03	1050	730	Е	BR	238	64.15
5203		S	Q	26.02	375		С	vc	89	36.67
5204		S	Q	12.28	375		С	со	-2	24.41
5205		С	Q	24.76	1050	700	Е	со	222	59.91
5301	31.32	С	м	24.89	1050	700	Е	со	-353	31.8
5302	31.38	S	м	26.61	375		С	vc	-28	41.59
5303		S	м		300		С	vc		26
5304		С	м		1050	700	Е	со		26.12
5305		s	М		225		С	vc		24.41
5306		S	Q	28.12	375		С	со	-28	42.58
5307		С	Q	24.98	1050	730	Е	BR	-229	18.35
5308		S	L		225		С	vc		136.94
5400		S	L		225		С	vc		83.95
5401		С	М		750					56.22
5402	30.76	s	М	27.77	750		С	vc		62.37
5403	30.79	С	м	25.84	1000		С	со		61.19
8001	33.45	F	М	27.7	300		С	vc	149	71.3
8002	33.64	s	м	29.26	1350		С	со	862	34.5
8003	33.36	S	М	29.22	1350		С	со	984	68.91
8101	33.96	F	м	28.17	300		С	vc	151	71.03
8102	33.7	S	м	29.38	1350		С	со	494	44.47
8103	33.88	S	м	29.29	1350		С	со	1167	35
8201	33.53	F	м	28.76	300		С	vc	144	85.09
8202	33.43	F	м	28.81	300		С	vc	151	7.54
8203	33.16	F	М	30.5	225		С	vc	30	48.78
8204	33.11	S	М	30.02	900		С	со	590	41.33
8205	33.32	S	М	29.65	1200		С	со	459	55.13
9201	33.35	F	М	29.35	150		С	vc	153	59.71
9202	33	F	М	29.6	150		С	vc	149	37.19
9203	33	S	М	30.13	900		С	со	445	31.17
9204	33.2	S	М	30.06	900		С	со	532	58.56
9401	35.97	F	М	33.81	150		С	PVC	147	70.37
9402	37.02	F	М	33.33	150		С	PVC	149	31.26
9403	37.07	S	М	33.73	300		С	PVC	191	28.67
9404	35.95	S	М	34.43	225		С	PVC	115	70.38
9405		F	М		150		С	vc		6.35
9406		S	М		150		С	vc		8.06

WASTE WATER SYMBOLOGY
FOUL SURFACE COMBINED DUAL
FOUL SURFACE COMBINED
PRIVATE MAIN
SLUDGE MAIN
BANDONED ABANDONED SITE TERMINATION GADLE)
AV AIRVALVE LAMP HOLE CA CASCADE OIL INTERCEPTOR
CK CONTROL KIOSK PE PENSTOCK CV CONTROL VALVE PU PUMP
ES EXTENT OF SURVEY RE RODDING EYE
GU GULLEY SO SOAKAWAY HA HATCHBOX SU SUMMIT NODE
HS HE HEADWALL HE HEADWALL HE HEADWALL HE
HY HYDROBRAKE VALVE IN INLET VC VALVE CHAMBER
INSPECTION CHAMBER ^{₩0} — WASHOUT —— GHOST NODE (inc. GN - Rising Main & GN - Dual Function)
EXPEDIENCY NODE (CHANGE OF CHARACTERISTIC)
CONTAMINATED SURFACE WATER CONTAMINATED SURFACE WATER CONTAMINATED SURFACE WATER
PUMPING STATION - WASTE WATER TREATMENT WORKS
EJECTOR STATION
SIDDLE PUMPING STATION TANK SHEET EDGE VENT COLUMN
SEWER OVERFLOW DISCHARGE POINT (OUTFALL)
Note - ALL flow direction arrows are BLUE - colour not significant
NODE TABLE ABBREVIATIONS
MANHOLE FUNCTION
F Foul T Transition S Surface O Overflow C Combined LL Unspecified
MANHOLE / NODE TYPE
M Manhole Z Ghost in Rising Main J Junction C Cascade
L Lamphole Y Gulley H Hatchbox E Ejector
к коаалд Еуе O Oil Injector F Outfall I Inlet V Combined Sewer B Hvdrobrake
Overflow T Vent Column P Pumping Station X Valve
5 Soakaway U Unspecified D Dual Function Q Expediency Node Manhole G Ghost
W Treatment Works (to allow pipe bends)
SEWER SHAPE C Circular T Trapezoidal
EEggAArchOOvalBBarrelFFlatTopHHorseshoe
R Rectangular U Unspecified S Square
SEWER MATERIAL
AC Asbestos Cement BR Brick
SI Spun (Grey) Iron CO Concrete
CS Concrete Segments (Bolted) CS Concrete Segments (Unbolted)
DI Ductile Iron GR Glass Reinforced Concrete
GR Glass Reinforced Plastic PS Plastic / Steel Composite
PV Polyvinyl Chloride PE Polyethylene RP Reinforced Plastic Matrix
ST Steel VC Vitrified Clay (All Clayware)
PP Polypropylene PF Pitch Fibre MA Masonry - In Regular Courses
MA Masonry - Randomly Coursed U Unspecified
This plan is based upon the Ordnance Survey map
with the sanction of the Controller of H.M.Stationary Office. Unauthorised reproduction infringes copyright.
Crown Copyright preservea.
OS Sheet No: SJ4284SE
Scale 1:1250 Date: 12-Apr-2013
44 Nodes
Sneet 1 of 1
United
Litilities
Unintes
SEWER RECORDS

OS Sheet No: SJ4383NW

Scale 1:1250 Date: 12-Apr-2013

Printed by: Donna Camblin

I	Refno	Cover	Func	Туре	Invert	Size.x	Size.y	Shape	Matl	Grad	Length
	0501		c	0	22 10	525		c	VC	117	65.3
	0501		c	0	23.19	525		c	vc	117	05.5 4 73
	0502		c	M				c			15 58
	0504		c	Q				c			20.43
	0601		С	м							
	0602		С	L	25.56	225		С	vc	92	33.06
	0603	27.19	С	м	25.17	225		С	vc	109	60.83
	0604		С	Q							
	0700		С	L	26.78	225		С	vc	92	54.33
	0701	28.55	С	М	26.17	300		С	vc	81	21.93
	0703	28.38	С	M							
	0704		C	Q		450		~	VC		20.22
	0706		C C	Q 0		150		C	vc		20.33
	0801	29.34	c	M	27.8	225		с	vc		61.66
	0802	20.01	c	J		300		c	vc		68.88
	0901	30.84	С	м	27.18	600		С	vc	260	96.18
	1501		С	L	24.26	300		С	vc	123	99.64
	1502	26.02	С	М	24.27	375		С	со	189	64.14
	1503	26.13	С	М	23.75	525		С	со	115	64.66
	1601	26.35	С	М	24.11	450		С	vc	125	16.28
	1602	27.18	С	М	24.71	375		С	со	136	59.68
	1603	27.54	С	м	24.62	375		С	vc	136	34
	1604		c	Q	23.98	450		c	CO	123	17.26
	1605	20.20	C	Q	24.37	225		C	VC	147	35.36
	1701	20.30 28.86	c	м	20.74	375		c	00	74 199	56.69 43.83
	1702	20.00	c	0	24.93	375		c	vc	191	43.83
	1801	29.19	c	M	27.68	225		c	vc		17.84
	1802		С	м		225		С	vc		65.49
	1803	29.7	С	м	26.97	225		С	vc	202	12.12
	1804	30.21	С	м	26.81	600		Е	BR	169	123.63
	1805		F	w		400		С	DI		198.65
	1901		С	М		450			со		32.25
	1902		С	м		450		С	vc		34.93
	1903		c	Q	~~ ~~	450		c	CO		36.25
	2501	25.76	C	M	23.86	300		C	VC	971	77.67
	2502	27.4	c	M	25.92	225		C	VC	83 55	38.01
	2600	21.2	c	L	20.24	225		c	vc	55	44.15
	2601	27.19	c	м	25.36	225		c	vc	583	70.01
	2602	28.35	с	м	26.58	300		с	vc	41	75.58
	2701	29.51	С	М	27.74	300		С	vc	65	73.16
	2801	29.86	С	М	26.83	300		С	vc	45	72.23
	2802	30.04	С	М	27.9	225		С	vc	15	13.2
	2803		С	М		225		С	vc		53.15
	2804	30.65	С	м	26.08	825	550	E	BR	185	57.43
	3502	27.56	C	M	25.46	300		C	VC	129	86.33
	3601	20.04 28.61	C	M	20.90	225		C	VC		16.20
	3602	20.01	c	м	20.01	225		c	VC		64.03
	3603	29.82	С	М	28.35	225		C	vc	42	57.72
	3604	29.74	С	м	28.22	225		С	vc	41	57.72
	3701	30.1	С	М	28.56	225		С	vc	91	71.7
	3702	30.77	С	М	29.3	225		С	vc	102	75.13
	3703	31.31	С	М		225		С	vc		92.07
	3704		F	z				С			13.24
	3705		F	J				c			13.39
	3706		F	J				C C			12.4
	3708		F	J				C			0.14
	3801	31.83	c	м	25.77	825	550	Е	BR	300	93.06
	3802		c	Q	25.77	825	550	E	BR	182	56.44
	4501	28.1	с	м	24.69	375		с	со	62	66.66
	4502	29.19	С	М	27.09	300		С	vc	31	34.53
	4503		С	Q	25.96	300		С	VC	31	34.53
	4504		С	Q	22.48	1200	800	Е	BR	240	143.75
	4601	30.3	С	Μ	28.24	225		С	VC		5.49
	4602		C	M		225		~	VC		6.15
	4603		C	J		225		C	VC		62.95
	4700		C C	L M		225 225		C C	vc		JU.∠/
	4703		c	M		225		c	VC		34.71
	4704	31.91	c	М	30.14	225		c	VC		74.67
	4801		с	Q	25.77	825	550	Е	BR	300	93.06

WASTE WATER SYMBOLOGY
FOUL SURFACE COMBINED DUAL
FOUL SURFACE COMBINED
PUBLIC MAIN
SECTION 104
HIGHWAY DRAIN
BANDONED ABANDONED SITE TERMINATION SADDLE
AV AIRVALVE LH LAMP HOLE CA CASCADE OI OIL INTERCEPTOR
CK CONTROL KIOSK PLO PENSTOCK CV CONTROL VALVE PU PUMP ES EVENTE OF OUR VERV. RE PORTUGE SVE
$\frac{FM}{GU} = GULLEY \qquad \qquad \frac{SE}{SO} = SOAKAWAY$
HA HS HEAD OF SYSTEM HEAD OF SYSTEM HEAD OF SYSTEM HEAD OF SYSTEM
HE HY HY HY HY DROBRAKE HY VA VALVE
INLET INLET IC INSPECTION CHAMBER WO WASHOUT
GHOST NODE (inc. GN - Rising Main & GN - Dual Function) EXPEDIENCY NODE (CHANGE OF CHARACTERISTIC)
CHAMBER POWERCD CONTAMINATED SURFACE WATER CONTAMINATED SURFACE WATER CONTAMINATED SURFACE WATER
PUMPING STATION - WASTE WATER TREATMENT WORKS
EJECTOR STATION
SEWER OVERFLOW C DISCHARGE POINT (OUTFALL)
Note - ALL flow direction arrows are BLUE - colour not significant
NODE TABLE ABBREVIATIONS
MANHOLE FUNCTION F Foul T Transition
C Combined U Unspecified
MANHOLE / NODE TYPE M Manhole Z Ghost in Rising Main
L Lamphole Y Gulley H Hatchbox E Ejector
R Rodding Eye O Oil Injector F Outfall I Inlet V Combined Sewer B Hydrobrake
Overflow T Vent Column P Pumping Station X Valve
D Dual Function Q Expediency Node Manhole G Ghost
SEWER SHAPE
C Circular T Trapezoidal E Egg A Arch O Oval B Barrel
F Flat Top H Horseshoe R Rectangular U Unspecified S Square
SEWER MATERIAL
AC Asbestos Cement BR Brick
SI Spun (Grey) Iron CO Concrete
CS Concrete Segments (Bolted) CS Concrete Segments (Unbolted) CC Concrete Box Culvert
DI Ductile Iron GR Glass Reinforced Concrete GR Glass Painforced Plontia
PS Plastic / Steel Composite PV Polyvinyl Chloride
PE Polyethylene RP Reinforced Plastic Matrix ST Steel
VC Vitrified Clay (All Clayware) PP Polypropylene
PF Pitch Fibre MA Masonry - In Regular Courses MA Masonry - Randomly Coursed
I his plan is based upon the Ordnance Survey map with the sanction of the Controller of H.M.Stationary Office. Unauthorised reproduction infringes copyright.
Crown Copyright preserved.
US Sheet No: SJ4383NW
Scale 1:1250 Date: 12-Apr-2013
Sheet 1 of 1
Inited
United
Utilities
SEWER RECORDS

OS Sheet No: SJ4384SW

Scale 1:1250 Date: 12-Apr-2013

Printed by: Donna Camblin

0201	32.77	F	м	29.91	150		С	vc	151	46.96
0202	32.9	F	м	30.19	150		С	vc	146	40.84
0203	32.78	s	м	30.52	900		С	со	498	34.84
0204	32.65	s	м	30.45	900		С	со	166	53.2
0205		S	м		300		С	vc		56.1
0401	36.95	F	м	33.12	150		С	PVC	158	11.07
0402	37.05	F	м	34.55	150		С	PVC	24	33.69
0403	36.45	F	м	34.87	150		С	PVC	147	46.96
0404	36.99	s	м	33.45	375		С	со	39	14.57
0405	37.03	S	м	34.94	225		С	PVC	208	33.31
0406	36.51	S	м	35.2	225		С	PVC	178	46.36
1001	31.58	С	м	28.75	525		С	vc		65.05
1002		С	м		450		С	vc		32
1101	33.8	С	м							
1102	32.94	С	м	29.06	300		С	vc	287	20.1
1103	32.54	С	м	28.92	525		С	vc	519	83.02
1104		С	м		450		С	vc		37.31
1201	33.8	С	м	29.01	600		С	vc	288	74.96
1202		С	м		600		С	со		14.89
1203		F	м		150		С	vc		14.52
1204		F	м		150		С	vc		63.44
1205		С	M				С			3.2
1206		s	м		525		С	со		66.35
1207		s	м		375		С	со		27.59
1301		F	м		150		С	VC		22.93
1302		F	M		150		С	VC		26.79
1303		F	м		150		С	VC		42.82
1304		s	M		300		C	VC		26.31
1305		s	M		300		C	VC		22.97
1306		S	M		450		C	00		42.54
1307	aa 7 0	S	M	04.50	525		C	00	407	14.24
1401	36.79	F		34.59	150		C C		137	41.06
1402	37.18	5		35.18	300		C C		119	33.32
1403	38.74	г г		30.01	150		C C	VC	24	44.21
1404	37.13	г с		34.8	150		C C		148	31.12
1405	30.70	5		34.9 29.75	500		C C	VC	114	39.94
2201	34.5	C e	N	20.75	200		C C		170	12.04
2401	37.20	5	M	35.29	150		c	VC	170	40.39
2402	37.13	г е	M	35.73	150		c		104	40.19
2403	3/ 30	c c	M	28.34	225 600		c	vc	261	54.57
3101	54.55	c	0	20.34	600		c	00	201	53 76
3301	36 7	c	M	20.13	525		c	vc	230	83.03
3301	30.7	c	0	29.03	525 450		c	vc	-0	14 87
3401	37 27	c	M	30.4	450		c	VC	-9	14.07
3402	37.3	c	м	33.49	300		c		Ĵ	45 19
4001	35.89	c	м	55.45	500		Ũ	U		45.15
4101	35.26	c	м	27.88	600		с	co		12.37
4102	00.20	c		21.00	860	560	F	BR		79.56
4103		c	٥ ۵		600		c	VC		11.7
4104		c	Q		300		-			7.24
4104		c	Q		860	560	Е	BR		21.84
4201	35.38	С	м	29.38	375		c	VC		11.4
4202	35.53	С	M	28.15	600		С	VC		21.84
4203	· · · · · · ·	С	Q		600		С	VC		19.65
4204		С	J		900	560	E	BR		19.65
4301	35.49	С	м	29.41	900	560	Е	BR		60.73
		-					-			•

Refno Cover Func Type Invert Size.x Size.y Shape Matl Grad Length

WASTE WATER SYMBOLOGY
FOUL SURFACE COMBINED DUAL
FOUL SURFACE COMBINED
PUBLIC MAIN PRIVATE MAIN
SECTION 104
HIGHWAY DRAIN
BANDONED ABANDONED SITE TERMINATION SADDLE
AV AIRVALVE LH LAMP HOLE CA CASCADE OIL INTERCEPTOR
CN CONTROL KIOSK PE PENSTOCK CV CONTROL VALVE PU PUMP ES DUSTROL VALVE RE DUSTROL VALVE
$\text{$
$\stackrel{\text{HA}}{\longrightarrow} \text{HATCHBOX} \qquad \stackrel{\text{SU}}{\longrightarrow} \text{SUMMIT NODE}$ $\stackrel{\text{HS}}{\longrightarrow} \text{HEAD OF SYSTEM} \qquad \stackrel{\text{TB}}{\longrightarrow} \text{TUMBLING BAY}$
HEADWALL UNSPECIFIED
IN INLET VC VALVE CHAMBER IC INSPECTION CHAMBER WO WASHOUT
 —O— GHOST NODE (inc. GN - Rising Main & GN - Dual Function) —▽— EXPEDIENCY NODE (CHANGE OF CHARACTERISTIC)
BIFURCATION DROPSHAFT
CHAMBER CONTAMINATED SCREEN CHAMBER SURFACE WATER SCREEN CHAMBER
PUMPING STATION - WASTE WATER TREATMENT WORKS
EJECTOR STATION SEPTIC TANK
PUMPING STATION VENT COLUMN
SEWER OVERFLOW DISCHARGE POINT (OUTFALL)
Note - ALL flow direction arrows are BLUE - colour not significant
F Foul T Transition S Surface O Overflow
MANHOLE / NODE TYPE M Manhole Z Ghost in Rising Main J Junction C Cascade
L Lamphole Y Gulley H Hatchbox E Ejector
F Outfall I Inlet V Combined Sewer B Hydrobrake
Overflow T Vent Column P Pumping Station X Valve S Soakaway U Unspecified
D Dual Function Manhole W Treatment Works Q Expediency Node G Ghost (to allow pipe bends)
SEWER SHAPE
C Circular T Trapezoidal E Egg A Arch O Oval B Barrel
F Flat Top H Horseshoe R Rectangular U Unspecified
S Square SEWER MATERIAL
AC Asbestos Cement BR Brick
Ci Cast Iron SI Spun (Grey) Iron CO Concrete
CS Concrete Segments (Bolted) CS Concrete Segments (Unbolted) CC Concrete Box Culvert
DI Ductile Iron GR Glass Reinforced Concrete GR Class Painforced Plogtia
PS Plastic / Steel Composite PV Polyvinyl Chloride
PE Polyethylene RP Reinforced Plastic Matrix ST Steel
VC Vitrified Clay (All Clayware) PP Polypropylene PF Pitch Fibre
MA Masonry - In Regular Courses MA Masonry - Randomly Coursed U Unspecified
This plan is based upon the Ordnance Survey map
with the sanction of the Controller of H.M.Stationary Office. Unauthorised reproduction infringes copyright. Crown Copyright preserved
.,,
OS Sheet No: $S.14384SW$
Scale 1:1250 Date: 12-Apr-2013
57 Nodes
Sheet 1 of 1
United
I Itilitios
JEWER RELUKUJ

OS Sheet No: SJ4283NE

Scale 1:1250 Date: 12-Apr-2013

Printed by: Donna Camblin

Refno	Cover	Func	Туре	e Invert	Size.x S	Size.y S	Shap	e Matl	Grad	Length
5500	25.31	F	М		300			vc		77.62
5901	28.75	С	М	22.54	525		С	со		94.67
5902	28.76	S	М	21.55	450		С			112.78
6501	26.05	F	М	22.87	300		С	VC	250	32.46
6502	26.02	S	М	24.28	225		С	vc	457	22.86
6503	26.13	F	М	22.71	300		С	VC	318	38.2
6504	25.57	F	M	22.56	300			VC	328	75.37
6505		S	R	24.69	150		c	VC	29 42	12.01
6602	25 32	5	к М	24.90	225		C	VC	43 325	24.50 42 19
6605	20.02	s	R	25.1	150		c	vc	67	19.3
6606		F	R	25.03	150		c	vc	62	21.86
6700	26.87	S	М	25.57	225			VC	130	83.1
6701		s	М	24.93	225			vc	62	35.61
6901	30.52	С	М	23.46	525		С	со	104	95.71
6902	30.53	S	М	24.03	450		С		40	98.62
7501	25.72	S	М	23.83	600		С	со	168	38.66
7502	25.75	F	М	23.03	300		С	vc	162	22.74
7503	25.82	F	м	23.15	225		C	VC	305	15.27
7504	26.22	F	M	23.32	225		C	VC	147	23.54
7505	26.09	5 e	M		600		C			26.88
7507	25.76	s	M	23 04	675		C	60		41 79
7508	25.70	s	Q	23.04	0/5		U	00		41.75
7509	26.33	s	м		600		с			32.46
7510	26.44	s	м		600		С			26.09
7600	26.32	s	М	25.48	225			vc	61	49.48
7601	26.17	s	М	24.07	600		С	со	184	25.75
7602	26.09	F	М	23.44	225		С	vc	137	31.5
7603	26.05	S	М	23.93	600		С	со	836	58.49
7604	26.26	S	М	24.67	225		С	vc	36	10.44
7605	25.94	S	М	24.97	225		С	vc	139	41.71
7606	25.96	S	М				-			
7607	25.98	F	M	o . = .	150		C			39.37
7608	25.82	S	M	24.74	150		C	VC	37	20.18
7609		5	Q M	24.81	220 150		C C	vc	64	19.28
7611		F	0		150		U			30.30
7612		s	Q							
7613	25.86	F	Μ	23.21	225		с	vc	303	33.37
7700		s	R							
7701	26.41	S	М	24.16	600		С	со	332	29.89
7702	26.41	F	М	23.81	225		С	vc	136	48.95
7703		S	R							
7705	26.9	S	М							
7707	26.72	F	М	24.49	225		С	vc	64	23.21
7708	26.75	S	M	24.38	600		C	CO	193	27.03
7710	26.6	F	M	24.11	225		C		102	30.48
7711	20.37	5	M	24.24	225		C C	vc	499 68	29.90
7712	27.01	s	м	24.55	525		c	co	281	30.9
7713	27.38	S	М	25.86	300		С	VC	63	22.56
7714	27.57	s	м	26.03	300		с	vc	120	16.87
7715	26.73	F	м	25.7	150		С	vc	43	29.21
7716	26.74	S	М	25.15	225		С	vc	152	25.82
7717		S	Q	24.36	225		С	vc	-53	14.36
7718	26.33	F	М	25.05	225		С	vc	59	53.43
7719	26.99	F	М	25.23	225			vc	96	17.19
7720	26.31	S	М	25.25	225		С	vc	38	22.72
7721	26.95	S	M	25.5	225		C	VC	81	20.36
7901	26.05	5	Q	24.65	300		C		203	34.53
7802	26.95	S	M	25.35	225		c	VC	98	17 55
7803	27.37	F	м	25.31	150		c	vc	84	22.59
7804	27.96	F	M	25.66	150		C	vc	86	25.68
7805	27.96	s	м	25.49	300		С	vc	78	26.4
7806	28.04	s	м	27.06	225		с	vc	60	32.31
7808	27.37	s	м	25.13	300		С	vc	141	21.1
7901	31.84	С	М	24.4	450		С	со	104	97.38
7902	31.84	s	М	24.96	375		С		99	92.07
8500		С	М		375					92.97
8501	25.54	F	Μ				_			
8502	25.31	F	M		150 675		С	00		13.57
0003		3	IVI		0/5			00		34.24

Refno	Cover	Func	Тур	e Invert	Size.x Si	ze.y
8504	25.4	s	м	24.02	150	
8505	25.48	S	М		450	
8506	25.26	S	М	23.42	450	
8507		F	Q		450	
8508		5	0		450	
8510	26.22	F	M	24.42	225	
8600		с	м		300	
8601	25.71	F	М			
8602	25.55	F	М		225	
8603	25.58	s	м	23.51	450	
8605	26.06	5	M	23.88	375	
8606	26.24	F	м	24.56	225	
8607	26.23	F	м	25.27	150	
8608	26.24	S	М	24.57	225	
8609	26.68	S	М	25.34	150	
8610 8612	25.78	S	M	24.38	225	
8701	26.48	г S	M	24.27	300	
8702	26.59	F	м	24.81	225	
8704	27.61	s	м	25.09	225	
8705	27.64	F	М	25.48	225	
8706	27.46	S	М	25.95	150	
8707 8709	27.77	F	M	26 26 54	150 200	
8709	28.29	F	M	26.54	300 150	
8710	28.16	F	м	27.11	150	
8711	28.18	s	м	27	225	
8712	26.34	S	М	24.83	225	
8713	26.31	F	м	25.38	225	
8714		5	R		225	
8717		F	R	25.75	150	
8801	28.29	s	м	26.72	225	
8802	28.13	s	м			
8803	28.43	S	М			
8804	28.94	S	M			
8806	28.29	s	M	25.82	300	
8807	29.06	F	м	27.12	150	
8808	29.17	S	м	27.26	225	
8809	27.94	S	М	26.64	150	
8810	28.05	s	м	26.35	150	
8811 8900	28.28	s C	M	25.9	225 450	
8901	30.58	s	м	28.83	225	
8902	31.59	s	м	26	375	
8903	31.62	С	М		450	
8904	32.29	С	м	27.07	450	
8905 9501	32.28	s	M	29.15	400 450	
9502	25.00	c	M	25.25	450	
9503		С	м			
9504		С	J			
9505		С	Q		150	
9506		C C	Q			
9601	26.22	c	M	23.99	375	
9603		c	м			
9700		С	L		225	
9701	27.44	С	м	24.56	375	
9702	28.41	C	м	25.9	300	
9703	27.36 28 77	C C	M	26 74	225	
9800	20.11	c	M	20.74	300	
9801	29.88	F	м	28.38	150	
9802	29.96	s	м	27.97	225	
9803		F	Q	e = -	400	
9901	31.41	C	M	27.73	525 450	
9902 9903		c	Q	27.42	450 525	
9904		F	Q		400	

				WASTE WATER SYMBOLOGY
				FOUL SURFACE COMBINED DUAL
				SIDE ENTRY MANHOLE
				FOUL SURFACE COMBINED
				PRIVATE MAIN
				HIGHWAY DRAIN
				ES EXTENT OF SURVEY RE RODDING EYE
				$FM \rightarrow FLOW METER$ $SE \rightarrow SEA OUTFALL$ $GU \rightarrow GUULEY$ $SO \rightarrow SOAKAWAY$
				HA HA HS HS HS HS HS HS HS HS HS HA HA HATCHBOX HA HA HATCHBOX HA HA HA HATCHBOX HA HA HA HATCHBOX HA HA HA HATCHBOX HA HA HA HA HATCHBOX HA HA HA HATCHBOX HA HA HA HA HA HA HA HA HA HA HA HA HA
Shape	e Matl	Grad	Length	HEAD OF SYSTEM TUMBLING BAY
с с	VC	103	27.94 5.79	
С	со	1072	10.72	$\frac{IC}{I}$ INSPECTION CHAMBER $\frac{W0}{I}$ WASHOUT
с			30.02	 —○— GHOST NODE (inc. GN - Rising Main & GN - Dual Function) —▽— EXPEDIENCY NODE (CHANGE OF CHARACTERISTIC)
с			55.9	
			77.87	CATCHPIT FLOW CONTROL
с с	со		34.79 7.38	CONTAMINATED SURFACE WATER
с с	co co	168 316	46.91 25.29	PUMPING STATION WASTE WATER
с с	VC VC	187 76	72.81 45.8	
c	VC	135	51.13	SLUDGE TANK
c	vc	30 139	49.92	
с	со	132	30.42	OVERFLOW (OUTFALL)
с с	vc vc	156 83	35.96 66.24	Note - ALL flow direction arrows are BLUE - colour not significant
с с	vc vc	93 35	63.46 27.42	NODE TABLE ABBREVIATIONS
с с	vc vc	43 100	18.57 48.86	
с с	VC VC	45 40	21.54 22.4	F Foul T Transition
c	VC	111	26.54	C Combined U Unspecified
c	VC	26	8.63	MANHOLE / NODE TYPE
_	vc		24.05	M Manhole Z Ghost in Rising Main J Junction C Cascade
c	vc vc	35 160	29.39 25.61	L Lamphole Y Gulley H Hatchbox E Ejector
				R Rodding Eye O Oil Injector F Outfall I Inlet
				V Combined Sewer B Hydrobrake Overflow T Vent Column
с с	vc vc	82 55	26.93 78.55	P Pumping Station X Valve S Soakaway U Unspecified
C C	vc	35 70	47.08 20.35	Manhole G Ghost
c	VC	56	25.08	
c	vc	164	30.39	SEWER SHAPE C Circular T Trapezoidal
c	vc	43 83	35.36 85.99	E Egg A Arch O Oval B Barrel
с с	со	53	52.02 37.04	F Flat Top H Horseshoe R Rectangular U Unspecified
с с	co co	10 324	2.87 97.08	S Square
с с			19.18 16.27	SEWER MATERIAL
C	VC		6 72	BR Brick CI Cast Iron
Ū			455 70	SI Spun (Grey) Iron CO Concrete
с	со	107	74.15	CS Concrete Segments (Bolted) CS Concrete Segments (Unbolted)
с с	vc		26.56 35.51	CC Concrete Box Culvert DI Ductile Iron
с с	co vc	127 60	69.63 63.35	GR Glass Reinforced Concrete GR Glass Reinforced Plastic
с	vc vc	59	71.18 78.45	PS Plastic / Steel Composite PV Polyvinyl Chloride
C	VC VC	40	68.71 50 7	PE Polyethylene RP Reinforced Plastic Matrix
c	VC	72	48.49	ST Steel VC Vitrified Clay (All Clayware)
c	CO	147	45.7	PP Polypropylene PF Pitch Fibre
с с	vc vc	246	7.3 59.03	MA Masonry - In Regular Courses MA Masonry - Randomly Coursed
С	DI		528.57	U Unspecified
				This plan is based upon the Ordnance Survey map with the sanction of the Controller of H.M.Stationary Office. Unauthorised reproduction infringes copyright. Crown Copyright preserved.
				OS Sheet No: SJ4283NE Scale 1:1250 Date: 12-Apr-2013 147 Nodes

Appendix E – Hydrock Hydraulic Calculations

H

Proposed Drainage

- I. 1 year summary Attenuation Volumes
- II. 30 year summary Attenuation Volumes
- III. 100 year summary Attenuation Volumes (Including the 30% allowance for Climate Change)

Hydrock Consultants Ltd									
•	Spek	e Boule	evard						
	Live	erpool				4			
						- Cm			
Date 07/04/2016	Desi	aned by	V EJD			- MICLO			
File lur grov	Chec	ked by	PC			Drainage			
VD Colutions	Caur	Red by	FG)1/1 1 1					
	Sour	ce com	LIOI ZU)14.1.1	-				
	1	1 .							
<u>Summary of Res</u>	<u>sults f</u>	<u>or 1 y</u> e	ear Ret	<u>urn Pe</u>	<u>r10d</u>				
					C b c b c c c c c c c c c c				
Storm	Max	Max Domth Q	Max	Max	Status				
Event	TeAet	Depth C	ONTFOL	volume					
	(111)	(m)	(1/5)	(m-)					
15 min Summer	29.240	0.240	68.8	132.1	ОК				
30 min Summer	29.280	0.280	90.2	154.3	ОК				
60 min Summer	29.309	0.309	106.8	170.2	ОК				
120 min Summer 1	29.311	0.311	107.6	171.0	O K				
180 min Summer	29.302	0.302	102.7	166.2	O K				
240 min Summer	29.291	0.291	96.1	159.9	O K				
360 min Summer	29.267	0.267	83.1	147.1	ΟK				
480 min Summer	29.248	0.248	72.9	136.5	OK				
600 min Summer	29.233	0.233	65.0	128.0	OK				
/20 min Summer .	29.220	0.220	58.8 40 6	121.1	OK				
1440 min Summor	29.201 29.175	0.201	49.0	96 3	OK				
2160 min Summer	29.175	0.152	29 5	83 6	0 K				
2880 min Summer	29.137	0.137	24.4	75.4	0 K				
4320 min Summer	29.118	0.118	18.3	65.1	0 K				
5760 min Summer	29.107	0.107	15.0	58.6	ОК				
7200 min Summer	29.098	0.098	12.8	54.0	ОК				
8640 min Summer	29.092	0.092	11.2	50.4	ΟK				
10080 min Summer	29.087	0.087	10.1	47.6	O K				
Storm	Rain	Flooded	d Discha	arge Ti	me-Peak				
Event ((mm/hr)	Volume	Volu	me	(mins)				
		(m³)	(m ³)					
15 min Summer	30.991	0.0) 21	20.0	46				
30 min Summer	20.215	0.0) 2	87.8	52				
60 min Summer	12.800	0.0) 3	66.4	66				
120 min Summer	7.942	0.0) 4	55.0	94				
180 min Summer	5.979	0.0	5	13.9	124				
240 min Summer	4.882	0.0) 5	59.7	154				
360 min Summer	3.646	0.0) 63	27.0	216				
480 min Summer	2.956	0.0) 6'	77.8	276				
600 min Summer	2.511	0.0	ל נ	19.9	336				
/20 min Summer	2.199	0.0	J 7.	こり・3 1 7 つ	396 510				
900 IIII Summer	1 326	0.0	יס ר מיס	12 0	J⊥8 750				
2160 min Summer	1.JZ0 0 988	0.0	, 9.) 10'	20.4	, Jo 1124				
2880 min Summer	0.800	0.0) 110	02.3	1480				
4320 min Summer	0.595	0.0	122	28.7	2212				
5760 min Summer	0.483	0.0) 13	30.4	2944				
7200 min Summer	0.410	0.0) 14	13.8	3672				
8640 min Summer	0.359	0.0	14	85.9	4400				
10080 min Summer	0.322	0.0) 15	49.4	5088				
©198	32-2014	XP Sol	lutions						

Hydrock Consultants Ltd						Page 2
•	Spek	e Boul	evard			
	Live	rpool				L.
•						Micco
Date 07/04/2016	Desi	gned b	y EJD			Desinado
File lyr.srcx	Chec	ked by	PG			Diamage
XP Solutions	Sour	ce Con	trol 20	014.1.1	<u>_</u>	
<u>Summary of Res</u>	sults f	<u>or 1 y</u>	<u>ear Ret</u>	urn Pe	riod	
					-· ·	
Storm	Max	Max Donth (Max	Max	Status	
Event	(m)	(m)	(1/s)	(m ³)		
	()	()	(1)0)	()		
15 min Winter	29.260	0.260	79.0	142.9	O K	
30 min Winter	29.303	0.303	103.0	166.5	OK	
60 min Winter	29.331	0.331	119.7	182.1	OK	
120 min Winter 180 min Winter	29.323	0.323	103 0	166 /	O K	
240 min Winter	29.282	0.282	103.0 91 3	155 4	0 K	
360 min Winter	29.250	0.250	74.0	137.5	0 K	
480 min Winter	29.227	0.227	62.0	124.8	ОК	
600 min Winter	29.210	0.210	53.8	115.3	ОК	
720 min Winter	29.196	0.196	47.6	107.9	ОК	
960 min Winter	29.177	0.177	39.2	97.1	O K	
1440 min Winter	29.152	0.152	29.5	83.5	O K	
2160 min Winter	29.130	0.130	22.0	71.8	O K	
2880 min Winter	29.117	0.117	18.0	64.4	ОК	
4320 min Winter	29.101	0.101	13.5	55.3	ОК	
5/60 min Winter 7200 min Winter	29.090	0.090	10.9	49.6	OK	
8640 min Winter	29.083	0.083	9.3	43.7	O K O K	
10080 min Winter	29.073	0.073	7.2	40.4	0 K	
Storm	Rain	Floode	d Disch	arge Ti	mo-Poak	
Event	(mm/hr)	Volume	e Disch	unge II Ime	(mins)	
Lvent	(,	(m ³)	(m ³	·)	(11110)	
		()	(,		
15 min Winter	30.991	0.	0 2	46.7	46	
30 min Winter	20.215	0.	0 3	22.6	51	
60 min Winter	12.800	0.	0 4	10.6	64	
120 min Winter	1.942	υ.	0 5	UY.X 75 7	94	
240 min Winter	4 882	0.	0 5	73.1 27 0	124 156	
360 min Winter	3.646	0.	0 7	02.5	216	
480 min Winter	2.956	0.	0 7	59.3	278	
600 min Winter	2.511	0.	0 8	06.5	338	
720 min Winter	2.199	0.	0 8	47.2	398	
960 min Winter	1.782	0.	0 9	15.6	520	
1440 min Winter	1.326	0.	0 10	21.8	764	
2160 min Winter	0.988	0.	0 11	43.0	1128	
2880 min Winter	0.800	0.	U 12	34.7	1480	
4320 min Winter	0.595	υ.	U 13	10.5	2196	
J/60 min Winter 7200 min Winter	0.483 0 410	0.	0 15	20.⊥ 83.5	2944 3640	
8640 min Winter	0.359	0	0 16	64.4	4344	
10080 min Winter	0.322	0.	0 17	35.8	5152	
©198	32-2014	XP So	lutions	5		

	Speke Boulevard									
	Liver		4	rm						
Date 07/04/2016	Desig	— MI	cio							
File lyr.srcx	Checke	Checked by PG								
XP Solutions	Source	e Conti	rol 2014.3	1.1						
	Rainfall	Detai	<u>ls</u>							
Rainfall Model FSR Winter Storms Yes										
Return Period (years)		1		Cv (Summe	r) 0.75	0				
Region M5-60 (mm)	England and	Wales	Shortest S	Cv (Winte	r) 0.84	5				
Ratio R	2	0.400	Longest S	torm (min	s) 1008	0				
Summer Storms		Yes	Clima	te Change	% +	C				
<u>Time Area Diagram</u>										
	Total Area	(ha) 3	.830							
Time (mins) Area Time From: To: (ha) From:	(mins) Area To: (ha)	Time From:	(mins) Ard To: (ha	ea Time a) From:	(mins) To:	Area (ha)				
0 4 0.383 12	16 0.383	24	28 0.3	83 36	40	0.383				
4 8 0.383 16 8 12 0 383 20	20 0.383 24 0 383	28	32 0.3	83						
	21 0.303	52	50 0.5							
	a1000 0014 ·		+							
(91982-2014 >	VE SOLU	llions							

Page 3

Hydrock Consultants Ltd

Hydrock Consultants	s Ltd				Page 4		
•		Speke Liver	Boulevard pool		Micco		
Date 07/04/2016	04/2016 Designed by EJD						
File 1yr.srcx	Diamage						
XP Solutions		Sourc	e Control	2014.1.1			
		Model	<u>Details</u>				
	Storage is (Online Co	over Level	(m) 31.000			
	<u>Tan</u>	<u>k or Por</u>	d Structur	<u>re</u>			
	Inv	ert Leve	l (m) 29.00	0			
	Depth (m) A	rea (m²)	Depth (m)	Area (m ²)			
	0.000	550.0	2.000	550.0			
	<u>Hydro-Brak</u>	<u>e Optimu</u>	um® Outflow	<u>Control</u>			
U De Desi Inv Minimum Outlet Pipe Suggested Manhole	nit Reference sign Head (m) gn Flow (l/s) Flush-Flo ^m Objective Diameter (mm) ert Level (m) Diameter (mm)	Site Sp	Err ecific Desi	MD-S Min Cor (Contac Lgn (Contac	HE-0548-2300-1800-230 1.80 230. Calculate imise upstream storag 54 29.00 t Hydro International t Hydro International		
	Control H	Points	Head (m) Flow (1/	s)		
De	esign Point (ean Flow over	Calculat Flush-F Kick-F Head Ra	ed) 1.80 lo™ 0.81 lo® 1.41 nge	0 229 5 229 2 204 - 184	.9 .7 .2 .0		
The hydrological c for the Hydro-Brak device other than calculations will	alculations h e Optimum® as a Hydro-Brake be invalidate	nave been s specifi e Optimum ed	based on t ed. Should @ be utilis	the Head/Di d another t sed then th	scharge relationship ype of control ese storage routing		
Depth (m)	Flow (l/s) De	epth (m)	Flow (l/s)	Depth (m)	Flow (l/s)		
0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 1.200 1.400	13.3 49.3 101.4 160.8 215.4 225.1 229.7 227.3 220.1 205.7	1.600 1.800 2.000 2.200 2.400 2.600 3.000 3.500 4.000 4.500	217.1 229.9 242.1 253.6 264.7 275.2 295.2 318.4 340.0 360.2	5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.000 9.500	379.4 397.6 415.0 431.6 447.7 463.1 478.1 492.6 506.6 520.3		
	©198	32-2014	XP Solutio	ns			

.Speke Boulevard.LiverpoolDate 07/04/2016Designed by EJDFile 30yr.srcxChecked by PGXP SolutionsSource Control 2014.1.1	ro linage
. Liverpool . Date 07/04/2016 Designed by EJD File 30yr.srcx Checked by PG XP Solutions Source Control 2014.1.1	ro Inage
.Date 07/04/2016Designed by EJDMidFile 30yr.srcxChecked by PGChecked by PGXP SolutionsSource Control 2014.1.1	cro ninage
Date 07/04/2016Designed by EJDFile 30yr.srcxChecked by PGXP SolutionsSource Control 2014.1.1	linage
File 30yr.srcxChecked by PGXP SolutionsSource Control 2014.1.1	ainage
XP Solutions Source Control 2014.1.1	
Summary of Results for 30 year Return Period	
Storm Max Max Max Max Status	
Event Level Depth Control Volume	
(m) (m) $(1/s)$ (m^3)	
15 min Summer 29.456.0.456.193.3.251.0.0K	
30 min Summer 29.561 0.561 223.0 308.6 O K	
60 min Summer 29.658 0.658 227.4 362.0 0 K	
120 min Summer 29.630 0.630 226.4 346.7 O K	
180 min Summer 29.567 0.567 223.4 312.0 O K	
240 min Summer 29.511 0.511 219.7 281.3 O K	
360 min Summer 29.447 0.447 188.5 246.0 O K	
480 min Summer 29.404 0.404 163.0 222.0 O K	
600 min Summer 29.371 0.371 143.6 204.2 O K	
720 min Summer 29.346 0.346 128.6 190.4 O K	
960 min Summer 29.309 0.309 106.8 170.0 O K	
1440 min Summer 29.263 0.263 80.6 144.5 O K	
2160 min Summer 29.223 0.223 60.0 122.5 O K	
2880 min Summer 29.198 0.198 48.5 108.9 0 K	
4320 min Summer 29.108 0.108 35.6 92.2 O K	
7200 min Summer 29.136 0.136 23.8 74.5 0 K	
8640 min Summer 29.126 0.126 20.6 69.1 O K	
10080 min Summer 29.118 0.118 18.2 64.9 O K	
Storm Rain Flooded Discharge Time-Peak	
Event (mm/hr) Volume Volume (mins)	
(m ³) (m ³)	
$15 \min Summer 76.035 0.0 543.5 45$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
60 min Summer 30.811 0.0 883.8 68	
120 min Summer 18.615 0.0 1068.1 98	
180 min Summer 13.715 0.0 1180.6 126	
240 min Summer 10.995 0.0 1262.0 154	
360 min Summer 8.034 0.0 1383.4 214	
480 min Summer 6.428 0.0 1475.7 274	
600 min Summer 5.404 0.0 1550.7 334	
720 min Summer 4.687 0.0 1614.1 394	
960 min Summer 3.743 0.0 1718.6 514	
1440 min Summer 2.723 0.0 1875.0 754	
2100 min Summer 1.979 0.0 2045.3 1116	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5760 min Summer 0.910 0.0 2508.7 2204	
7200 min Summer 0.762 0.0 2625.4 3648	
8640 min Summer 0.659 0.0 2724.0 4400	
10080 min Summer 0.583 0.0 2809.1 5136	
©1982-2014 XP Solutions	

Hydrock Consultants 1	Page 2						
•		Spek	ke Boul	levard			
		Live	erpool				4
			-				m
Date 07/04/2016		Desi	aned b	NV F.TD			MICLO
		Choc	wheed by				Drainage
File Suyl.SICX				y PG			J
XP Solutions		Sour	cce Cor	ntrol 20)14.1.1		
Summa	ary of Res	ults fo	or 30	<u>year Re</u>	turn Pe	<u>eriod</u>	
s	torm	Max	Max	Max	Max	Status	
E	vent	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
15 m	in Wintor	29 500	0 500	215 6	275 1	0 K	
10 II 30 II	in Winter	29.500	0.500	213.0	273.1	O K	
50 m	in Winter	29.049	0.049	227.1	419 5	O K	
120 п	in Winter	29.685	0.705	229.4	377 0	O K	
120 II 120 m	nin Winter	29 565	0 565	220.1	310 8	0 K	
240 m	nin Winter	29 487	0 487	209.2	267 9	0 K	
240 1	nin Winter	29 409	0 209	166 1	201.9	0 K	
420 7	nin Winter	29 360	0 360	137 0	198 1	0 K	
400 m	in Winter	29.300	0.300	117 3	179 9	O K	
720 m	in Winter	29.321	0.327	102 7	166 2	O K	
960 m	in Winter	29.302	0.302	82.8	1/6 8	O K	
1440 m	in Winter	29.201	0.207	60 9	122 /	OK	
2160 m	in Winter	29.224	0.224	11 5	101 0	O K	
2880 m	in Winter	29.109 29.168	0.169	44.J 35.6	104.0 02 1	O K	
4320 m	in Winter	29.100	0.142	25 0	92.1 77 0	OK	
4320 II 5760 m	in Winter	29.142	0.142	20.6	69 1	O K	
7200 m	in Winter	29.120 29.115	0.120	20.0	63 0	O K	
8640 m	in Winter	29.115	0.115	1/.5	58 3	O K	
10090 m	in Winter	29.100	0.100	12 2	54 7	OK	
10080 1	UTIL WINCEL	29.100	0.100	13.2	54.7	0 K	
St	corm	Rain	Floode	ed Disch	arge Ti	me-Peak	
Ex	vent	(mm/hr)	Volum	e Volu	ume	(mins)	
			(m ³)	(m ³	·)	,	
			. ,	•			
15 m	in Winter	76.035	0.	.0 6	09.0	45	
30 m	in Winter	49.499	0.	.0 7	93.6	53	
60 m	in Winter	30.811	0.	.0 9	90.0	68	
120 m	in Winter	18.615	0.	.0 11	96.5	100	
180 m	in Winter	13.715	0.	.0 13	22.5	128	
240 m	in Winter	10.995	0.	.0 14	13.6	154	
360 m	in Winter	8.034	0.	.0 15	49.5	214	
480 m	in Winter	6.428	0.	.0 16	53.0	274	
600 m	in Winter	5.404	0.	.0 17	36.9	334	
720 m	in Winter	4.687	0.	.0 18	08.0	394	
960 m	in Winter	3.743	0.	.0 19	25.0	516	
1440 m	in Winter	2.723	0.	.0 21	00.3	758	
2160 m	in Winter	1.979	0.	.0 22	90.9	1116	
2880 m	in Winter	1.577	0.	.0 24	33.5	1472	
4320 m	in Winter	1.143	0.	.0 26	46.6	2200	
5760 m	in Winter	0.910	0.	.0 28	09.8	2936	
7200 m	in Winter	0.762	0.	.0 29	40.6	3624	
8640 m	in Winter	0.659	0.	.0 30	51.1	4320	
10080 m	in Winter	0.583	0.	.0 31	46.6	5048	
	©198	82-2014	XP Sc	lutions	3		

Hydrock	Consul	tants	Ltd							Pag	ge 3	
•					Speke	Boule	evard					
•					Liver	pool				4	4	
•										M	irro	
Date 07/	04/201	6			Desig	ned by	7 EJD			ň	rainado	
File 30y	r.srcx				Check	ed by	PG				anaye	
XP Solut	ions				Sourc	e Cont	crol 20	14.1.1				
	Rainfall Details											
R	F eturn F	ainfal. Period	l Model (years)	L		FSR 30		Winte Cv	er Stor (Summe	rms Ye er) 0.75	es 0	
Region England and Wales Cv (Winter) 0											0	
		M5-	60 (mm) Patio I		-	20.000	Shortes	st Stor	rm (min rm (min	(s) 1008	.5	
	Ratio R 0.400 Longest Storm (mins) 1 Summer Storms Yes Climate Change %											
				<u>Tim</u>	<u>ne Area</u>	a Diag	ram					
				Tota	l Area	(ha) 3	3.830					
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	
0	4	0.383	12	16	0.383	2.4	28	0.383	36	4 0	0.383	
4	8	0.383	16	20	0.383	28	32	0.383				
8	12	0.383	20	24	0.383	32	36	0.383				
				©1982-	2014 2	XP Sol	utions					
L												

Hydrock Consultants I	」td				Page 4			
•		Speke Liver	Boulevard pool		Yum			
Date 07/04/2016		Design	ned by EJD		Micro			
File 30yr.srcx	File 30yr.srcx Checked by PG							
XP Solutions		Source	e Control	2014.1.1				
		Model I	Details					
S	torage is Or	line Co	ver Level	(m) 31.000				
	<u>Tank</u>	or Pon	d Structur	<u>e</u>				
	Inve	rt Level	(m) 29.00	0				
E	epth (m) Ar	ea (m²)	Depth (m)	Area (m ²)				
	0.000	550.0	2.000	550.0				
<u>H</u>	lydro-Brake	Optimu	m® Outflow	Control				
Unit Desig Design Dia Invert Minimum Outlet Pipe Dia Suggested Manhole Dia Desi Mear The hydrological cal- for the Hydro-Brake of	E Reference gn Head (m) Flow (1/s) Flush-Flo™ Objective ameter (mm) E Level (m) ameter (mm) Control Pc gn Point (Control Pc) ameter (mm) Control Pc gn Point (Control Pc) Control Pc Control Pc Control Pc	Site Spa Sints alculate Flush-Fl Kick-Fl Head Rar ve been specific	Err ecific Desi Head (m ed) 1.80 o™ 0.81 .o® 1.41 nge based on t ed. Should	MD-SH Mini or (Contact gn (Contact) Flow (1/s 0 229. 5 229. 2 204. - 184. he Head/Dis	HE-0548-2300-1800-230 1.80 230. Calculate mise upstream storage 54 29.00 Hydro International Hydro International 9 7 2 0 scharge relationship ype of control			
device other than a l calculations will be	Hydro-Brake invalidated	Optimum	® be utilis	ed then the	ese storage routing			
Depth (m) Flo	ow (l/s) Dep	oth (m)	Flow (l/s)	Depth (m)	Flow (l/s)			
0.100	13.3	1.600	217.1	5.000	379.4			
0.200	49.3	1.800	229.9	5.500	397.6			
0.300	101.4	2.000	242.1	6.000	415.0			
0.500	215.4	2.200	264.7	7.000	447.7			
0.600	225.1	2.600	275.2	7.500	463.1			
0.800	229.7	3.000	295.2	8.000	478.1			
1.000	227.3	3.500	318.4	8.500	492.6			
1.400	205.7	4.500	360.2	9.500	520.3			
	©1982	-2014 X	XP Solution	ns				

Hydrock Consultants Ltd									
•	Speke Bou	levard							
	Liverpool		4						
	-		- Cu						
Date 07/04/2016	Designed	by EID	MICLO						
$F_{10} = 100 \text{ VP} + CC \text{ SPCY}$	Chockod h		Drainage						
VD Gelutione		y FG	_						
XP Solutions	Source co	ntrol 2014.1.1							
	c 100		1 (. 2 0 0)						
Summary of Results i	<u>tor 100 yea</u>	<u>r Return Perio</u>	<u>d (+30%)</u>						
Storm	Max Max	Max Max	Status						
Event L	evel Depth	Control Volume							
	(m) (m)	(1/S) (m ³)							
15 min Summer 29	9.860 0.860	229.7 473.2	ОК						
30 min Summer 30	0.245 1.245	229.7 684.9	ОК						
60 min Summer 30	0.545 1.545	229.7 850.0	O K						
120 min Summer 30	0.542 1.542	229.7 848.2	ОК						
180 min Summer 30	0.392 1.392	229.7 765.8	0 K						
240 min Summer 30	0.215 1.215	229.7 668.0	O K						
360 min Summer 29	9.920 0.920	229.7 505.7	O K						
480 min Summer 29	9.707 0.707	228.6 388.9	O K						
600 min Summer 29	9.568 0.568	223.4 312.2	O K						
720 min Summer 29	9.495 0.495	213.1 272.4	O K						
960 min Summer 2	9.429 0.429	1/8.1 235./	OK						
2160 min Summer 2	9.355 0.355	133.7 195.2 99.0 162.6	OK						
2880 min Summer 2	9 260 0 260	79 3 143 2	0 K						
4320 min Summer 29	9 218 0 218	57 6 119 7	O K						
5760 min Summer 29	9.192 0.192	45.6 105.4	O K						
7200 min Summer 29	9.174 0.174	38.2 95.7	ОК						
8640 min Summer 29	9.161 0.161	32.8 88.3	ОК						
10080 min Summer 2	9.150 0.150	28.9 82.5	ОК						
Storm 1	Rain Flood	ed Discharge Tim	ne-Peak						
Event (m	mm/hr) Volum	ne Volume (:	mins)						
	(m³)	(m³)							
15 2 3 10		0 010 0	47						
15 min Summer 12	28.285 0	.0 918.6	4 /						
30 min Summer 8	04.220 U	.U 12U/.U	00 72						
120 min Summer 3	NI 800 0	0 1825 6	106						
180 min Summer 2	23.353 O	.0 2011 1	140						
240 min Summer 1	.8.644 O	.0 2140.9	168						
360 min Summer 1	3.543 0	.0 2332.8	228						
480 min Summer 1	0.792 0	.0 2478.6	284						
600 min Summer	9.043 0	.0 2596.0	340						
720 min Summer	7.823 0	.0 2694.9	394						
960 min Summer	6.219 0	.0 2856.2	514						
1440 min Summer	4.493 0	.0 3095.2	754						
2160 min Summer	3.241 0	.0 3350.7	1112						
2880 min Summer	2.568 0	.0 3539.7	14/6						
4320 min Summer	1.84/ 0	.0 3818.2	2204						
7200 min Summer	1.40⊥ U	.u 4UZ7.8 0 A19A 2	2900 3664						
8640 min Summer	1.048 0	.0 4333.4	4400						
10080 min Summer	0.923 0	.0 4452.9	5136						
©1982	2-2014 XP S	olutions							
1	0	-							

Hydrock Consultants Ltd										
•	Speke B	oulevar	d							
	Liverpo	4								
	-				~~~					
Date 07/04/2016	Designe	d by E.T			MICLO					
$F_{10} = 100 \text{VP} + CC \text{CPCV}$	Chookod	hu DC			Drainage					
FILE IOUIR + CC.SRCA		by PG	0014 1	1						
XP Solutions	Source	Control	2014.1	• 1						
<u>Summary of Results for 100 year Return Period (+30%)</u>										
Storm Ma	x Max	Max	Max	Status						
Event Lev	rel Depth	Control	Volume							
(m	ı) (m)	(1/s)	(m³)							
15 min Winter 30 (021 1 021	229 7	561 7	ОК						
30 min Winter 30 4	481 1 481	229.7	814 6	0 K 0 K						
60 min Winter 30.	790 1.790	229.7	984.5	Flood Risk						
120 min Winter 30.	750 1.750	229.7	962.5	Flood Risk						
180 min Winter 30.5	531 1.531	229.7	842.0	ΟK						
240 min Winter 30.2	242 1.242	229.7	683.2	0 K						
360 min Winter 29.	785 0.785	229.6	431.9	O K						
480 min Winter 29.5	537 0.537	221.5	295.6	O K						
600 min Winter 29.4	461 0.461	195.7	253.5	O K						
720 min Winter 29.4	418 0.418	171.6	229.8	O K						
960 min Winter 29.3	362 0.362	137.9	199.0	O K						
1440 min Winter 29.2	299 0.299	100.7	164.2	0 K						
2160 min Winter 29.2	248 0.248	72.9	136.5	O K						
2880 min Winter 29.2	218 0.218	57.8	120.1	O K						
4320 min Winter 29.3	183 0.183	41.7	100.4	ОК						
5760 min Winter 29.1	161 0.161	33.0	88.6	OK						
/200 min Winter 29.	146 0.146	27.5	80.5	OK						
10090 min Winter 29.	135 0.135 127 0 127	23.7	14.3	O K						
10080 MIN WINCER 29.	12/ 0.12/	20.9	09.0	Οĸ						
Storm	Rain Flo	oded Dis	charge	Time-Peak						
Event (m	m/hr) Vo	lume Vo	olume	(mins)						
	(1	m ³)	(m ³)	(
	(-	,	()							
15 min Winter 12	8.285	0.0	1029.2	47						
30 min Winter 8	4.226	0.0	1352.2	57						
60 min Winter 5	2.662	0.0	1693.0	74						
120 min Winter 3	1.800	0.0	2044.8	112						
180 min Winter 2	3.353	0.0	2252.6	146						
240 min Winter 1	8.644	0.0	2398.0	178						
360 min Winter 1	3.543	0.0	2612.9	234						
480 min Winter 1	0.192	0.0	21/6.2	282						
720 min Winter	2.043 7 822	0.0	290/./ 3019 /	330 201						
960 min Winter	6 219	0.0	3199 2	594 514						
1440 min Winter	4.493	0.0	3467 0	754						
2160 min Winter	3.241	0.0	3752.9	1116						
2880 min Winter	2.568	0.0	3964.6	1480						
4320 min Winter	1.847	0.0	4276.7	2204						
5760 min Winter	1.461	0.0	4511.2	2896						
7200 min Winter	1.217	0.0	4697.6	3672						
8640 min Winter	1.048	0.0	4853.6	4400						
10080 min Winter	0.923	0.0	4987.7	5088						
©1982	-2014 XP	Solutio	ons							

Hydrock Cc	onsult	lants	Ltd							Pag	ge 3
•					Speke Boulevard						
					Liverpool					4	
											- un
Date 07/04	1/2016	5			Designed by EJD						itru
File 100VR	2 + CC	- SBCX			Check	ed by	PG			D	rainage
VD Solutio		. 51(0/			Check	Carby	rol 207	1 / 1 1			
XP SOLULIC	JIIS				Sourc		.01 20.	14.1.1			
<u>Rainfall Details</u>											
Dot	Ri Dan D	ainiai. oriod	L Model	-		100		Winte	er Stor	ms ie r 0.75	s
Net	ulli r	erioù	(years) Region	Engla	nd and	Wales		Cv	(Winte	(1) 0.73	.0
		M5-	60 (mm)	i Diigiai		20.000	Shortes	st Stor	cm (min	s) 1	.5
]	Ratio F	ξ		0.400	Longes	st Stor	rm (min	.s) 1008	0
	:	Summer	Storms	3		Yes	Cl	imate	Change	% +3	0
				<u>Tim</u>	e Area	a Diag	ram				
				Tota	l Area	(ha) 3	3.830				
mine (mi = = `	N -	m:	(m===)	7	m	(m÷==)	7	m	(m÷==)	A me =
TIME (I From:	mins)	Area	TIME	(mins)	Area	From	(mins)	Area	From	(mins)	Area (ba)
FIOM:	10:	(114)	FTOIII:	10:	(118)	FTOM:	10:	(na)	ETOIII:	10:	(IIa)
0	4	0.383	12	16	0.383	24	28	0.383	36	40	0.383
4	8	0.383	16	20	0.383	28	32	0.383			
8	12	0.383	20	24	0.383	32	36	0.383			
						I					
				©1982-	2014 >	KP Sol	utions				
				–							

Hydrock Consultants Ltd			Page 4
•	Speke Boulevard Liverpool		m.
• Date 07/04/2016	Designed by EJD)	Micro
File $100YR + CC.SRCX$	Checked by PG		Drainage
XP Solutions	Source Control	2014.1.1	
Model Details			
Storage is Online Cover Level (m) 31.000			
Tank or Pond Structure			
Invert Level (m) 29.000			
Depth (m) Area (m²) Depth (m) Area (m²)			
0.000	550.0 2.000	550.0	
<u>Hydro-Brake Optimum® Outflow Control</u>			
Unit Reference Design Head (m) Design Flow (l/s) Flush-Flo™ Objective Diameter (mm) Invert Level (m) Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) S	Err Site Specific Desi ints Head (m	MD-SHE-0548- Minimise up for (Contact Hydro .gn (Contact Hydro .) Flow (1/s)	2300-1800-230 1.80 230. Calculate stream storage 54 29.00 International International
Design Point (Ca E	llculated) 1.80 llush-Flo™ 0.81 Kick-Flo® 1.41	0 229.9 5 229.7 2 204.2	
Mean Flow over H	lead Range	- 184.0	
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated			
Depth (m) Flow (1/s) Dep	th (m) Flow (l/s)	Depth (m) Flow (1,	/s)
0.100 13.3	1.600 217.1	5.000 37	9.4
0.200 49.3	1.800 229.9	5.500 39	7.6
0.300 101.4	2.000 242.1	6.000 41	5.0
0.400 160.8	2.200 253.6	6.500 433	1.6
0.500 215.4	2.400 264.7	7.000 44	7.7
0.600 225.1	2.600 275.2	7.500 463	3.1
0.800 229.7	3.000 295.2	8.000 478	8.1
1.000 227.3	3.500 318.4	8.500 492	2.6
1.200 220.1 1.400 205.7	4.000 340.0 4.500 360.2	9.000 500 9.500 520	6.6 0.3
©1982-2014 XP Solutions			

Appendix F – Site Photographs

Photograph Location Plan

Photograph 1 – View across the car park in the northeast of the site

Photograph 2 – View along Speke Boulevard on the southern site boundary

Photograph 3 – View inside the existing building in the south of the site

Photograph 4 – View inside the northern building on site.

www.hydrock.com

