

GEOLOGICAL
GEOTECHNICAL
GEOENVIRONMENTAL
DATA AQUISITION
CONSULTANCY



# **Phase 2 Intrusive Site Investigation Report**

| LOCATION    | Proposed Residential Development, |
|-------------|-----------------------------------|
|             | Tetlow Street, Liverpool, L4 4LF  |
|             |                                   |
| ISSUE DATE  | 31 <sup>st</sup> March 2015       |
|             |                                   |
| FOR         | BYA Architects (Liverpool)        |
|             |                                   |
| CLIENT REF. | 1712                              |
|             |                                   |
| OUR REF.    | G15029b                           |

Prepared by

Checked by

Jack Harper BSc(Hons) MSc Engineering Geologist Ross Nicolson BSc(Hons) MSc(Eng) CEng MIMM Principal Geotechnical Engineer

### **Table of Contents**

| Section    | Content                                              | Page |
|------------|------------------------------------------------------|------|
| 1          | Introduction                                         | 3    |
| 2          | Scope of Phase 2 Investigation                       | 3    |
| 2.1        | Scope of works                                       | 3    |
| 2.2        | Sampling Rationale                                   | 4    |
| 3          | Phase 2 Investigation Findings                       | 4    |
| 3.1        | Encountered ground conditions                        | 4    |
| 3.1.1      | Windowless Sampling Boreholes                        | 4    |
| 3.1.1.1    | BH1 & BH2                                            | 4    |
| 3.1.1.2    | BH3 & BH4                                            | 4    |
| 3.1.1.3    | BH5, BH6 and BH7                                     | 5    |
| 3.1.2      | Review of ground conditions encountered              | 5    |
| 3.2        | Soil Plasticity and Vegetation Influence             | 5    |
| 4          | Contamination Testing                                | 6    |
| 5          | Risk Assessment                                      | 6    |
| 5.1        | Method                                               | 6    |
| 5.2        | Contamination Risk to Identified Receptors           | 7    |
| 5.2.1      | Contamination Risk to Human Health                   | 6    |
| 5.2.2      | Contamination Risk to Controlled Waters              | 8    |
| 5.3        | Review of Results                                    | 9    |
| 6          | Hazardous Gas                                        | 12   |
| 6.1        | Gas Regime                                           | 12   |
| 6.2        | Radon Gas                                            | 12   |
| 7          | Conclusions                                          | 12   |
| 7.1        | Contamination                                        | 12   |
| 7.2        | Hazardous Gas                                        | 13   |
| 7.3        | Foundations and Floors                               | 13   |
| 7.4        | Concrete Design                                      | 14   |
| 7.5        | Recommendations                                      | 14   |
| Appendix 1 | Site Plan and Borehole Logs                          |      |
| Appendix 2 | <b>Moisture Content Profiles and Atterberg Limit</b> |      |
| 2, 36      | Test Results (Table 4)                               |      |
| Appendix 3 | Chemtech Analytical Test Report and                  |      |
|            | Infiltration Test Results                            |      |
| Appendix 4 | CLEA v1.06 Risk Assessment: Results, Settings        |      |
|            | and Notes                                            |      |



IIVI

Units 4 and 5 Terry Dicken Industrial Estate
Ellerbeck Way
Stokesley
North Yorkshire
TS9 7AE
Tel. 01642 713779
Fax 01642713923
Email enquiries@geoinvestigate.co.uk



### 1. Introduction

Following submission of a Phase 1 Desk Study (ref Report No G15029a issued 8<sup>th</sup> March 2015) and in accordance with your instruction, Geoinvestigate Ltd subsequently carried out a Phase 2 investigation on a currently vacant plot of land adjacent to Tetlow Street, Liverpool

The purpose of the Phase 2 investigation was to establish the true nature of the ground conditions at the site for foundation design and to assess the risks highlighted in the Phase 1 conceptual ground hazard model (CGHM) with regard to geotechnical hazards and the potential for hazardous gas and contamination to occur at the site.

### 2. Scope of Phase 2 Investigation

### 2.1 Scope of Works

The previous Phase 1 report concluded that the following investigation would be appropriate for to assess the potential risks highlighted in that study:

- The sinking of seven (7) boreholes (BH1 to BH7) to depths of between 0.85m and 1.80m within the proposed building footprints and external areas of the development, with associated soil sampling and supervision of the works by a suitably qualified geoenvironmental engineer. The boreholes were sunk by windowless sampling drilling techniques using a Dando Terrier drill rig.
- The installation of three (3) gas monitoring wells in boreholes BH1, BH3 and BH7.
- Geotechnical Testing comprising One (1) Atterberg Limits and eighteen (18) moisture determinations to provide information with regard to soil plasticity on the site.
- Six (6) gas monitoring visits over a period of three (3) months, including readings below 1000mb and where possible following a sharp drop in atmospheric pressure.
- Contamination analyses of ten (10) samples of soil recovered at shallow depth (≤0.50m) and deeper underlying soils to confirm that metals, Asbestos, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) are absent or within acceptable limits. (Chemical analyses based on findings of the Phase 1 Desk Study Report). Leachate from three (3) samples was analysed also.
- Provision of a factual and interpretative report including; site plan, borehole logs, contamination results and gas measurements together with advice on suitable foundation types and, if required, remediation and validation The borehole positions are shown on the plan provided in Appendix 1.

The excavations were sampled and logged at site by a geo-environmental engineer and the ground conditions encountered are described on the borehole logs also provided in Appendix 1.

Moisture and Atterberg Limit test results are provided in Appendix 2.



The results of the contamination testing and CLEA v1.06 software are included in Appendices 3 and 4 respectively.

### 2.2 Sampling Rationale

Boreholes BH1 to BH7 were positioned principally to establish the ground conditions beneath the proposed buildings and their gardens. Their purpose was to recover soil samples for geotechnical and contamination testing.

### 3. Phase 2 Findings

### 3.1 Encountered Ground Conditions

It was anticipated from the Phase 1 Desk Study findings that made ground of shallow depth would be encountered possibly arising from previous developments on the site. It was anticipated that the fill would be underlain by sandstone bedrock of the Chester Pebble Beds Formation at shallow depth. No superficial geology was recorded for the site.

### 3.1.1 Windowless Sampling Boreholes

Generally the boreholes encountered similar ground conditions, comprising generally loose sandy gravel and gravelly sand made ground underlain, in places, by very dense or dense natural sandy gravel and/or hard sandstone bedrock in which refusal was met at relatively shallow depth.

### 3.1.1.1 BH1 & BH2

Boreholes BH1 and BH2 encountered made ground comprising blackish brown sandy gravel fill to 0.30 and 0.20m respectively, underlain at BH1 by reddish brown gravelly sand fill and at BH2 by grey concrete sandy gravel fill to depths of 0.45m and 0.40m respectively. BH2 then encountered very dense orangish and reddish brown natural sandy gravel to 0.60m. Hard orangish red sandstone was encountered from 0.45m to 0.85m in BH1, and from 0.60m to 1.00m in BH2, at which depths both boreholes met refusal.

In Situ SPT testing (carried out with a solid cone) within the sandstone returned refusal values of N=64 over 150mm in BH1 from 0.85m, and N=76 over 150mm from 1.00m in BH2.

Both boreholes were observed to remain open and dry on completion and no roots were encountered in the excavations.

### 3.1.1.2 BH3 & BH4

Boreholes BH3 and BH4 encountered similar blackish brown sandy gravel made ground to 0.40 and 0.65m respectively, overlain at BH3 by turf and BH4 by 0.35m of topsoil. Below this at BH4 grey sandy concrete gravel was encountered again to 0.75m underlain by very dense orangish and reddish brown natural sandy gravel, inferred to possibly comprise completely weathered sandstone rock to refusal at 1.45m.

BH3 encountered a the greatest depth of made ground found anywhere on the site with the initial horizon underlain by very loose orangish red sandy gravel fill from 0.40m to 1.65m followed again by



grey sandy concrete gravel (inferred to possibly comprise a former basement floor) to 1.75m where hard orangish red sandstone was encountered from 1.75m to refusal at 1.80m.

In Situ SPT testing (carried out with a solid cone) within the made ground in BH3 returned an N value of N=2 from a depth of 1.00m with a refusal value returned of N=50 over 150mm from 1.80m. An N value of N=65 was returned in the natural sandy gravel in BH4 from 1.00m.

Both boreholes were observed to remain open and dry on completion and no roots were encountered in the excavations.

### 3.1.1.3 BH5, BH6 and BH7

BH6, BH6 and BH7 encountered turf and/or topsoil to depths of between 0.30m and 0.35m underlain by reddish brown gravelly sandy fill similar to that encountered in BH1 to depths of between 0.65m and 0.70m. This was underlain by grey and reddish brown sandy gravel fill at BH6 and BH7 to 0.95m and 0.90m respectively. Very dense and dense natural sandy gravel was again encountered below the made ground horizons in BH5 and BH7 only with all three boreholes then meeting refusal in hard orangish red sandstone at 1.05m in BH6, 1.25m in BH7, and slightly deeper in BH5 at 1.70m (where the natural sandy gravel extended to 1.40m).

In Situ SPT testing (carried out with a solid cone) within the natural sandy gravel in BH5 returned an N value of N=72 from a depth of 1.00m with a refusal values returned of; N=50 over 150mm from 1.70m in BH5, N=76 over 125mm from 1.00m in BH6, and N = 73 over 150mm from 1.00m BH7.

All three boreholes were observed to remain open and dry on completion and no roots were encountered in the excavations.

### 3.1.2 Review of ground conditions encountered

The boreholes encountered generally loose sandy gravel or gravely sand fill, occasionally overlain by thin turf and/or topsoil horizons, to depths of up to 0.95m with deeper made ground encountered at BH3 in a possible former cellar feature. Below the made ground dense and very dense natural sandy gravel and/or hard sandstone bedrock was encountered in which refusal was met.

Generally the depth to bedrock was seen to increase from 0.45m in BH1 in the southwest of the site to perhaps 1.45m in BH4 (where refusal was met) in the northeast, with the exception of BH3 where a possible former cellar was encountered and bedrock found at 1.75m.

### 3.2. Soil Plasticity and Vegetation Influence.

Soils encountered at the site were generally non-cohesive and classify as non-plastic material according to BS5930. A single (1) Atterberg limits test on a sample recovered from the natural soils in BH5 (at 1.00m) confirmed this.

Therefore it is not considered necessary to incorporate special precautions into foundation depths/design with regard to seasonal shrinkage and swelling attributable to vegetation either currently present at the site or proposed for the new development.

### 4. Contamination Testing

The Phase 1 desk study had identified that possible made ground within the site associated with the site's previous development may provide the most credible source of contamination.

It was considered that if former land uses within the site had caused contamination the contaminants would most probably occur in the near surface or shallow made ground or topsoil horizons.

Therefore ten (10) samples of soil recovered at shallow depth (≤0.50m) and deeper underlying soils (up to 1.70m) recovered from across the site were tested for a range of substances. These included common contaminants such as Arsenic, Lead and Cadmium which are normally included in a general human health contamination suite together with analysis for Speciated PAHs, PCBs (two samples from BH7 located close to the electricity substation in the neighbouring plot) and Asbestos.

The results of the contamination testing are included in Appendix 3 of this report and have been used in the contamination risk assessment, set out in the following sections.

#### 5. Risk Assessment

#### 5.1 Method

Geoinvestigate Ltd. uses a combination of assessment criterion provided by the environment agency and by the Chartered Institute of Environmental Health; Environment Agency published Soil Guideline Values (SGVs) and Environmental Quality Standards (EQSs), Site Specific Assessment Criteria (SSAC) generated using CLEA software version 1.06 site specific risk assessment modelling, and Land Quality Management / Chartered Institute of Environmental Health (LQM/CIEH) Generic Assessment Criteria (GAC) in order to assess the presence of potentially harmful chemicals within soils and water.

As the site is to be developed as housing it falls within the residential end-use category. It is possible that persons living on the site may cultivate vegetables / fruit for consumption.

In addition to the published SGVs and LQM/CIEH values, site specific assessment criteria (SSAC) have been created using the CLEA model which is presented in Appendix 4. The model was created using CLEA version 1.06 software and has been tailored to the site's intended use as private housing with an allowance for plant up take.

The results of the contamination testing that has been carried out have been compared to the soil quality values from the above sources. Where they fall below these limit values they have been deemed safe for a residential end use.

Where results are above the intervention values, an assessment of the available pathways and receptors has been carried out to determine whether further investigation or remediation is necessary.

An appraisal of the chemical results and relevant limits is set out in the Contamination Risk Assessment that follows.



### 5.2 Contamination Risk to Identified Receptors

#### 5.2.1 Contamination Risk to Human Health

Topsoil and/or made ground, comprising ostensibly sandy gravel and gravelly sand with sandstone, brick concrete and coal gravel constituents, extended generally to a depth of up to 0.95m (BH6) extending to a maximum depth of 1.75m in BH3. Topsoil and made ground in boreholes BH4, BH6 and BH7 were found to contain occasional ash constituents (in topsoil only at BH6 and BH7), and made ground below 0.65m and 0.70m in BH6 and BH7 respectively was found to contain occasional wood fragments.

No hydrocarbon staining, odours, obvious chemical substances or signs of physical contamination such as glass or metal shards were noted in any of the material uncovered in the boreholes. Neither was there any visible evidence of Asbestos contamination such as roofing board. In light of this it was not anticipated that chemical or physical contamination would pose a significant and immediate hazard for the new development and its users though it was considered necessary to confirm this through analysis given the widespread made ground encountered at the site.

As discussed earlier in the report, levels of determinants have been compared to the SGVs for residential end-use, as published by the Environment Agency in their individual SGV and toxicology reports and accompanying documents, LQM/CIEH GAC values and site specific criteria generated from the CLEA software version 1.06.

The results of the analyses of ten (10) samples of made ground and natural strata recovered from the site from depths up to 1.70m returned concentrations of a range of substances generally falling below respective assessment criteria adopted from the sources named above.

The results of the analyses are shown in Table 1 (below) along with the published SGV values, LQM/CIEH (GAC) values and site specific assessment criteria (SSAC).

The LQM guideline values for PAHs and Hydrocarbons were chosen using the Soil Organic Matter (SOM) option of 2.5%. This is a conservative value, given that analysis of a sample of the underlying soils returned a Total Organic Carbon (TOC) content of 2.03% which is by definition invariably lower than the SOM content (which was estimated from the TOC to be 3.50% in the analysis results). The SSAC generated for the site were calculated using the estimated value of 3.50%.

Table 1: Chemical Determinands

|                               | Range of Returned concentrations (mg/kg) | Residential<br>SGV<br>(mg/kg) | Generic Assessment Criterion – LQM/CIEH (mg/kg) | Site Specific Assessment<br>Criterion (mg/kg)    |
|-------------------------------|------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------|
| Boron                         | <0.5-0.6                                 |                               | 291                                             | 375                                              |
| Chromium VI                   | <1                                       |                               | 4.3                                             |                                                  |
| Chromium III                  | 65-109                                   |                               | 627                                             | 633                                              |
| Arsenic                       | 3.8-9.5                                  | 32                            |                                                 | 32.4                                             |
| Cadmium                       | <0.2-0.5                                 | 10                            | 3                                               | 5.18                                             |
| Copper                        | 3.5-13                                   |                               | 2330                                            | 2330                                             |
| Mercury (elemental)           | <0.5                                     | 1                             |                                                 | 0.66                                             |
| Table 1 is continued on the f | ollowing page                            |                               |                                                 | <del>)                                    </del> |



Table 1 (ctd.): Chemical Determinands

|                            | Range of Returned | Residential | Generic Assessment   | Site Specific Assessment                              |
|----------------------------|-------------------|-------------|----------------------|-------------------------------------------------------|
|                            | concentrations    | SGV         | Criterion – LQM/CIEH | Criterion (mg/kg)                                     |
|                            | (mg/kg)           | (mg/kg)     | (mg/kg)              |                                                       |
| Lead                       | 3.1-96            | 450*        |                      | COOTES 1850 19 10 10 10 10 10 10 10 10 10 10 10 10 10 |
| Nickel                     | 9.7-18            | 130         |                      | 129                                                   |
| Selenium                   | <0.3-0.6          | 350         |                      | 350                                                   |
| Zinc                       | 14-134            |             | 3750                 | 3750                                                  |
| Total PAH                  | <0.16-71.5        |             |                      |                                                       |
| PAH Naphthalene            | <0.01-0.29        |             | 3.7                  | 5.71                                                  |
| PAH Acenapthylene          | <0.01-0.09        | -2.48       | 400                  | 540                                                   |
| PAH Acenapthene            | <0.01-0.56        |             | 480                  | 648                                                   |
| PAH Fluorene               | <0.01-0.55        |             | 380                  | 506                                                   |
| PAH Phenanthrene           | <0.01-8.10        |             | 200                  | 261                                                   |
| PAH Anthracene             | <0.01-1.89        |             | 4900                 | 6400                                                  |
| PAH Fluoranthene           | <0.01-13.21       |             | 460                  | 548                                                   |
| PAH Pyrene                 | <0.01-12.09       |             | 1000                 | 1240                                                  |
| PAH Benzo[a]anthracene     | <0.01-5.99        |             | 4.7                  | 5.52                                                  |
| PAH Chrysene               | <0.01-6.14        |             | 8.0                  | 8.75                                                  |
| PAH Benzo(b)fluoranthene   | <0.01-6.88        |             | 6.5                  | 6.82                                                  |
| PAH Benzo(k)fluoranthene   | <0.01-2.51        |             | 9.6                  | 9.85                                                  |
| PAH Benzo(a)pyrene         | <0.01-5.21        |             | 0.94                 | 0.976                                                 |
| PAH Dibenzo(a,h)anthracene | <0.01-0.97        |             | 0.86                 | 0.889                                                 |
| PAH Indeno(123-cd)pyrene   | <0.01-3.61        |             | 3.9                  | 4.05                                                  |
| PAH Benzo(ghi)perylene     | <0.01-3.64        |             | 46                   | 46.6                                                  |
| PCB Congener 28            | <0.005            |             |                      |                                                       |
| PCB Congener 118           | <0.005            |             |                      | 0.0000776                                             |
| PCB Congener 180           | <0.005            |             |                      |                                                       |
| PCB Congener 189           |                   |             |                      | 0.0000777                                             |
| Phenol                     | <0.5              | 420         | 390                  | 364                                                   |

<sup>\*</sup>Old SGV

Analysis of soils from the site returned values within SGVs, GAC and SSAC limits for all determinands with the exception of those results presented in bold type in the above table, all of which were returned for the sample recovered from BH7 at a depth of 0.20m (with a single very minor exceedance noted for BH1 at 0.20m).

No Asbestos fibres were detected in any of the three samples analysed and levels of PCBs were below detectable limits in both of the analysed samples.

Slightly elevated sulphur of 2282mgkg<sup>-1</sup> in BH7 at 1.00m with a water soluble sulphate concentration of 1797mgl<sup>-1</sup> returned for the same sample.

### 5.2.2 Contamination Risk to Controlled Waters

Concentrations of potential contaminants returned in ten (10) soil samples generally fell below the chosen assessment criteria. Therefore there is considered to be low risk to underlying groundwater from leaching.

Notwithstanding, leachate was analysed from three (3) samples obtained from 1.00m in BH3, 0.20m in



BH5, and 0.20m in BH7. This screening returned generally negligible concentrations and concentrations below detectable limits and/or safe levels for domestic water supply or the protection of aquatic life levels as published by the Environment Agency which were used as the assessment criteria. The results of the testing and the assessment criteria are shown Table 2 below.

Table 2: Chemical Determinands in Leachate

|                        | Returned        | UK Standard for Surface Waters intended for Drinking  |
|------------------------|-----------------|-------------------------------------------------------|
|                        | Concentrations  | Water Abstraction* (DW) and/or protection of Aquatic  |
|                        | (μg/I)          | Life in surface waters* (Aq) (μg/l)                   |
| Inorganic Chemicals    |                 |                                                       |
| Arsenic                | 2.03-5.05       | 50 (DW, range: 50-100) (No Aq standard)               |
| Boron                  | 9-12            | <b>1000</b> (DW & Aq)                                 |
| Cadmium                | <0.07           | 5 (DW & Aq)                                           |
| Chromium               | 1.5-3.7         | <b>50</b> (DW ) / <b>5</b> (Aq, range: 5-250)         |
| Copper                 | 3.0- <b>5.9</b> | 50 (DW) / 5 (Aq, range: 5-112)                        |
| Lead                   | 2.9-13          | 50 (DW) / 4 (Aq, range: 4-250                         |
| Mercury (elemental Hg) | <0.008-0.032    | 1 (DW & Aq)                                           |
| Nickel                 | 1.2-2.3         | 20** (DW) / 50 (Aq, range: 50-200)                    |
| Selenium               | 0.11-0.29       | 10 (DW) (No Aq standard)                              |
| Sulphate               | <10             | <b>250</b> (DW & Aq)                                  |
| Zinc                   | 4-13            | 3000 (DW, range: 3000-5000) / 30 (Aq, range: 30-2000) |
| Organic Chemicals      |                 |                                                       |
| Phenols                | <10             | 50**(DW) / 300 (Aq)                                   |
| PAHs (total)           | <1.6***         | 0.2 (DW, range: 0.2-1.0) (No Aq standard)             |

 $<sup>*</sup>sourced from \ Environment \ Agency \ database \ at \ http://evidence.environment-agency.gov.uk/Chemical Standards/home.aspx.$ 

Concentrations of PAH and Phenol are below detectable limits and would not be considered to pose a risk to controlled waters.

In summary the leachate testing returned negligible concentrations of determinands which would generally pass local drinking water and ground water quality standards.

Very minor exceedances (highlighted by bold text) of the lowest assessment criteria options for copper and lead have been noted, these options relate to freshwater with very low calcium carbonate content (<50mgl<sup>-1</sup>) which is unlikely in water of pH8.6-pH8.9 as measured for these leachates (low CaCO<sub>3</sub> content would be expected to be more likely in more acidic waters). Though no data has been collected regarding the calcium carbonate content of local waters and underlying groundwater, the minor nature of the exceedances and the slightly alkaline pH of the leachates and soils alike, suggest that these results represent a negligible risk to surface and underground waters. Moreover, all analysed leachates would pass standards for Drinking Water Abstraction.

### 5.3 Review of Results

The data presented in Tables 1 and 2 show that the majority of the soil samples analysed returned concentrations of potential contaminants in soil and leachate falling below the adopted assessment criteria and as such, surface and sub-soils at the site are considered to be generally uncontaminated and fit for purpose in the context of a residential end use.

If more than one option is available (dependant on other water properties or environmental setting) the lowest value has been adopted.

<sup>\*\*</sup>Standard for water supply as no standard available for surface water abstraction for drinking water.

<sup>\*\*\*</sup>Sum of USEPA 16, each at Lower Limit of Detection of <0.1



However, as discussed previously, levels of four (4) species of PAH were noted in a single sample (recovered from BH7 at a depth of 0.20m) which were in excess of the respective chosen assessment criteria. Consequently topsoil in this location, and at BH6 where very similar ash containing topsoil was encountered, is not considered safe and suitable for use in the proposed residential end use of the site. Ash containing soils recovered from BH4 returned acceptable levels of PAHs and as such these soils are considered fit for purpose in the proposed development.

Additionally a very minor exceedance of assessment criteria for Benzo(a)Pyrene was returned for the sample recovered from a depth of 0.20m in BH1 (1.03mgkg<sup>-1</sup>); this result is not considered to be representative of unacceptable risk to receptors at the site due to the very minor nature of the exceedance and the publication of a "more pragmatic (whilst still strongly precautionary)\*" assessment criterion for this chemical by DEFRA in 2014\* of 5mgkg<sup>-1</sup> which is far in excess of the returned value.

- \* SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination:
- · Final Project Report
- · Policy Companion Document
- Appendix E B(a)P

All available from:

http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=18341.

A single sample in which elevated levels of sulphur and sulphate were noted in soil was recovered from a natural sandy gravel deposit in BH7. It is possible that the sulphur/sulphate is perhaps sourced from the made ground stratum above though very similar made ground recovered from BH6 (0.80m) was analysed retuning relatively low levels of sulphur/sulphate. Additionally, natural rock recovered from BH5 returned levels below detectable limits. It is therefore assumed that the results for BH7 are likely anomalous, though it may be prudent to assume a slightly higher sulphate concentration at BH6 and BH7 where the similar made ground was encountered when considering concrete design classification.

In addition to the above, sulphate in all analysed leachates was consistently below detectable limits and as such the single, likely anomalous, occurrence of elevated sulphur/sulphate is unlikely to be representative of an unacceptable risk to controlled waters.

The majority of the SSAC generated using the CLEA v1.06 software are presented in green in the assessment output, indicating there are unlikely to be any unusual circumstances at the site that would present a danger of free phase contamination existing in the soil.

A single elevated pH result for BH6 (0.80m) appears to be anomalous and is unlikely to be representative of unacceptable risk to receptors identified at the site given that is it beyond likely influencing depth of the site surface, not representative of soils generally at the site, and that no groundwater was encountered in the boreholes and no unusual pH levels were returned from the leachate analyses.

The SSAC presented in amber highlight instances where the generated SSAC exceed the estimated soil saturation limit for the associated chemical species. Where this has occurred the analyses have returned soil concentrations either below lower limits of analytical detection, or well below the generated SSAC and generic GAC against which they have been appraised (save for the exceptions discussed above). As such there is considered to be a minimal risk of free phase contamination to exist at the site - a conclusion which is supported by the absence of visual or olfactory evidence of contamination in the soils encountered.



The conceptual model presented on the following page shows pollutant linkages which have been considered at the site between shallow soils and four main receptor groups. These are the site's end users and construction workers, plants and vegetation, neighbouring sites and the underlying aquifer.

Figure 1 – CGHM: Conceptual cross section of site including a Source, Pathway and Receptor Model



MADE GROUND HORIZON

DRIFT - SANDY GRAVEL DEPOSITS IN PLACES, LIKELY HIGH PERMEABILITY.

UNDERLYING GEOLOGY - CHESTER PEBBLE BEDS FORMATION (SANDSTONE) POTENTIALLY HIGH PERMEABILITY

### **IDENTIFIED HAZARDS** Including Potential CONTAMINATION SOURCES

- -Elevated levels of four species of PAH in topsoil in southeast of site (plots 8 to 11 in proposed development plan).
- -Area of deeper made ground, possible in-filled cellar feature (potential instability).

### POLLUTANT LINKAGES: IDENTIFIED RECEPTORS and ASSOCIATED PATHWAY

- A Construction Workers & End Users through Direct Contact / Inhalation / Ingestion. Buildings and hard-standing will encompass some of the site, removing any pathway to end users through direct contact in these areas.
- B Plants and Trees through uptake.
- C End Users through cultivation and consumption of vegetables / fruit. Linkages A to C potentially complete at site until removal of PAH contaminated soils.
- D Neighbouring Sites through lateral migration (in soil and water, including surface water run-off). Migration of PCBs into site from substation disproven.
- E Ground water through leaching of sub-soil.
- F Building and services through direct contact. Linkges D to F unlikely to be of concern given localised and shallow nature of identified PAH contamination. See report text for reccomendations regarding concrete design and single slightly elevated water soluble sulphate result.
- G End users and buildings through ground gas migration. Monitoring exercise on going. No significant risk identified to date.
- H Site surface through potential instability arising from possible cellars in historical housing. Identified at BH3, potentially sporadic throughout site. See report text.



### 6. Hazardous Gas

### 6.1 Gas Regime

The earlier Phase 1 Desk Study Report (Ref. Report G15029a) suggested that made ground on the site associated with its previous use provide the most plausible sources of hazardous gas.

The initial results of gas monitoring at the site are presented in Table 3 below.

A further set of four measurements are required to properly establish the longer term gassing regime at the site.

**Table 3 Summary of Gas Monitoring Data** 

| Borehole | Number of<br>Visits | CH <sub>4</sub> (%) | CO <sub>2</sub> (%) | O <sub>2</sub> (%) | Flow Rate<br>(I/hr) | Atmospheric<br>Pressure (mb) |
|----------|---------------------|---------------------|---------------------|--------------------|---------------------|------------------------------|
| BH1      |                     | 0.0                 | 0.0                 | 20.7               | <0.1                |                              |
| внз      | 2                   | 0.0                 | 0.0                 | 20.7               | <0.1                | 996-1001                     |
| вн7      | 1 1                 | 0.0                 | 0.0-0.1             | 20.6               | <0.1                |                              |

The two gas monitoring visits at pressures of 996mb-1001mb returned near normal levels of O<sub>2</sub> between 20.6% and 20.7%, with zero (0.0%) CH<sub>4</sub>, and levels of CO<sub>2</sub> ranging from 0.0% to 0.1%. Gas flow rates were <0.1 l/hr and below detectable limits.

### 6.2 Radon Gas

The desk study findings confirmed that Radon protection is not necessary for new buildings at the site.

### 7. Conclusions

### 7.1 Contamination

Analysis of the ground conditions at the site and an assessment of the potential pathways have confirmed that the majority of soils at the site are generally uncontaminated and therefore unlikely to pose a significant risk to human health in the context of the proposed residential end-use of this site.

However, ash containing topsoil encountered at BH7 has returned levels of four species of PAH in excess of the adopted assessment criteria and as such a limited remediation exercise will be required in this section of the site (which will also encompass the location of BH6 where similar near-surface soils were encountered), currently plots 8-11 on the site plan provided in Appendix 1.

The remedial action is likely to be relatively small scale, most likely a site scrape, given that the stratum from which this sample was taken was found to extend to depths of just 0.35 (BH6) and 030m (BH7)m. It may be prudent to carry out an additional sampling and analysis exercise in order to better characterise the spatial extent and depth of the suspect material to streamline/minimise any required remedial work.

The remainder of the site is currently not considered to require any remediation works.



A detailed remediation strategy should be compiled and submitted for approval by the local authority subsequent to the submission of this report and any soils brought into the site for the new development will be required to be proven clean and uncontaminated.

The complete removal of the identified contamination source would render all soils at the site suitable for residential land use.

### 7.2 Hazardous Gas

On the basis of the initial gas results the gas conditions at the site would be expected to fall within "Characteristic Situation 1" of the Modified Wilson and Card classification or "Green" of the NHBC Traffic Light System for low rise housing with a ventilated under-floor void (min 150mm) (CIRIA C665). Consequently on the basis of these results no gas measures are anticipated to be required in the construction of the new buildings at the site.

However, a further four (4) sets of gas monitoring results need to be obtained before a final decision can be made on the level of gas protection required at the site. These have been scheduled to be carried out over the coming months and the final results will be provided in an addendum to this report which will be available in late May 2015.

### 7.3 Foundations & Floors

Given that no existing or potential vegetation influence has been identified for soils at the site and that hard shallow bedrock has been encountered in the majority of boreholes the most suitable and cost effective foundation solution is likely to be a traditional strip footing seated on the sandstone rock.

Given that deeper made ground was encountered at BH3 in an inferred former cellar (with rock commencing from 1.75m the strip footings should be extended to this depth accordingly. It is possible that this is a single localised feature associated with the 1970s redevelopment of the site (see Phase 1 desk study report G15029a) and as such this action will likely only be necessary in this single section of the site. However, it is also possible (and perhaps more likely) that this may be a feature of the older 19<sup>th</sup> century terraced housing which once occupied the site and such features may be present sporadically throughout the study area. If this were found to be the case on commencement of excavation for foundations (i.e. several areas of deeper made ground are encountered) it will be necessary to extend the strip footings to the bedrock at greater depth. If the pockets of made ground are found to be very small/localised it may be feasible to adopt a reinforced strip foundation though this will require an on-site reassessment by a suitable qualified engineer.

In the northeast of the site where natural drift deposits (very dense sandy gravel) were found to extend to slightly greater depths, namely at BH4 and BH5 the competent nature of the soils at these locations will provide adequate support for traditional strip foundations at a depth of 1.00m where SPT N values of N=65 and N=72 were returned.

At the depths detailed above, strip and pad foundations may be designed to a maximum allowable net bearing pressure of 150 kNm<sup>2</sup> and 175 kN/m<sup>2</sup> respectively.



### 7.4 Concrete Design

The results of chemical analyses of the fill returned Water Soluble Sulphate levels in soil of between <10mgl<sup>-1</sup>and 1797mgl<sup>-1</sup> (SO<sub>4</sub>) (mean concentration 400mgl<sup>-1</sup>), and pH levels of between 7.5 and 11.1 (mean 8.84). On this basis concrete in contact with the ground may be designed to ACEC Class DS-1 AC-1s of BRE Special Digest 1 – Concrete in aggressive ground.

However, given the single elevated Water Soluble Sulphate concentration returned for BH7 it might be prudent to adopt ACEC Class DS-2 AC-1s in plots 8-11 of the proposed development.

#### 7.5 Recommendations

It might be advantageous to carry out a brief shallow soil sampling and analysis exercise in the southeast of the site where a requirement for remediation has been identified. This may allow the scope of the required remedial works to be reduced or better delineated, potentially reducing cost and volumes of soil going to landfill.





Units 4 and 5 Terry Dicken Industrial Estate Ellerbeck Way Stokesley North Yorkshire TS9 7AE

Tel. 01642 713779 Fax 01642713923 Email enquiries@geoinvestigate.co.uk



**APPENDIX 1** SITE PLAN and **BOREHOLE LOGS** 

| OUR REF:G15029 | YOUR REF:                                             | SITE PLAN (NOT TO SCALE) |
|----------------|-------------------------------------------------------|--------------------------|
| DATE:06/03/15  | LOCATION: Proposed Development, Tetlow Street, Livery | pool L4 4LF              |



Your Ref.

Our Ref.

Location: Proposed Development, Tetlow Street, Liverpool L4 4LF

Gas well installed to 0.85m with bung and cover

G15029

BH No.1 Sheet No. 1 of 1

C Cone Penetration Test

**DATE**: 06/03/15

Depth Thick Gas Well Description of Strata Legend Sample Test SPT N Value Depth to Depth Type Result (m) Water -ness (Depth) (m) TURF / MADE GROUND Loose blackish Cv kN/m2 brown sandy gravel. Gravel is fine to coarse 300 0 0.20 0.30 of sandstone with occasional brick, coal and concrete. Cobbles noted 150 0.45 MADE GROUND Loose dark reddish brown 0 0.50 gravelly sand. Gravel is fine to coarse of sandstone and occasional brick and coal 28,36/150mm 400 0.75 Cobbles noted N=64/150mm 0.85 Hard orangish red SANDSTONE recovered 000 OC 0.85-1.00m 0.85 as angular sandy gravel. Borehole Terminated at 0.85m due to refusal Remarks: Key: Slotted Pipe O Disturbed sample BH1 No casing used Plain Pipe Cv Shear vane Dynamic windowless sampling by Terrier Rig to 0.85m Bentonite W Water sample Borehole remained dry on completion Gravel Filter S Standard Penetration Test

 
 Our Ref.
 G15029
 BH No.2
 Sheet No. 1 of 1

 Liverpool L4 4LF
 DATE: 06/03/15
 Your Ref. Location: Proposed Development, Tetlow Street, Liverpool L4 4LF

| Depth | Description of Strata                                                | Thick       | Legend                                  | G    | as W | /ell   | Sample | Test                 | SPT N Value        | Depth to | Depth |
|-------|----------------------------------------------------------------------|-------------|-----------------------------------------|------|------|--------|--------|----------------------|--------------------|----------|-------|
| (m)   | TURE / MADE CROUND Lagra blooking                                    | -ness       | 71. 71.<br>71. 71. 71.                  |      |      | 1      |        | Type Result          | (Depth)            | Water    | (m)   |
| 0.20  | TURF / MADE GROUND Loose blackish                                    | 200         | 光光/                                     | 1    |      |        | _      | Cv kN/m <sup>2</sup> |                    |          | 0.00  |
| 0.20  | brown sandy gravel. Gravel is fine to coarse                         |             | $\otimes \otimes$                       | ł    |      |        | 0      |                      |                    |          | 0.20  |
| 0.40  | of sandstone with occasional brick, coal and concrete. Cobbles noted | 200         | $\otimes \otimes$                       | 1    |      |        |        |                      |                    |          |       |
| 0.40  | MADE GROUND Hard grey cobbles of                                     |             |                                         |      |      |        | 0      |                      |                    |          | 0.50  |
| 0.60  | concrete. Possible old conc hardstanding                             | 200         | 0,0000                                  | 1    |      |        |        |                      |                    |          | 0.50  |
| 0.00  | Very dense orangish and reddish brown                                |             | 0:00000                                 | 1    |      |        |        |                      |                    |          |       |
|       | sandy GRAVEL. Gravel is fine to coarse of                            |             | *************************************** |      |      |        |        |                      | 40,36              |          | 0.75  |
|       | sandstone. Cobbles noted.                                            | 400         |                                         |      |      |        |        |                      | N=76/150mm         |          |       |
| 1.00  | Hard orangish red SANDSTONE recovered                                |             |                                         |      |      |        | ОС     |                      | 1.00-1.15m         |          | 1.00  |
| 1.00  | as angular sandy gravel.                                             |             |                                         |      |      |        | 00     |                      | 1.00-1.10111       |          | 1.00  |
|       | Borehole Terminated at 1.00m due to refusa                           | l<br>1      |                                         |      |      |        |        |                      |                    |          |       |
|       | Borefole Terminated at 1.00m due to relusa                           |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      | 1      |        |                      |                    | E .      |       |
| )     |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        | *                    |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      | 1    |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             | 8                                       |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        | ĺ      |                      |                    | -        |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      | - 1  |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      | - 1  |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      | - 1  |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      | - 1  |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    | 1        |       |
|       |                                                                      |             |                                         |      | - 1  |        |        |                      |                    |          |       |
|       |                                                                      |             |                                         |      |      |        |        |                      |                    | i        |       |
| Remai |                                                                      |             | Key:                                    |      |      | tted   |        |                      | ed sample          | BH       | 2     |
|       | Casing to 1.00m                                                      | nan - er er |                                         |      |      | in Pi  |        | Cv Shear v           | anache             |          |       |
|       | Dynamic windowless sampling by Terrier Rig                           | to 1.0      | 00m                                     | ~~~~ |      | ntoni  |        | W Water s            |                    |          |       |
|       | Borehole remained dry on completion                                  |             | Į                                       | 500  | Gra  | ivel I |        |                      | l Penetration Test | ρ'<br>≅  |       |
|       |                                                                      |             | ,                                       |      |      |        |        | C Cone De            | enetration Test    |          |       |

C Cone Penetration Test

Your Ref.

Our Ref.

G15029 BH No.3 Sheet No. 1 of 1

C Cone Penetration Test

Location: Proposed Development, Tetlow Street, Liverpool L4 4LF

Gas well installed to 1.80m with bung and cover

**DATE**: 06/03/15

| Depth | Description of Strata                                                                                      | Thick  | Legend                 | G                                       | as W | 'ell                           | Sample | Test                                | SPT N Value                      | Depth to | Depth |
|-------|------------------------------------------------------------------------------------------------------------|--------|------------------------|-----------------------------------------|------|--------------------------------|--------|-------------------------------------|----------------------------------|----------|-------|
| (m)   | TURF / MADE GROUND Loose blackish                                                                          | -ness  | 70. 70.<br>70. 70. 70. | <br> <br>                               | 8    | XXXX                           |        | Type Result<br>Cv kN/m <sup>2</sup> | (Depth)                          | Water    | (m)   |
|       | brown sandy gravel. Gravel is fine to coarse of sandstone with occasional brick, coal                      | 400    |                        |                                         |      |                                | 0      | CV KIN/M                            |                                  |          | 0.20  |
| 0.40  | and concrete. Cobbles noted  MADE GROUND Very loose orangish red sandy gravel. Gravel is fine to coarse of |        |                        |                                         |      |                                | 0      |                                     |                                  |          | 0.50  |
|       | sandstone, and occasional brick and coal.                                                                  |        | $\bowtie$              | ₩                                       |      | ₩                              |        |                                     |                                  |          | 0.75  |
|       | Many brick cobbles at 0.95m                                                                                | 1250   |                        | 000000000000000000000000000000000000000 |      | \$0,000<br>000<br>0000<br>0000 | ос     |                                     | 2,1,0,0,1,1<br>N=2<br>1.00-1.45m |          | 1.00  |
|       |                                                                                                            |        |                        |                                         |      | 0000                           |        |                                     |                                  |          | 1.25  |
| 1.65  | MADE GROUND Compact grey sandy gravel. Gravel is fine to coarse of concrete. Possible old basement floor   | 100    |                        | 0000                                    |      | 0000000                        | 0      | Y                                   | 24,26/150mm<br>N=50/150mm        |          | 1.50  |
|       | Hard orangish red SANDSTONE recovered                                                                      | 50     |                        | 000                                     |      |                                | ОС     |                                     | 1.80-1.95m                       |          | 1.80  |
|       | as angular sandy gravel. Some roots  Borehole Terminated at 1.80m due to refusa                            |        |                        |                                         |      |                                |        |                                     |                                  |          |       |
|       |                                                                                                            |        |                        |                                         | G1.  |                                |        |                                     |                                  |          |       |
| Remai | rks:<br>Casing to 1.00m                                                                                    |        | Key:                   |                                         |      | tted l<br>in Pij               |        | O Disturbe<br>Cv Shear v            |                                  | ВН       | 3     |
|       | Dynamic windowless sampling by Terrier Rig                                                                 | to 1.8 |                        | <b>****</b>                             | Ber  | itoni                          | te     | W Water s                           |                                  |          |       |
|       | Borehole remained dry on completion Gas well installed to 1.80m with bung and co                           | ver    | ) (                    | \$°°d                                   | Gra  | ivel l                         |        |                                     | Penetration Test                 |          |       |

Your Ref. Our Ref. G15029 BH No.4 Sheet No. 1 of 1 Location: Proposed Development, Tetlow Street, Liverpool L4 4LF DATE: 06/03/15

| Depth | Description of Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thick  | Legend                                                                             | Gas  | s Well  | Sample   | Test                 | SPT N Value        | Depth to | Depth |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|------|---------|----------|----------------------|--------------------|----------|-------|
| (m)   | , and the second | -ness  | 0.000                                                                              |      |         |          | Type Result          | (Depth)            | Water    | (m)   |
| 2.30  | TOPSOIL Loose dark brown and reddish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                    |      |         |          | Cv kN/m <sup>2</sup> |                    |          |       |
| - 444 | brown clayey gravelly sand.  Gravel is fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 350    | ///                                                                                |      | ı       | 0        |                      |                    |          | 0.20  |
| 0.35  | to coarse of sandstone, coal and occ. ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\langle \langle \langle \rangle \rangle$                                          |      |         |          |                      | ,                  |          |       |
|       | MADE GROUND Loose blackish brown sandy gravel/ gravelly sand. Gravel is fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300    | $\otimes \otimes \otimes$                                                          |      |         | 0        |                      |                    |          | 0.50  |
|       | to coarse of sandstone, coal and occ. ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300    | $\Diamond\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |      |         | 0        |                      |                    |          | 0.50  |
|       | MADE GROUND Compact grey sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100    | $\Diamond \Diamond \Diamond$                                                       |      |         |          |                      |                    |          |       |
| -     | and concrete cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 0 0 0 0 0                                                                          |      |         |          |                      | 10,22,15,15,10     |          | 0.75  |
|       | Very dense orangish and reddish brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 0,0000                                                                             |      |         |          |                      | 25                 | 1        |       |
|       | sandy GRAVEL. Gravel is fine to coarse of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 00000                                                                              |      |         | oc       |                      | N=65               | ĺ        | 1.00  |
|       | sandstone. Cobbles noted. Probable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700    | 0.00000                                                                            |      |         |          |                      | 1.00-1.45m         |          |       |
|       | completely weathered sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 0,0000                                                                             |      |         |          |                      |                    |          | 1.25  |
| 1.45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.0000                                                                             |      |         | 0        |                      |                    |          | 1.45  |
| 11.10 | Borehole Terminated at 1.45m due to refusa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 0.0000                                                                             |      |         | <u> </u> |                      |                    |          | 1.10  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĺ      |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      | 1       |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      | ŀ       |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          | 9     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          | İ                    |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8      |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1                                                                                  |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      | 1       |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         | 8        |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5                                                                                  |      |         |          |                      | i                  |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | l.                                                                                 |      |         |          |                      |                    | 1        |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          |                      |                    |          |       |
| Remai | rks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Key:                                                                               |      | Slotted | Pipe     | O Disturb            | ed sample          | DI       | 14    |
|       | Casing to 1.00m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | J                                                                                  |      | Plain P |          | Cv Shear v           |                    | BH       | 4     |
|       | Dynamic windowless sampling by Terrier Rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to 1.4 |                                                                                    | Novo | Benton  |          | W Water s            |                    |          |       |
|       | Borehole remained dry on completion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | Į.                                                                                 | 3840 | Gravel  |          |                      | d Penetration Test |          |       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                    |      |         |          | C Cama D.            | enetration Test    |          |       |

C Cone Penetration Test

Your Ref.

Our Ref.

G15029

BH No.5 Sheet No. 1 of 1

**DATE**: 06/03/15

Location: Proposed Development, Tetlow Street, Liverpool L4 4LF

Borehole remained dry on completion

Depth Description of Strata Thick Gas Well Sample Legend Test SPT N Value Depth to Depth Type Result (m) -ness (Depth) Water (m) TURF / TOPSOIL Loose dark reddish brown Cv kN/m2 sandy gravel / gravelly sand. Gravel is fine 300 0 0.25 0.30 to coarse of sandstone MADE GROUND Loose dark reddish brown gravelly sand. Gravel is fine to coarse of 0 0.50 400 sandstone and occasional brick and coal 0.70 Cobbles noted 0.75 Very dense orangish and reddish brown 15,20,25,22,23 sandy GRAVEL. Gravel is fine to coarse of 20 sandstone. Cobbles noted. Probable O C N = 721.00 completely weathered sandstone 700 1.00-1.45m 1.25 1.40 Hard orangish red SANDSTONE recovered 0 23,28/150mm 1.50 as angular sandy gravel. 300 N=50/150mm 1.70 O C 1.70-1.85m 1.70 Borehole Terminated at 1.70m due to refusal Remarks: Key: Slotted Pipe O Disturbed sample BH5 Casing to 1.00m Cv Shear vane Plain Pipe Dynamic windowless sampling by Terrier Rig to 1.70m Bentonite W Water sample

Gravel Filter

S Standard Penetration Test C Cone Penetration Test

Your Ref. Our Ref. G15029 BH No.6 Sheet No. 1 of 1 Location: Proposed Development, Tetlow Street, Liverpool L4 4LF DATE: 06/03/15

| D            | D                                                                                 | 701.1       |                              |      | 00 17 | I n 11          | l a .  |                          | CDC 3177                  |                   |              |
|--------------|-----------------------------------------------------------------------------------|-------------|------------------------------|------|-------|-----------------|--------|--------------------------|---------------------------|-------------------|--------------|
| Depth<br>(m) | Description of Strata                                                             | Thick -ness | Legend                       | 6    | as W  | CII             | Sample | Test Type Result         | SPT N Value<br>(Depth)    | Depth to<br>Water | Depth<br>(m) |
| ()           | TOPSOIL Loose dark brown and reddish                                              | 11000       | ///                          |      |       |                 |        | Cv kN/m <sup>2</sup>     | (Берш)                    | Water             | (111)        |
|              | brown clayey gravelly sand.  Gravel is fine                                       | 350         | ///                          |      |       |                 | 0      |                          |                           |                   | 0.20         |
| 0.35         | to coarse of sandstone, coal and occ. ash                                         |             |                              |      |       |                 |        |                          |                           |                   |              |
|              | MADE GROUND Loose reddish brown                                                   |             | $\times\!\!\times\!\!\times$ | ł    |       |                 |        |                          |                           |                   | 0.50         |
|              | gravelly sand. Gravel is fine to coarse of sandstone and occasional concrete      | 350         | $\Diamond \Diamond \Diamond$ |      |       |                 | 0      |                          |                           |                   | 0.50         |
| 0.70         |                                                                                   |             | $\bowtie$                    |      |       |                 |        |                          |                           |                   |              |
|              | MADE GROUND Grey and reddish brown                                                | 250         |                              |      |       |                 | 0      |                          | 6,50/75mm                 |                   | 0.80         |
|              | sandy gravel and cobbles of fine to coarse                                        |             | $\times\!\!\times\!\!\times$ |      |       |                 | V 00   |                          | N=76/125mm                |                   | ss viewski   |
| 1.05         | brick and concrete. Some wood fragments                                           | 100         |                              |      | _     |                 | ОС     |                          | 1.00-1.25m                |                   | 1.05         |
|              | Hard orangish and reddish brown SANDSTONE                                         |             |                              |      |       |                 |        |                          |                           |                   |              |
|              | Borehole Terminated at 1.05m due to refusa                                        | 1           |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   | Ï           |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              | d                                                                                 |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      | l     |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             | i.                           |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           | l                 |              |
|              |                                                                                   |             |                              |      |       |                 | i      |                          |                           | - 1               |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           | 1                 |              |
|              |                                                                                   |             |                              |      |       | 6               |        |                          |                           | 1                 |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           | ĺ                 |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       | 1               |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
|              |                                                                                   |             |                              |      |       |                 |        |                          |                           |                   |              |
| Rema         |                                                                                   |             | Key:                         |      |       | tted            |        | O Disturbo               |                           | ВН                | 6            |
|              | Casing to 1.00m                                                                   |             | 2000                         |      |       | in Pi           |        | Cv Shear v               | L                         |                   |              |
|              | Dynamic windowless sampling by Terrier Rig<br>Borehole remained dry on completion | 10 1.0      |                              |      |       | ntoni<br>avel l |        | W Water sa<br>S Standard | ample<br>Penetration Test |                   |              |
|              | boronole remained dry on completion                                               |             | ţ                            | 50.d | JI    | 14011           |        |                          | netration Test            |                   |              |

C Cone Penetration Test

Your Ref. Our Ref. G15029 BH No.7 Sheet No. 1 of 1 Location: Proposed Development, Tetlow Street, Liverpool L4 4LF DATE: 06/03/15

| epth | Description of Strata                       | Thick  | Legend                 | G          | as W        | ell             | Sample   | Test                    | SPT N Value | Depth to | Dep |
|------|---------------------------------------------|--------|------------------------|------------|-------------|-----------------|----------|-------------------------|-------------|----------|-----|
| m)   | 700000                                      | -ness  | 1,,,                   | XXXX       | g ı         | XXXX            |          | Type Result             | (Depth)     | Water    | (m  |
|      | TOPSOIL Loose dark brown and reddish        |        | V//                    | ₩          |             | ₩               |          | Cv kN/m <sup>2</sup>    |             |          |     |
|      | brown clayey gravelly sand.  Gravel is fine | 300    | ///                    | <b></b>    |             | ₩               | 0        |                         |             |          | 0.2 |
| .30  | to coarse of sandstone, coal and occ. ash   |        |                        | ₩          |             | ₩               |          |                         |             |          |     |
|      | MADE GROUND Loose reddish brown             |        | $\times \times \times$ | ₩          |             | ₩               |          |                         |             |          |     |
|      | gravelly sand. Gravel is fine to coarse of  | 350    | $\times \times \times$ | ₩          | Ш           | ₩               | 0        |                         |             |          | 0.5 |
| 65   | sandstone and occasional concrete           |        | $\times \times \times$ | 200        |             | 800             |          |                         |             |          |     |
|      | MADE GROUND Grey and reddish brown          |        | $\times \times \times$ | 000        |             | :00             |          |                         |             |          | 0.7 |
|      | sandy gravel and cobbles of fine to coarse  | 250    | $\times\times$         | Son        |             | 800             |          |                         |             |          | 0.7 |
| 90   | brick and concrete. Some wood fragments     |        | $\times \times \times$ | 000        |             | 000             |          |                         | 12,63/150mm |          |     |
|      | Dense orangish brown sandy GRAVEL.          | 250    | 00                     | o°o<br>oeo |             | 000             | ОС       |                         | N=73/150mm  |          | 1.0 |
| 15   | Gravel is fine to coarse of sandstone       | 230    | 0,0000                 |            |             |                 |          |                         | 1.00-1.15m  |          | -   |
| 25   | Hard orangish and reddish brown             | 100    |                        |            |             |                 | 0        |                         |             |          | 1.2 |
|      | SANDSTONE                                   |        |                        |            |             |                 |          |                         |             |          |     |
|      | Borehole Terminated at 1.25m due to refusa  | Ì      |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          | ľ                       |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         | 1           |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            | Ш           |                 |          |                         |             |          |     |
|      |                                             |        |                        |            | П           |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             | - 1             |          |                         |             |          |     |
|      |                                             |        |                        |            | П           | - 1             |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             | - 1             | l        |                         |             |          |     |
|      |                                             |        |                        |            | П           |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             | - 1             |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             | 1        |     |
|      |                                             |        |                        |            |             | - 1             |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
| - 1  |                                             |        |                        |            |             |                 |          |                         |             |          |     |
| l l  |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      |                                             |        |                        |            |             |                 |          |                         |             |          |     |
|      | whee                                        |        | 17                     |            | C1          | **** 1 7        | Dim -    | 0 Dist 1                | -d1-        |          |     |
|      | rks:                                        |        | Key:                   |            |             | tted ]          |          |                         | ed sample   | BH       | 17  |
|      | Casing to 1.00m                             |        |                        |            | Plai        | in Pij          | pe       | Cv Shear v              | ane         | ВН       | 17  |
|      |                                             | to 1.2 | 25m                    | <b>***</b> | Plai<br>Ben | in Pij<br>itoni | pe<br>te | Cv Shear v<br>W Water s | ane         |          | 17  |

Gas well installed to 1.00m with bung and cover

C Cone Penetration Test



# **APPENDIX 2** MOISTURE CONTENT PROFILES and ATTERBERG LIMIT TEST RESULTS (TABLE 4)





# Atterberg Limit Test Results

Our ref. G15029 Your ref. 
 Table 4

 Location: Proposed Development, Tetlow Street, Liverpool L4 4LF

| TP/BH<br>No. | Sample<br>Depth<br>(m) | Insitu Moisture Content (%) | % Passing<br>BS 425<br>Micron<br>Sieve | Corrected Moisture Content (%) | Plastic<br>Limit<br>(%) | Liquid<br>Limit<br>(%) | Plasticity<br>Index<br>(%) | Soil<br>Classification |
|--------------|------------------------|-----------------------------|----------------------------------------|--------------------------------|-------------------------|------------------------|----------------------------|------------------------|
| 1            | 0.50                   | 8.4                         |                                        |                                |                         |                        |                            |                        |
|              | 1.00                   | 9.3                         |                                        |                                |                         |                        |                            |                        |
|              |                        |                             |                                        |                                |                         |                        |                            |                        |
| 2            | 0.20                   | 10.1                        |                                        |                                |                         |                        |                            |                        |
|              | 0.50                   | 7.8                         |                                        |                                |                         |                        |                            |                        |
|              | 1.00                   | 9.2                         |                                        |                                |                         |                        |                            |                        |
|              |                        |                             |                                        |                                |                         |                        |                            |                        |
| 3            | 0.50                   | 9.1                         |                                        |                                |                         |                        |                            |                        |
|              | 1.00                   | 9.3                         |                                        |                                |                         |                        |                            |                        |
|              | 1.80                   | 10.2                        |                                        |                                |                         |                        |                            |                        |
|              |                        |                             |                                        |                                |                         |                        |                            |                        |
| 4            | 1.00                   | 8.1                         | 8                                      |                                |                         |                        |                            |                        |
|              | 1.45                   | 10.7                        |                                        |                                |                         |                        |                            |                        |
|              |                        |                             |                                        |                                |                         |                        |                            |                        |
| 5            | 0.50                   | 12.5                        |                                        | n .                            |                         |                        |                            |                        |
|              | 1.00                   | 11.5                        | 41.4                                   |                                | *                       | *                      | *                          | *                      |
|              | 1.50                   | 9.4                         |                                        |                                |                         |                        |                            |                        |
|              |                        |                             |                                        |                                |                         |                        |                            |                        |

<sup>\*</sup> Essentially non-plastic material

# Atterberg Limit Test Results

Our ref. G15029

Table 4

Your ref. Location: Proposed Development, Tetlow Street, Liverpool L4 4LF

| TP / BH<br>No. | Sample<br>Depth | Insitu<br>Moisture | % Passing<br>BS 425 | Corrected<br>Moisture | Plastic<br>Limit | Liquid<br>Limit | Plasticity   | Soil           |
|----------------|-----------------|--------------------|---------------------|-----------------------|------------------|-----------------|--------------|----------------|
| No.            | (m)             | Content            | Micron              | Content               | (%)              | (%)             | Index<br>(%) | Classification |
|                | ***             | (%)                | Sieve               | (%)                   |                  |                 | S            |                |
| 6              | 0.20            | 11.6               |                     |                       |                  |                 |              |                |
|                | 0.50            | 9.3                |                     |                       |                  |                 |              |                |
|                | 1.05            | 11.8               |                     |                       |                  |                 |              |                |
|                |                 |                    |                     |                       |                  |                 |              |                |
| 7              | 0.50            | 9.1                |                     |                       |                  |                 |              |                |
|                | 1.25            | 9.9                |                     |                       |                  |                 |              |                |
|                |                 |                    |                     |                       |                  |                 |              |                |



# **APPENDIX 3** CHEMTECH ANALYTICAL **TEST REPORT**







### **ANALYTICAL TEST REPORT**

Contract no: 54648

Contract name: Proposed Development, Tetlow Street, Liverpool

Client reference: G15029

Clients name: Geo Investigate

Clients address: Units 4 & 5, Terry Dicken Industrial Estate

Ellerbeck Way, Stokesley

North Yorkshire

TS9 7AE

Samples received: 11 March 2015

Analysis started: 11 March 2015

Analysis completed 17 March 2015

Report issued: 18 March 2015

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Karan Campbell John Campbell

Director Customer Services Co-ordinator

Dave Bowerbank

### **SAMPLE INFORMATION**

### MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

| Lab ref  | Sample id | Depth (m) | Sample description | Material removed | % Removed | % Moisture |
|----------|-----------|-----------|--------------------|------------------|-----------|------------|
| 54648-1  | BH 1      | 0.20      | Sand with Gravel   | -                | -         | 9.3        |
| 54648-3  | BH 3      | 1.00      | Sand with Gravel   | -                | -         | 7.9        |
| 54648-5  | BH 4      | 0.50      | Sand with Gravel   | -                |           | 10.6       |
| 54648-6  | ВН 5      | 0.20      | Sand with Gravel   | -                |           | 7,4        |
| 54648-7  | BH 5      | 1.70      | Sand with Gravel   | -                | •         | 8.1        |
| 54648-8  | BH 6      | 0.80      | Sand with Gravel   | -                |           | 8.3        |
| 54648-9  | BH 7      | 0.20      | Sand with Gravel   | -                | -         | 7.3        |
| 54648-10 | BH 7      | 1.00      | Sand with Gravel   | <b>E</b> 1       | E)        | 10.1       |

| Lab number                            |                    |                       | 54648-1    | 54648-2                               | 54648-3    | 54648-4      | 54648-5    | 54648-6         |
|---------------------------------------|--------------------|-----------------------|------------|---------------------------------------|------------|--------------|------------|-----------------|
| Sample id                             |                    |                       | BH 1       | BH 3                                  | BH 3       | BH 4         | BH 4       | 34648-6<br>BH 5 |
| Depth (m)                             |                    |                       | 0.20       | 0.20                                  | 1.00       | 0.20         | 0.50       | 0.20            |
| Date sampled                          |                    |                       | 06/03/2015 | 06/03/2015                            | 06/03/2015 | 06/03/2015   | 06/03/2015 | 06/03/2015      |
| Test                                  | Method             | Units                 |            |                                       |            |              |            |                 |
| Arsenic (total)                       | CE127 <sup>M</sup> | mg/kg As              | 9.5        | -                                     | 6.0        | 3#1          | 8.6        | 3.9             |
| Boron (water soluble)                 | CE063 <sup>M</sup> | mg/kg B               | 0.5        | -                                     | <0.5       | ·=           | <0.5       | <0.5            |
| Cadmium (total)                       | CE127 <sup>M</sup> | mg/kg Cd              | 0.5        | -                                     | <0.2       | 141          | 0.3        | <0.2            |
| Chromium (total)                      | CE127 <sup>M</sup> | mg/kg Cr              | 65         | +                                     | 67         | 840          | 86         | 109             |
| Chromium (III)                        | -                  | mg/kg CrIII           | 65         | -                                     | 67         | 12           | 86         | 109             |
| Chromium (VI)                         | CE050              | mg/kg CrVI            | <1         | 1                                     | <1         | 940          | <1         | <1              |
| Copper (total)                        | CE127 <sup>M</sup> | mg/kg Cu              | 43         | 78                                    | 10         | -            | 23         | 5.4             |
| Lead (total)                          | CE127 <sup>M</sup> | mg/kg Pb              | 96         | 2.80                                  | 52         | ( <b>#</b> ) | 44         | 20              |
| Mercury (total)                       | CE127 M            | mg/kg Hg              | <0.5       | i.e.                                  | <0.5       | )=1          | <0.5       | <0.5            |
| Nickel (total)                        | CE127 <sup>M</sup> | mg/kg Ni              | 18         | 8.00                                  | 14         | -            | 13         | 11              |
| Selenium (total)                      | CE127 <sup>M</sup> | mg/kg Se              | 0.6        | 134                                   | 0.3        |              | 0.4        | <0.3            |
| Zinc (total)                          | CE127 <sup>M</sup> | mg/kg Zn              | 134        |                                       | 42         | -            | 48         | 19              |
| рН                                    | CE004 <sup>M</sup> | units                 | 8.7        | :=                                    | 8.6        | -            | 7.5        | 8.8             |
| Sulphate (2:1 water soluble)          | CE061 M            | mg/I SO <sub>4</sub>  | 51         |                                       | <10        | 427          | 15         | <10             |
| Sulphur (total)                       | CE127              | mg/kg S               | 520        | ·                                     | 426        | 223          | 223        | 114             |
| Sulphide                              | CE079              | mg/kg S <sup>2-</sup> | <10        | -                                     | <10        | -            | <10        | <10             |
| Cyanide (free)                        | CE077              | mg/kg CN              | <2         | -                                     | <2         | -            | <2         | <2              |
| Cyanide (total)                       | CE077              | mg/kg CN              | <2         |                                       | <2         | -            | <2         | <2              |
| Thiocyanate                           | CE014 <sup>M</sup> | mg/kg SCN             | <1         | -                                     | 1.1        | -            | 1.4        | <1              |
| Phenois (total)                       | CE078              | mg/kg PhOH            | <0.5       | 424                                   | <0.5       | -            | <0.5       | <0.5            |
| Total Organic Carbon (TOC)            | CE072 M            | % w/w C               |            | <del>,</del>                          | -          | -            | 2.03       | -               |
| Estimate of OMC (calculated from TOC) | CE072              | % w/w                 |            |                                       | -          | -            | 3.50       | 18              |
| РАН                                   |                    |                       |            | · · · · · · · · · · · · · · · · · · · |            |              |            |                 |
| Naphthalene                           | CE087              | mg/kg                 | 0.09       | 120                                   | 0.04       | -            | 0.04       | 0.01            |
| Acenaphthylene                        | CE087              | mg/kg                 | <0.01      | (#1                                   | <0.01      | -            | <0.01      | <0.01           |
| Acenaphthene                          | CE087              | mg/kg                 | 0.14       | *                                     | 0.07       | -            | 0.10       | 0.03            |
| Fluorene                              | CE087              | mg/kg                 | 0.10       | *                                     | 0.05       | -            | 0.08       | 0.02            |
| Phenanthrene                          | CE087              | mg/kg                 | 1.19       |                                       | 0.68       | -            | 0.62       | 0.27            |
| Anthracene                            | CE087              | mg/kg                 | 0.26       | -                                     | 0.17       |              | 0.10       | 0.06            |
| Fluoranthene                          | CE087              | mg/kg                 | 2.30       | -                                     | 1.07       | -            | 0.73       | 0.46            |
| Pyrene                                | CE087              | mg/kg                 | 2,20       | 9.                                    | 1.03       | 45           | 0.73       | 0.42            |
| Benzo(a)anthracene                    | CE087              | mg/kg                 | 1.05       | -                                     | 0.54       | (6)          | 0.38       | 0.21            |
| Chrysene                              | CE087              | mg/kg                 | 1.04       | -                                     | 0.47       | -            | 0.39       | 0.19            |
| Benzo(b)fluoranthene                  | CE087              | mg/kg                 | 1,30       | -                                     | 0.55       | -            | 0.47       | 0.22            |
| Benzo(k)fluoranthene                  | CE087              | mg/kg                 | 0.51       | -                                     | 0.24       | -            | 0.19       | 0.09            |
| Benzo(a)pyrene                        | CE087              | mg/kg                 | 1.03       | -                                     | 0.47       | -            | 0.35       | 0.17            |
| Indeno(123cd)pyrene                   | CE087              | mg/kg                 | 0.84       | - 1                                   | 0.35       | -            | 0.27       | 0.13            |
| Dibenz(ah)anthracene                  | CE087              | mg/kg                 | 0.21       | -                                     | 0.08       | -            | 0.06       | 0.03            |
| Benzo(ghi)perylene                    | CE087              | mg/kg                 | 0.88       | -                                     | 0.35       | -            | 0.29       | 0.13            |
| PAH (total of USEPA 16)               | CE087              | mg/kg                 | 13.1       | -                                     | 6.16       | -            | 4.79       | 2.44            |

| Lab number                | 54648-1 | 54648-2<br>BH 3 | 54648-3<br>BH 3 | 54648-4<br>BH 4 | 54648-5<br>BH 4<br>0.50 | 54648-6<br>BH 5<br>0.20 |            |            |
|---------------------------|---------|-----------------|-----------------|-----------------|-------------------------|-------------------------|------------|------------|
| Sample id                 | BH 1    |                 |                 |                 |                         |                         |            |            |
| Depth (m)<br>Date sampled |         |                 | 0.20            | 0.20            |                         |                         | 1.00       | 0.20       |
|                           |         |                 | 06/03/2015      | 06/03/2015      | 06/03/2015              | 06/03/2015              | 06/03/2015 | 06/03/2015 |
| Test                      | Method  | Units           |                 | Hite Oder       |                         |                         |            |            |
| РСВ                       |         |                 |                 |                 |                         |                         |            | 534        |
| PCB Congener 28           | CE137   | mg/kg           | -               |                 | ( <b>.</b>              | :=:                     |            | -          |
| PCB Congener 52           | CE137   | mg/kg           | -               | -               | (₩                      | -                       | -          | -          |
| PCB Congener 101          | CE137   | mg/kg           | -               |                 |                         | 17.                     | 180        | +          |
| PCB Congener 118          | CE137   | mg/kg           |                 | i.              | N#                      |                         | i#s        | -          |
| PCB Congener 138          | CE137   | mg/kg           | -               | 3               | Œ                       | •                       | •          | Ŧ          |
| PCB Congener 153          | CE137   | mg/kg           | -               | 1-              | YE                      | 9                       | 98         | =          |
| PCB Congener 180          | CE137   | mg/kg           | 12              | 7-              | 823                     | 929                     | 140        |            |
| Subcontracted analysis    |         |                 |                 |                 |                         |                         |            |            |
| Asbestos                  | \$      | ¥               | -               | NAD             | -                       | NAD                     | NAD        | =          |

| Lab number                            |                    |                       | 54648-7       | 54648-8    | 54648-9     | 54648-10   |
|---------------------------------------|--------------------|-----------------------|---------------|------------|-------------|------------|
| Sample id                             |                    |                       | BH 5          | BH 6       | BH 7        | BH 7       |
| Depth (m)                             |                    |                       | 1.70          | 0.80       | 0.20        | 1.00       |
| Date sampled                          |                    |                       | 06/03/2015    | 06/03/2015 | 06/03/2015  | 06/03/2015 |
| Test                                  | Method             | Units                 |               |            |             |            |
| Arsenic (total)                       | CE127 M            | mg/kg As              | 3.8           | 4.1        | 5.1         | 5.1        |
| Boron (water soluble)                 | CE063 <sup>M</sup> | mg/kg B               | <0.5          | <0.5       | 0.6         | 0.5        |
| Cadmium (total)                       | CE127 <sup>M</sup> | mg/kg Cd              | <0.2          | <0.2       | 0.2         | <0.2       |
| Chromium (total)                      | CE127 <sup>M</sup> | mg/kg Cr              | 102           | 77         | 86          | 98         |
| Chromium (III)                        | -                  | mg/kg CrIII           | 102           | 77         | 86          | 98         |
| Chromium (VI)                         | CE050              | mg/kg CrVI            | <1            | <1         | <1          | <1         |
| Copper (total)                        | CE127 <sup>M</sup> | mg/kg Cu              | 3.5           | 4.1        | 13          | 5.6        |
| Lead (total)                          | CE127 <sup>M</sup> | mg/kg Pb              | 3.1           | 20         | 33          | 6.7        |
| Mercury (total)                       | CE127 M            | mg/kg Hg              | <0.5          | <0.5       | <0.5        | <0.5       |
| Nickel (total)                        | CE127 M            | mg/kg Ni              | 11            | 9.7        | 11          | 12         |
| Selenium (total)                      | CE127 M            | mg/kg Se              | <0.3          | <0.3       | 0.3         | <0.3       |
| Zinc (total)                          | CE127 M            | mg/kg Zn              | 14            | 24         | 40          | 20         |
| рН                                    | CE004 <sup>M</sup> | units                 | 8.7           | 11.1       | 8.8         | 8.5        |
| Sulphate (2:1 water soluble)          | CE061 M            | mg/I SO <sub>4</sub>  | <10           | 46         | 62          | 1797       |
| Sulphur (total)                       | CE127              | mg/kg S               | <100          | 482        | 423         | 2282       |
| Sulphide                              | CE079              | mg/kg S <sup>2-</sup> | <10           | <10        | <10         | <10        |
| Cyanide (free)                        | CE077              | mg/kg CN              | <2            | <2         | <2          | <2         |
| Cyanide (total)                       | CE077              | mg/kg CN              | <2            | <2         | <2          | <2         |
| Thiocyanate                           | CE014 <sup>M</sup> | mg/kg SCN             | <1            | <1         | <1          | <1         |
| Phenols (total)                       | CE078              | mg/kg PhOH            | <0.5          | <0.5       | <0.5        | <0.5       |
| Total Organic Carbon (TOC)            | CE072 <sup>M</sup> | % w/w C               | 760           | 177.       | <b>a</b> ./ | -          |
| Estimate of OMC (calculated from TOC) | CE072              | % w/w                 | 525<br>(2)    | (5)        | 9           | =          |
| РАН                                   | •                  |                       |               |            |             |            |
| Naphthalene                           | CE087              | mg/kg                 | - 1           | <0.01      | 0.29        | 0.01       |
| Acenaphthylene                        | CE087              | mg/kg                 | -             | <0.01      | 0.09        | <0.01      |
| Acenaphthene                          | CE087              | mg/kg                 | 144           | <0.01      | 0.56        | <0.01      |
| Fluorene                              | CE087              | mg/kg                 | -             | <0.01      | 0.55        | <0.01      |
| Phenanthrene                          | CE087              | mg/kg                 | -             | 0.02       | 8.10        | 0.04       |
| Anthracene                            | CE087              | mg/kg                 | .=:           | <0.01      | 1.89        | <0.01      |
| Fluoranthene                          | CE087              | mg/kg                 |               | 0.06       | 13.21       | 0.05       |
| Pyrene                                | CE087              | mg/kg                 | •             | 0.06       | 12.09       | 0.05       |
| Benzo(a)anthracene                    | CE087              | mg/kg                 | •             | 0.03       | 5.99        | 0.02       |
| Chrysene                              | CE087              | mg/kg                 | 9             | 0.02       | 6.14        | <0.01      |
| Benzo(b)fluoranthene                  | CE087              | mg/kg                 | -             | 0.04       | 6.88        | 0.02       |
| Benzo(k)fluoranthene                  | CE087              | mg/kg                 | ( <b>2</b> 0) | 0.01       | 2.51        | <0.01      |
| Benzo(a)pyrene                        | CE087              | mg/kg                 |               | 0.02       | 5.21        | 0.02       |
| Indeno(123cd)pyrene                   | CE087              | mg/kg                 |               | 0,02       | 3,61        | 0.02       |
| Dibenz(ah)anthracene                  | CE087              | mg/kg                 | -0            | <0.01      | 0.97        | <0.01      |
| Benzo(ghi)perylene                    | CE087              | mg/kg                 |               | 0.02       | 3.64        | 0.01       |
| PAH (total of USEPA 16)               | CE087              | mg/kg                 | <0.16         | 0.31       | 71.7        | 0.25       |

| Lab number             |        |         | 54648-7    | 54648-8    | 54648-9    | 54648-10   |
|------------------------|--------|---------|------------|------------|------------|------------|
| Sample id              |        |         | BH 5       | BH 6       | BH 7       | BH 7       |
| Depth (m)              |        | 1.70    | 0.80       | 0.20       | 1.00       |            |
| Date sampled           |        |         | 06/03/2015 | 06/03/2015 | 06/03/2015 | 06/03/2015 |
| Test                   | Method | Units   |            |            |            |            |
| РСВ                    |        | Mari -2 |            |            |            |            |
| PCB Congener 28        | CE137  | mg/kg   | -          | ( <b>=</b> | <0.005     | <0.005     |
| PCB Congener 52        | CE137  | mg/kg   | 1.5        | 5.€        | <0.005     | <0.005     |
| PCB Congener 101       | CE137  | mg/kg   | -          | 100        | <0.005     | <0.005     |
| PCB Congener 118       | CE137  | mg/kg   | ē          |            | <0.005     | <0.005     |
| PCB Congener 138       | CE137  | mg/kg   |            |            | <0.005     | <0.005     |
| PCB Congener 153       | CE137  | mg/kg   | -          | 64         | <0.005     | <0.005     |
| PCB Congener 180       | CE137  | mg/kg   | -          | :**        | <0.005     | <0.005     |
| Subcontracted analysis |        |         |            |            |            |            |
| Asbestos               | \$     |         | 141        | (#)        | 1961       | -          |

# Chemtech Environmental Limited LEACHATES

| ab number          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BH 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BH 5                  | BH 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Method             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CE128 <sup>U</sup> | μg/l As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.03                  | 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CE128 <sup>U</sup> | μg/l B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| CE128 <sup>U</sup> | μg/l Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.07                 | <0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CE128 <sup>U</sup> | μg/l Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7                   | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE128 <sup>u</sup> | μg/l Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1                   | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE128 <sup>U</sup> | μg/l Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CE128 <sup>U</sup> | μg/l Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.008                | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CE128 <sup>U</sup> | μg/l Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.3                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE128 <sup>U</sup> | μg/l Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.16                  | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CE128 <sup>u</sup> | μg/l Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CE004 <sup>u</sup> | units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.6                   | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE049 <sup>U</sup> | mg/I SO₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10                   | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE128 <sup>U</sup> | mg/l S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE079              | μg/I S <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <100                  | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CE077              | μg/I CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <20                   | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE077              | μg/l CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <20                   | <20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| CE014              | μg/l SCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <200                  | <200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| CE078              | μg/l PhOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10                   | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CE087              | μg/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1.6                  | <1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                    | CE128 U CE128 | EE128 <sup>U</sup> μg/l As EE128 <sup>U</sup> μg/l B EE128 <sup>U</sup> μg/l Cd EE128 <sup>U</sup> μg/l Cr EE128 <sup>U</sup> μg/l Cr EE128 <sup>U</sup> μg/l Cu EE128 <sup>U</sup> μg/l Pb EE128 <sup>U</sup> μg/l Hg EE128 <sup>U</sup> μg/l Hg EE128 <sup>U</sup> μg/l Se EE128 <sup>U</sup> μg/l Sc EE128 <sup>U</sup> μg/l Sc EE128 <sup>U</sup> μg/l Sc EE128 <sup>U</sup> μg/l Sc EE128 <sup>U</sup> μg/l Cn EE004 <sup>U</sup> units EE0049 <sup>U</sup> mg/l SC EE079 μg/l CN EE077 μg/l CN EE077 μg/l CN EE077 μg/l CN EE078 μg/l PhOH | 1.00   Method   Units | BH 3 1.00 0.20  Method Units  EE128 U μg/I As 3.52 2.03  EE128 U μg/I B 12 9  EE128 U μg/I Cd <0.07 <0.07  EE128 U μg/I Cd 3.0 3.1  EE128 U μg/I Cu 3.0 3.1  EE128 U μg/I Pb 13 2.9  EE128 U μg/I Pb 13 2.9  EE128 U μg/I Ni 1.2 2.3  EE128 U μg/I Ni 1.2 2.3  EE128 U μg/I Se 0.11 0.16  EE128 U μg/I Se 0.11 0.16  EE128 U μg/I So 4 4  EE004 U units 8.9 8.6  EE049 U mg/I SO4 <10 <10  EE128 U mg/I S 0.3 0.4  EE079 μg/I CN <20 <20  EE077 μg/I CN <20 <20  EE077 μg/I SCN <200 <200  EE078 μg/I PhOH <10 <10 |  |

# Chemtech Environmental Limited METHOD DETAILS

| METHOD | SOILS                                 | METHOD SUMMARY                                     | SAMPLE | STATUS | LOD   | UNITS                 |
|--------|---------------------------------------|----------------------------------------------------|--------|--------|-------|-----------------------|
| CE127  | Arsenic (total)                       | Aqua regia digest, ICP-MS                          | Dry    | м      | 1     | mg/kg As              |
| CE063  | Boron (water soluble)                 | Hot water extract, ICP-OES                         | Dry    | М      | 0.5   | mg/kg B               |
| CE127  | Cadmium (total)                       | Aqua regia digest, ICP-MS                          | Dry    | м      | 0.2   | mg/kg Cd              |
| CE127  | Chromium (total)                      | Aqua regia digest, ICP-MS                          | Dry    | М      | 1     | mg/kg Cr              |
| -      | Chromium (III)                        | Calculation: Cr (total) - Cr (VI)                  | Dry    |        | 1     | mg/kg CrIII           |
| CE050  | Chromium (VI)                         | Acid extraction, Colorimetry                       | Dry    |        | 1     | mg/kg CrVI            |
| CE127  | Copper (total)                        | Aqua regia digest, ICP-MS                          | Dry    | М      | 1     | mg/kg Cu              |
| CE127  | Lead (total)                          | Aqua regia digest, ICP-MS                          | Dry    | М      | 1     | mg/kg Pb              |
| CE127  | Mercury (total)                       | Aqua regia digest, ICP-MS                          | Dry    | м      | 0.5   | mg/kg Hg              |
| CE127  | Nickel (total)                        | Aqua regia digest, ICP-MS                          | Dry    | м      | 1     | mg/kg Ni              |
| CE127  | Selenium (total)                      | Aqua regia digest, ICP-MS                          | Dry    | М      | 0.3   | mg/kg Se              |
| CE127  | Zinc (total)                          | Aqua regia digest, ICP-MS                          | Dry    | М      | 5     | mg/kg Zn              |
| CE004  | рН                                    | Based on BS 1377, pH Meter                         | Wet    | М      | п     | units                 |
| CE061  | Sulphate (2:1 water soluble)          | Aqueous extraction, ICP-OES                        | Dry    | М      | 10    | mg/l SO₄              |
| CE127  | Sulphur (total)                       | Acid extraction, ICP-MS                            | Dry    |        | 100   | mg/kg S               |
| CE079  | Sulphide                              | Extraction, Continuous Flow Colorimetry            | Wet    |        | 10    | mg/kg S <sup>2-</sup> |
| CE077  | Cyanide (free)                        | Extraction, Continuous Flow Colorimetry            | Wet    |        | 2     | mg/kg CN              |
| CE077  | Cyanide (total)                       | Extraction, Continuous Flow Colorimetry            | Wet    |        | 2     | mg/kg CN              |
| CE014  | Thiocyanate                           | Weak acid extraction, Colorimetry                  | Dry    | М      | 1     | mg/kg SCN             |
| CE078  | Phenols (total)                       | Extraction, Continuous Flow Colorimetry            | Wet    |        | 0.5   | mg/kg PhOH            |
| CE072  | Total Organic Carbon (TOC)            | Removal of IC by acidification, Carbon<br>Analyser | Dry    | М      | 0.1   | % w/w C               |
| CE072  | Estimate of OMC (calculated from TOC) | Calculation from Total Organic Carbon              | Dry    |        | 0.1   | % w/w                 |
| CE087  | PAH (speciated)                       | Solvent extraction, GC-MS                          | Wet    |        | 0.01  | mg/kg                 |
| CE087  | PAH (total of USEPA 16)               | Solvent extraction, GC-MS                          | Wet    |        | 1.6   | mg/kg                 |
| CE137  | PCB (ICES 7)                          | Solvent extraction, GC-MS                          | Wet    |        | 0.005 | mg/kg                 |
| \$     | Asbestos (qualitative)                | HSG 248, Microscopy                                | Dry    | υ      |       |                       |

### **Chemtech Environmental Limited**

#### **METHOD DETAILS**

| METHOD | LEACHATES               | METHOD SUMMARY              | STATUS | LOD   | UNITS                |
|--------|-------------------------|-----------------------------|--------|-------|----------------------|
| CE128  | Arsenic (dissolved)     | ICP-MS                      | U      | 0.06  | μg/l As              |
| CE128  | Boron (dissolved)       | ICP-MS                      | U      | 6     | µg/I В               |
| CE128  | Cadmium (dissolved)     | ICP-MS                      | u      | 0.07  | μg/l Cd              |
| CE128  | Chromium (dissolved)    | ICP-MS                      | U      | 0.2   | μg/I Cr              |
| CE128  | Copper (dissolved)      | ICP-MS                      | U      | 0.4   | μg/l Cu              |
| CE128  | Lead (dissolved)        | ICP-MS                      | U      | 0.2   | μg/l Pb              |
| CE128  | Mercury (dissolved)     | ICP-MS                      | U      | 0.008 | μg/l Hg              |
| CE128  | Nickel (dissolved)      | ICP-MS                      | U      | 0.5   | μg/l Ni              |
| CE128  | Selenium (dissolved)    | ICP-MS                      | U      | 0.07  | μg/l Se              |
| CE128  | Zinc (dissolved)        | ICP-MS                      | U      | 1     | μg/l Zn              |
| CE004  | рН                      | Based on BS 1377, pH Meter  | U      | 20    | units                |
| CE049  | Sulphate                | Ion Chromatography          | U      | 10    | mg/I SO <sub>4</sub> |
| CE128  | Sulphur (dissolved)     | ICP-MS                      | U      | 0.2   | mg/I S               |
| CE079  | Sulphide                | Continuous Flow Colorimetry |        | 100   | μg/I S2-             |
| CE077  | Cyanide (free)          | Distillation, Colorimetry   |        | 20    | μg/I CN              |
| CE077  | Cyanide (total)         | Continuous Flow Colorimetry |        | 20    | μg/I CN              |
| CE014  | Thiocyanate             | Colorimetry                 |        | 200   | μg/I SCN             |
| CE078  | Phenols (total)         | Continuous Flow Colorimetry |        | 10    | μg/l PhOH            |
| CE087  | PAH (total of USEPA 16) | Solvent extraction, GC-MS   |        | 1.6   | µg/I                 |

#### **Chemtech Environmental Limited**

#### **DEVIATING SAMPLE INFORMATION**

#### Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

#### Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- A Sampling date not provided
- B Sampling time not provided (waters only)
- C Sample exceeded holding time(s)
- D Sample not received in appropriate containers
- E Headspace present in sample container
- F Sample not chemically fixed (where appropriate)
- G Sample not cooled
- H Other (specify)

| Lab ref  | Sample id | Depth (m) | Deviating | Tests (Reason for deviation) |
|----------|-----------|-----------|-----------|------------------------------|
| 54648-1  | BH 1      | 0.20      | N         |                              |
| 54648-3  | BH 3      | 1.00      | N         |                              |
| 54648-5  | BH 4      | 0.50      | N         |                              |
| 54648-6  | BH 5      | 0.20      | N         |                              |
| 54648-7  | BH 5      | 1.70      | N         |                              |
| 54648-8  | BH 6      | 0.80      | N         |                              |
| 54648-9  | BH 7      | 0.20      | N         |                              |
| 54648-10 | BH 7      | 1.00      | N         |                              |



# **APPENDIX 4** CLEA v1.06 RISK ASSESSMENT: **RESULTS, SETTINGS and NOTES**

Report generated 30-Mar-15

Report title Tetlow Street, Liverpool

Created by Jack Harper BSc(Hons) MSc at Geoinvestigate Ltd.

RESULTS

| ıent      |
|-----------|
| onn<br>Sy |
| nvir      |
| ĀĞ        |
|           |

Page 1 of 11

Report generated 30-Mar-15

Page 2 of 11

|    | Agency                |          |                                             |                        |      |                     |              |                                         |                |           |
|----|-----------------------|----------|---------------------------------------------|------------------------|------|---------------------|--------------|-----------------------------------------|----------------|-----------|
|    |                       | Assessm  | Assessment Criterion (mg kg <sup>-1</sup> ) | (mg kg <sup>-1</sup> ) | Rati | Ratio of ADE to HCV | <br>20<br>10 |                                         | 20%            | 50% rule? |
|    |                       | oral     | inhalation                                  | combined               | oral | inhalation          | combined     | Saturation Limit (mg kg <sup>-1</sup> ) | Oral           | Inhal     |
| -  | Arsenic               | 3.24E+01 | 8.59E+01                                    | NR.                    | 1.00 | 0.38                | R.           | N.                                      | 2              | ž         |
| 2  | Boron                 | 3.76E+02 | 1.23E+05                                    | 3.75E+02               | 1.00 | 00.00               | 1.00         | Z.                                      | Yes            | 2         |
| က  | Cadmium               | 5.45E+00 | 3.01E+01                                    | 5.18E+00               | 0.91 | 0.09                | 1.00         | NR.                                     | Yes            | Yes       |
| 4  | Chromium III          | 1.95E+04 | 6.44E+02                                    | 6.33E+02               | 0.03 | 0.97                | 1.00         | W.                                      | 2              | Yes       |
| 2  | Copper                | 2.66E+03 | 1.05E+04                                    | 2.33E+03               | 0.78 | 0.22                | 1.00         | W.                                      | Yes            | 2         |
| 9  | Mercury, elemental    | R.       | 6.60E-01                                    | N.                     | ĸ    | 1.00                | Ä            | 1.50E+01 (vap)                          | 2              | 2         |
| 7  | Nickel                | 5.31E+02 | 1.29E+02                                    | N.                     | 0.14 | 1.00                | Ä            | ¥                                       | Yes            | Yes       |
| 8  | Selenium              | 3.50E+02 | N.                                          | NR                     | 1.00 | N.                  | Ä            | £                                       | Yes            | 2         |
| 6  | Zinc                  | 3.75E+03 | 2.58E+07                                    | 3.75E+03               | 1.00 | 0.00                | 1.00         | ¥                                       | Yes            | 2         |
| 10 | Phenol                | 1.26E+03 | 5.13E+02                                    | 3.64E+02               | 0.29 | 0.71                | 1.00         | 1.08E+05 (vap)                          | 2              | 2         |
| -  | PAH Naphthalene       | 8.72E+01 | 6.11E+00                                    | 5.71E+00               | 0.07 | 0.93                | 1.00         | 2.54E+02 (sol)                          | 2              | 2         |
| 12 | PAH Acenaphthylene    | 5.64E+02 | 1.29E+04                                    | 5.40E+02               | 96.0 | 0.04                | 1.00         | 2.96E+02 (sol)                          | 2              | 2         |
| 13 | PAH Acenaphthene      | 6.81E+02 | 1.35E+04                                    | 6.48E+02               | 0.95 | 0.05                | 1.00         | 1.97E+02 (sol)                          | 2              | 8         |
| 14 | PAH Fluorene          | 5.22E+02 | 1.73E+04                                    | 5.06E+02               | 0.97 | 0.03                | 1.00         | 1.07E+02 (sol)                          | 2              | 2         |
| 15 | PAH Phenanthrene      | 2.64E+02 | 2.10E+04                                    | 2.61E+02               | 0.99 | 0.01                | 1.00         | 1.25E+02 (sol)                          | 2              | 2         |
| 16 | PAH Anthracene        | 6.50E+03 | 4.44E+05                                    | 6.40E+03               | 0.99 | 0.01                | 1.00         | 4.07E+00 (vap)                          | 2              | 2         |
| 17 | PAH Fluoranthene      | 5.51E+02 | 1.05E+05                                    | 5.48E+02               | 0.99 | 0.01                | 1.00         | 6.62E+01 (vap)                          | 2              | 2         |
| 18 | PAH Pyrene            | 1.25E+03 | 2.44E+05                                    | 1.24E+03               | 0.99 | 0.01                | 1.00         | 7.68E+00 (vap)                          | 2              | 2         |
| 19 | PAH Benz[a]anthracene |          | 1.32E+01                                    | 5.52E+00               | 0.58 | 0.42                | 1.00         | 5.99E+00 (sol)                          | 2              | 2         |
| 20 | PAH Chrysene          | 1.29E+01 | 2.71E+01                                    | 8.75E+00               | 0.68 | 0.32                | 1.00         | 1.54E+00 (vap)                          | S <sub>Z</sub> | S         |

Report generated 30-Mar-15

Page 3 of 11

| 1 age 5 of 1 i      |                       | 50% rule?                                   | Oral   Inhal                            | No                       | No                       | No                 | No<br>No                 | No<br>No                 | No                     | Yes            | Yes            | Yes No         | Yes No         |  |
|---------------------|-----------------------|---------------------------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------|--------------------------|--------------------------|------------------------|----------------|----------------|----------------|----------------|--|
|                     |                       | 3                                           | Saturation Limit (mg kg <sup>-1</sup> ) | 4.25E+00 (sol)           | 2.40E+00 (sol)           | 3.19E+00 (vap)     | 2.15E-01 (vap)           | 1.37E-02 (vap)           | 5.39E-02 (vap)         | 2.23E+03 (sol) | 2.44E+03 (vap) | 2.69E+03 (vap) | 2.85E+03 (vap) |  |
|                     |                       | <br>S                                       | combined                                | 1.00                     | 1.00                     | 1.00               | 1.00                     | 1.00                     | 1.00                   | Ä.             | N.             | N.             | N.             |  |
|                     |                       | Ratio of ADE to HCV                         | inhalation                              | 0.33                     | 0.34                     | 0.33               | 0.33                     | 0.35                     | 0.34                   | Ä              | Ä.             | R              | NR.            |  |
| DI IDIII OO         |                       | Ratio                                       | oral                                    | 0.67                     | 99.0                     | 0.67               | 0.67                     | 0.65                     | 99.0                   | 1.00           | 1.00           | 1.00           | 1.00           |  |
| report generated    |                       | mg kg <sup>-1</sup> )                       | combined                                | 6.82E+00                 | 9.85E+00                 | 9.76E-01           | 4.05E+00                 | 8.89E-01                 | 4.66E+01               | NR.            | N.             | AN.            | NR             |  |
| lodos.              |                       | Assessment Criterion (mg kg <sup>-1</sup> ) | inhalation                              | 2.06E+01                 | 2.93E+01                 | 2.92E+00           | 1,23E+01                 | 2.57E+00                 | 1.35E+02               | N.             | A.             | A.             | N.             |  |
|                     |                       | Assessm                                     | oral                                    | 1.02E+01                 | 1.49E+01                 | 1.47E+00           | 6.03E+00                 | 1.36E+00                 | 7.11E+01               | 7.72E-05       | 7.76E-05       | 7.77E-05       | 7.77E-05       |  |
| OFFI TOOLS OF STORY | Environment<br>Agency |                                             |                                         | PAH Benzo[b]fluoranthene | PAH Benzo[k]fluoranthene | PAH Benzo[a]pyrene | PAH Indeno[123-cd]pyrene | PAH Dibenz[ah]anthracene | PAH Benzo[ghi]perylene | PCB-77         | PCB-118        | PCB-156        | PCB-189        |  |
|                     |                       |                                             |                                         | 21                       | 22                       | 23                 | 24                       | 25                       | 26                     | 27             | 28             | 29             | 30             |  |

| CLEA Software Version 1.06 | e Version | 1.06   |                   |         |       |                         | Repor    | Report generated    |                         |                         | 30-Mar-15        |                              |                              |                        |                    |                        |                        | Page 4 of 11           | _                      |
|----------------------------|-----------|--------|-------------------|---------|-------|-------------------------|----------|---------------------|-------------------------|-------------------------|------------------|------------------------------|------------------------------|------------------------|--------------------|------------------------|------------------------|------------------------|------------------------|
| Environment<br>Agency      | nent .    | νĭ     | Soil Distribution | ibution |       |                         |          |                     |                         |                         |                  | Media                        | Media Concentrations         | ations                 |                    |                        |                        |                        |                        |
|                            | ·J        | Sorbed | bevlossiQ         | Vapour  | IstoT | lioS                    | Seg lioS | seu Toobni          | teub noobluO<br>m8.0 ts | teub noobtuO<br>m8.1 ts | Indoor<br>Vapour | outdoor<br>te nuoqev<br>m8.0 | noobtuO<br>ts nuoqsv<br>mã.f | Green<br>vegetables    | Root<br>vegetables | Tuber<br>vegetables    | Herbaceous<br>fruit    | Shrub fruit            | fiunt eenT             |
|                            |           | %      | 8                 | %       | %     | mg kg-1                 | mg m.³   | mg kg <sup>-1</sup> | mg m <sub>-3</sub>      | mg m <sub>-3</sub>      | mg m-3           | mg m <sub>-3</sub>           | mg m <sub>-3</sub>           | mg kg <sup>-1</sup> FW | mg kg-1 FW         | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW |
| 1 Arsenic                  |           | 6.66   | 0.1               | 0.0     | 100.0 | 3.24E+01                | Ä.       | 1.62E+01            | 5.52E-09                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 1.39E-02               | 1.30E-02           | 7.45E-03               | 1.07E-02               | 6.48E-03               | 3.56E-02               |
| 2 Boron                    |           | 97.3   | 2.7               | 0.0     | 100.0 | 3.75E+02                | R.       | 1.88E+02            | 6.39E-08                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 1.50E+02               | 7.51E+01           | 7.51E+01               | 7.51E+01               | 7.51E+01               | 1.18E-02               |
| 3 Cadmium                  |           | 99.7   | 0.3               | 0.0     | 100.0 | 5.18E+00                | A.       | 2.59E+00            | 8.81E-10                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 2.69E-01               | 1.50E-01           | 1.61E-01               | 8.28E-02               | 1.61E-02               | 7.25E-03               |
| 4 Chromium III             |           | 100.0  | 0.0               | 0.0     | 100.0 | 6.33E+02                | Ä.       | 3.17E+02            | 1.08E-07                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 1.90E-02               | 1.90E-02           | 1.90E-02               | 1.90E-02               | 1.90E-02               | 1.90E-02               |
| 5 Copper                   |           | 7.66   | 0.3               | 0.0     | 100.0 | 2.33E+03                | Ä        | 1.16E+03            | 3.97E-07                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 4.80E+01               | 4.80E+01           | 4.80E+01               | 5.43E+01               | 4.80E+01               | 4.80E+01               |
| 6 Mercury, elementa        |           | 6.66   | 0.1               | 0.0     | 100.0 | 6.60E-01                | 2.63E-01 | 3.30E-01            | 1.12E-10                | 0.00E+00                | 6.16E-05         | 1.63E-07                     | 0.00E+00                     | 0.00E+00               | 0.00E+00           | 0.00E+00               | 0.00E+00               | 0.00E+00               | 0.00E+00               |
| 7 Nickel                   |           | 6.66   | 0.1               | 0.0     | 100.0 | 1.29E+02                | Ä        | 6.44E+01            | 2.19E-08                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 4.89E-01               | 5.54E-01           | 2.45E-01               | 3.22E-01               | 3.22E-01               | 4.38E-01               |
| 8 Selenium                 |           | 99.5   | 0.5               | 0.0     | 100.0 | 3.50E+02                | R.       | 1.75E+02            | 5.96E-08                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 3.78E+00               | 1.27E+00           | 2.91E-01               | 9.49E-01               | 1.05E+00               | 1.05E+00               |
| 9 Zinc                     |           | 99.3   | 0.7               | 0.0     | 100.0 | 3.75E+03                | Ä.       | 1.87E+03            | 6.38E-07                | 0.00E+00                | 0.00E+00         | 0.00E+00                     | 0.00E+00                     | 2.02E+02               | 2.02E+02           | 2.02E+02               | 5.36E+02               | 2.02E+02               | 2.02E+02               |
| 10 Phenol                  |           | 86.1   | 13.9              | 0.0     | 100.0 | 3.64E+02                | 1.55E+00 | 1.82E+02            | 6.20E-08                | 0.00E+00                | 1.30E-03         | 7.42E-05                     | 0.00E+00                     | 1.47E+02               | 2.50E+02           | 1.59E+02               | 0.00E+00               | 0.00E+00               | 3.00E+02               |
| 11 PAH Naphthalene         |           | 98.0   | 2.0               | 0.0     | 100.0 | 5.71E+00                | 2.83E+00 | 2.86E+00            | 9.73E-10                | 0.00E+00                | 6.97E-04         | 1.63E-06                     | 0.00E+00                     | 1.74E+00               | 2.40E+00           | 6.17E-01               | 0.00E+00               | 0.00E+00               | 7.85E-01               |
|                            | 9         | 99.3   | 0.7               | 0.0     | 100.0 | 5.40E+02                | 8.24E+00 | 2.70E+02            | 9.19E-08                | 0.00E+00                | 2.70E-03         | 3.32E-05                     | 0.00E+00                     | 8.34E+01               | 1.11E+02           | 2.88E+01               | 0.00E+00               | 0.00E+00               | 1.62E+01               |
| 13 PAH Acenaphthene        |           | 99.4   | 9.0               | 0.0     | 100.0 | 6.48E+02                | 1.03E+01 | 3.24E+02            | 1.10E-07                | 0.00E+00                | 3.09E-03         | 3.80E-05                     | 0.00E+00                     | 8.13E+01               | 1.09E+02           | 3.10E+01               | 0.00E+00               | 0.00E+00               | 1.32E+01               |
| 14 PAH Fluorene            |           | 99.5   | 0.5               | 0.0     | 100.0 | 5.06E+02                | 3.63E+00 | 2.53E+02            | 8.62E-08                | 0.00E+00                | 1.25E-03         | 2.22E-05                     | 0.00E+00                     | 5.43E+01               | 7.30E+01           | 2.14E+01               | 0.00E+00               | 0.00E+00               | 7.57E+00               |
| 15 PAH Phenanthrene        |           | 8.66   | 0.2               | 0.0     | 100.0 | 2.61E+02                | 3.34E-01 | 1.31E+02            | 4.44E-08                | 0.00E+00                | 1.61E-04         | 6.64E-06                     | 0.00E+00                     | 1.49E+01               | 2.11E+01           | 7.54E+00               | 0.00E+00               | 0.00E+00               | 1.19E+00               |
| 16 PAH Anthracene          |           | 8.66   | 0.2               | 0.0     | 100.0 | 6.40E+03                | 1.01E+01 | 3.20E+03            | 1.09E-06                | 0.00E+00                | 4.51E-03         | 1.67E-04                     | 0.00E+00                     | 3.57E+02               | 5.05E+02           | 1.81E+02               | 0.00E+00               | 0.00E+00               | 2.85E+01               |
|                            |           | 6.66   | 0.1               | 0.0     | 100.0 | 5.48E+02                | 9.32E-02 | 2.74E+02            | 9.33E-08                | 0.00E+00                | 5.65E-05         | 6.92E-06                     | 0.00E+00                     | 7.82E+00               | 1.43E+01           | 7.58E+00               | 0.00E+00               | 0.00E+00               | 2.41E-01               |
| 18 PAH Pyrene              |           | 6.66   | 0.1               | 0.0     | 100.0 | 1.24E+03                | 2.13E-01 | 6.22E+02            | 2.12E-07                | 0.00E+00                | 1.33E-04         | 1.66E-05                     | 0.00E+00                     | 2.05E+01               | 3.63E+01           | 1.88E+01               | 0.00E+00               | 0.00E+00               | 6.80E-01               |
| 19 PAH Benz[a]anthracene   |           | 100.0  | 0.0               | 0.0     | 100.0 | 5.52E+00                | 1.11E-04 | 2.76E+00            | 9.40E-10                | 0.00E+00                | 7.70E-08         | 3.14E-08                     | 0.00E+00                     | 9.32E-03               | 3.47E-02           | 2.40E-02               | 0.00E+00               | 0.00E+00               | 8.83E-05               |
| 20 PAH Chrysene            |           | 100.0  | 0.0               | 0.0     | 100.0 | 100.0 8.75E+00 2.49E-05 |          | 4.37E+00            | 1.49E-09                | 0.00E+00                | 2.12E-08         | 5.72E-08                     | 0.00E+00                     | 2.55E-02               | 7.74E-02           | 5.07E-02               | 0.00E+00               | 0.00E+00               | 3.18E-04               |

| 리  | CLEA Software Version 1.06 | n 1.06 |                   |          |       |                     | Report   | rt generated |                         | 20                      | 30-Mar-15          |                              |                              |                        |                        |                       |                        | Page 5 of 11           |                        |
|----|----------------------------|--------|-------------------|----------|-------|---------------------|----------|--------------|-------------------------|-------------------------|--------------------|------------------------------|------------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|
|    | Environment Agency         | s      | Soil Distribution | ribution |       |                     |          |              |                         |                         |                    | Media (                      | Media Concentrations         | ions                   |                        |                       |                        |                        |                        |
|    |                            | Sorbed | Dissolved         | Vapour   | lstoT | lios                | Soil gas | Indoor Dust  | teub noobtuO<br>m8.0 ts | feub noobtuO<br>m8.f fs | Indoor<br>Vapour   | noobtuO<br>ts nuoqsv<br>m8.0 | noobtuO<br>te nuoqev<br>m8.f | Green<br>saldstables   | Root<br>vegetables     | Tuber                 | Herbaceous<br>fruit    | JimJ dundS             | Jiuni əənT             |
|    |                            | %      | %                 | %        | %     | mg kg <sup>-1</sup> | mg m-3   | mg kg-1      | mg m <sup>-3</sup>      | mg m                    | mg m <sub>-3</sub> | mg m <sub>-3</sub>           | mg m <sub>-3</sub>           | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>†</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW |
| 2  | PAH Benzo[b]fluoranthene   | 100.0  | 0.0               | 0.0      | 100.0 | 6.82E+00            | 6.58E-06 | 3.41E+00     | 1.16E-09                | 0.00E+00                | 5.69E-09           | N.                           | 0.00E+00                     | 6.88E-03               | 3.19E-02               | 2.19E-02              | 0.00E+00               | 0.00E+00               | 5.03E-05               |
| 22 | - 1                        | 100.0  | 0.0               | 0.0      | 100.0 | 9.85E+00            | 5.71E-06 | 4.93E+00     | 1.68E-09                | 0.00E+00                | 5.01E-09           | Ä.                           | 0.00E+00                     | 5.46E-03               | 3.27E-02               | 2.32E-02              | 0.00E+00               | 0.00E+00               | 3.02E-05               |
| 23 | 1                          | 100.0  | 0.0               | 0.0      | 100.0 | 9.76E-01            | 6.57E-07 | 4.88E-01     | 1.66E-10                | 0.00E+00                | 5.76E-10           | A.                           | 0.00E+00                     | 6.98E-04               | 3.71E-03               | 2.63E-03              | 0.00E+00               | 0.00E+00               | 4.36E-06               |
| 24 | PAH Indeno[123-cd]pyrene   | 100.0  | 0.0               | 0.0      | 100.0 | 4.05E+00            | 4.69E-06 | 2.02E+00     | 6.89E-10                | 0.00E+00                | 4.05E-09           | N.                           | 0.00E+00                     | 5.66E-03               | 2.27E-02               | 1.49E-02              | 0.00E+00               | 0.00E+00               | 4.89E-05               |
| 25 | PAH Dibenz[ah]anthracene   | 100.0  | 0.0               | 0:0      | 100.0 | 8.89E-01            | 1.27E-06 | 4.45E-01     | 1.51E-10                | 0.00E+00                | 1.05E-09           | NR.                          | 0.00E+00                     | 3.26E-04               | 2.34E-03               | 1.59E-03              | 0.00E+00               | 0.00E+00               | 1.49E-06               |
| 26 | PAH Benzo[ghi]perylene     | 100.0  | 0.0               | 0.0      | 100.0 | 4.66E+01            | 1.58E-05 | 2.33E+01     | 7.93E-09                | 0.00E+00                | 1.34E-08           | N.                           | 0.00E+00                     | 3.59E-03               | 5.50E-02               | 4.04E-02              | 0.00E+00               | 0.00E+00               | 8.18E-06               |
| 27 | PC8-77                     | 100.0  | 0.0               | 0.0      | 100.0 | 7.72E-05            | 1.63E-09 | 3.86E-05     | 1.31E-14                | 0.00E+00                | 4.18E-13           | N.                           | 0.00E+00                     | 1.91E-09               | 2.29E-08               | 1.70E-08              | 0.00E+00               | 0.00E+00               | 5.39E-12               |
| 28 | PCB-118                    | 100.0  | 0.0               | 0.0      | 100.0 | 7.76E-05            | 7.40E-10 | 3.88E-05     | 1.32E-14                | 0.00E+00                | 1.68E-13           | N.                           | 0.00E+00                     | 2.10E-10               | 7.11E-09               | 5.18E-09              | 0.00E+00               | 0.00E+00               | 2,48E-13               |
| 29 |                            | 100.0  | 0.0               | 0.0      | 100.0 | 7.77E-05            | 1.30E-10 | 3.89E-05     | 1.32E-14                | 0.00E+00                | 3.26E-14           | Ä.                           | 0.00E+00                     | 1.73E-11               | 2.10E-09               | 1.48E-09              | 0.00E+00               | 0.00E+00               | 7.62E-15               |
| 30 | PCB-189                    | 100.0  | 0.0               | 0.0      | 100.0 | 7.77E-05            | 2.35E-11 | 3.89E-05     | 1.32E-14                | 0.00E+00                | 6.78E-15           | χ.                           | 0.00E+00                     | 1.13E-12               | 6.36E-10               | 4.34E-10              | 0.00E+00               | 0.00E+00               | 1.60E-16               |

| CLEA Software Version 1.06 | ion 1.06              |                                                    |                                                                    |                    | Repo                    | Report generated 30-Mar-15 | 30-Mar-15                  | 16                    |                                                    |                                      |                             | Page 6 of                        | of 11                             |                   |                          |
|----------------------------|-----------------------|----------------------------------------------------|--------------------------------------------------------------------|--------------------|-------------------------|----------------------------|----------------------------|-----------------------|----------------------------------------------------|--------------------------------------|-----------------------------|----------------------------------|-----------------------------------|-------------------|--------------------------|
| Environment Agency         |                       | Avera                                              | Average Daily Exposure (mg kg <sup>-1</sup> bw day <sup>-1</sup> ) | posure (m          | g kg <sup>-1</sup> bw d | ay <sup>-1</sup> )         |                            |                       |                                                    | Distr                                | Distribution by Pathway (%) | Pathway                          | (%) /                             |                   |                          |
|                            | Direct soil ingestion | Consumption of homegrown produce and attached soil | Dermal contact with soil and dust                                  | teub to noitsledal | nogev to nottelerini    | Background (oral)          | Background<br>(inhalation) | Direct soil ingestion | Consumption of homegrown produce and attached soil | Dermal contact with<br>soil and dust | teub to notisisini          | Inhalation of vapour<br>(indoor) | Inhalation of vapour<br>(noobtuo) | Background (oral) | Background<br>Sackground |
| 1 Arsenic                  | 2.40E-04              | 2.27E-05                                           | 3.70E-05                                                           | 7.54E-07           | 0.00E+00                | 0.00E+00                   | 0.00E+00                   | 79.89                 | 7.54                                               | 12.31                                | 0.25                        |                                  |                                   | 00.0              |                          |
| 2 Boron                    | 2.78E-03              | 7.71E-02                                           | 0.00E+00                                                           | 8.74E-06           | 0.00E+00                | 2.08E-01                   | 2.41E-05                   | 1.74                  | 48.25                                              | 0.00                                 | 0.01                        | 0.00                             | 0.00                              | 49.99             | 0.01                     |
| 3 Cadmium                  | 3.84E-05              | 1.33E-04                                           | 1.97E-07                                                           | 1.21E-07           | 0.00E+00                | 7.54E-04                   | 1.21E-06                   | 11.21                 | 38.70                                              | 90.0                                 | 0.04                        | 0.00                             | 0.00                              | 49.96             | 0.04                     |
| 4 Chromium III             | 4.70E-03              | 7.45E-05                                           | 0.00E+00                                                           | 1.48E-05           | 0.00E+00                | 3.39E-03                   | 1.64E-05                   | 57.37                 | 0.91                                               | 0.00                                 | 0.18                        | 0.00                             | 0.00                              | 41.36             | 0.18                     |
| 5 Copper                   | 1.73E-02              | 5.27E-02                                           | 0.00E+00                                                           | 5.43E-05           | 0.00E+00                | 3.94E-01                   | 4.12E-05                   | 12.34                 | 37.63                                              | 0.00                                 | 0.04                        | 00:0                             | 00.0                              | 49.97             | 0.03                     |
| 6 Mercury, elemental       | 4.90E-06              | 5.64E-08                                           | 0.00E+00                                                           | 1.54E-08           | 5.70E-05                | 0.00E+00                   | 3.03E-06                   | 0.00                  | 0.00                                               | 00.00                                | 0.03                        | 94.91                            | 10.0                              | 00.0              | 5.05                     |
| 7 Nickel                   | 9.55E-04              | 4.71E-04                                           | 2.45E-05                                                           | 3.00E-06           | 0.00E+00                | 7.31E-03                   | 3.64E-06                   | 32.78                 | 16.18                                              | 0.84                                 | 0.10                        | 0.00                             | 0.00                              | 49.90             | 0.10                     |
| 8 Selenium                 | 2.60E-03              | 1.82E-03                                           | 0.00E+00                                                           | 8.16E-06           | 0.00E+00                | 1.97E-03                   | 3.64E-06                   | 40.59                 | 28.46                                              | 0.00                                 | 0.13                        | 0.00                             | 0.00                              | 30.82             | 00.00                    |
| 9 Zinc                     | 2.78E-02              | 2.72E-01                                           | 0.00E+00                                                           | 8.72E-05           | 0.00E+00                | 1.52E+00                   | 1.45E-04                   | 4.63                  | 45.36                                              | 0.00                                 | 0.01                        | 0.00                             | 0.00                              | 49.99             | 10.0                     |
| 10 Phenol                  | 2.70E-03              | 1.95E-01                                           | 4.17E-03                                                           | 8.49E-06           | 1.20E-03                | 1.97E-02                   | 2.42E-03                   | 1.20                  | 86.57                                              | 1.85                                 | 0.00                        | 0.53                             | 0.00                              | 8.76              | 1.08                     |
| 11 PAH Naphthalene         | 4.24E-05              | 1.21E-03                                           | 2.83E-05                                                           | 1.33E-07           | 6.45E-04                | 3.94E-04                   | 1,70E-04                   | 1.70                  | 48.68                                              | 1.14                                 | 0.01                        | 25.87                            | 0.00                              | 15.80             | 6.81                     |
| 12 PAH Acenaphthylene      | 4.00E-03              | 5.08E-02                                           | 2.67E-03                                                           | 1.26E-05           | 2.50E-03                | 7.88E-06                   | 6.67E-07                   | 29'9                  | 84.67                                              | 4.46                                 | 0.02                        | 4.17                             | 0.00                              | 0.01              | 00.00                    |
| 13 PAH Acenaphthene        | 4.81E-03              | 4.91E-02                                           | 3.21E-03                                                           | 1.51E-05           | 2.86E-03                | 5.51E-05                   | 1.52E-06                   | 8.01                  | 81.75                                              | 5.35                                 | 0.03                        | 4.76                             | 0.00                              | 60.0              | 00.0                     |
| 14 PAH Fluorene            | 3.76E-03              | 3.25E-02                                           | 2.51E-03                                                           | 1.18E-05           | 1.16E-03                | 3.32E-05                   | 5.82E-06                   | 9.39                  | 81.33                                              | 6.27                                 | 0.03                        | 2.89                             | 0.00                              | 0.08              | 0.01                     |
| 15 PAH Phenanthrene        | 1.94E-03              | 9.03E-03                                           | 1.29E-03                                                           | 6.08E-06           | 1.49E-04                | 8.66E-05                   | 3.14E-05                   | 15.45                 | 72.06                                              | 10.32                                | 0.05                        | 1.18                             | 0.00                              | 69.0              | 0.25                     |
| 16 PAH Anthracene          | 4.75E-02              | 2.16E-01                                           | 3.17E-02                                                           | 1.49E-04           | 4.18E-03                | 4.50E-06                   | 2.49E-06                   | 15.83                 | 72.16                                              | 10.57                                | 0.05                        | 1.39                             | 0.00                              | 0.00              | 00.00                    |
| 17 PAH Fluoranthene        | 4.06E-03              | 5.64E-03                                           | 2.71E-03                                                           | 1.28E-05           | 5.26E-05                | 1.97E-05                   | 5.09E-06                   | 32.49                 | 45.08                                              | 21.70                                | 0.10                        | 0.42                             | 0.00                              | 0.16              | 0.04                     |
| 18 PAH Pyrene              | 9.23E-03              | 1.44E-02                                           | 6.16E-03                                                           | 2.90E-05           | 1.24E-04                | 1.97E-05                   | 3.94E-06                   | 30.75                 | 48.12                                              | 20.54                                | 0.10                        | 0.41                             | 0.00                              | 70.0              | 0.01                     |
|                            | 4.09E-05              | 1.19E-05                                           | 2.73E-05                                                           | 1.29E-07           | 7.25E-08                | 3.38E-06                   | 6.67E-07                   | 50.91                 | 14.84                                              | 34.00                                | 0.16                        | 0.09                             | 0.00                              | 00.0              | 00.00                    |
| 20 PAH Chrysene            | 6.49E-05              | 2.73E-05                                           | 4.33E-05                                                           | 2.04E-07           | 2.20E-08                | 6.19E-06                   | 1.03E-06                   | 47.80                 | 20.11                                              | 31.93                                | 0.15                        | 0.01                             | 00.00                             | 0.00              | 0.00                     |

| 딩  | CLEA Software Version 1.06 | าก 1.06               |                                                    |                                                                    |                   | Repo                    | Report generated 30-Mar-15 | 30-Mar-15                  |                                                                                                                |                                  |                                      |                             | Page 7 of 11                     | of 11                             |                   |                            |
|----|----------------------------|-----------------------|----------------------------------------------------|--------------------------------------------------------------------|-------------------|-------------------------|----------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|-----------------------------|----------------------------------|-----------------------------------|-------------------|----------------------------|
|    | Environment<br>Agency      |                       | Avera                                              | Average Daily Exposure (mg kg <sup>-1</sup> bw day <sup>-1</sup> ) | posure (m         | g kg <sup>-1</sup> bw d | ay <sup>-1</sup> )         |                            | o geografica de la companya de la c |                                  | Dist                                 | Distribution by Pathway (%) | y Pathwa                         | 1y (%)                            |                   |                            |
|    |                            | Direct soil ingestion | Consumption of homegrown produce and attached soil | Dermal contact with soil and dust                                  | taub to notsisden | Inhalation of vapour    | Background (oral)          | Background<br>(inhalation) | Direct soil ingestion                                                                                          | Consumption of homegrown produce | Dermal contact with<br>soil and dust | Jeub to notislarini         | Inhalation of vapour<br>(indoor) | Inhalation of vapour<br>(outdoor) | Background (oral) | Background<br>(inhalation) |
| 21 | PAH Benzo[b]fluoranthene   | 5.06E-05              | 1.06E-05                                           | 3.38E-05                                                           | 1.59E-07          | 6.59E-09                | 6.19E-06                   | 7.88E-07                   | 53.15                                                                                                          | 11.18                            | 35.50                                | 0.17                        | 10.0                             | 00.0                              | 00.0              | 0.00                       |
| 22 | PAH Benzo[k]fluoranthene   | 7.31E-05              | 1.08E-05                                           | 4.88E-05                                                           | 2.29E-07          | 6.24E-09                | 5.06E-06                   | 4.24E-07                   | 54.98                                                                                                          | 8.12                             | 36.72                                | 0.17                        | 00.0                             | 00.0                              | 0.00              | 0.00                       |
| 23 | PAH Benzo[a]pyrene         | 7.24E-06              | 1.23E-06                                           | 4.83E-06                                                           | 2.27E-08          | 7.04E-10                | 6.19E-06                   | 3.64E-07                   | 54.30                                                                                                          | 9.26                             | 36.26                                | 0.17                        | 00.0                             | 00.0                              | 0.00              | 0.00                       |
| 24 | PAH Indeno[123-cd]pyrene   | 3.00E-05              | 7.63E-06                                           | 2.00E-05                                                           | 9.42E-08          | 4.60E-09                | 5.63E-06                   | 5.46E-07                   | 51.93                                                                                                          | 13.21                            | 34.68                                | 0.16                        | 10.0                             | 00.0                              | 0.00              | 0.00                       |
| 25 | PAH Dibenz[ah]anthracene   | 6.60E-06              | 7.65E-07                                           | 4.41E-06                                                           | 2.07E-08          | 1.10E-09                | 2.25E-06                   | 2.00E-06                   | 55.95                                                                                                          | 6.49                             | 37.37                                | 0.18                        | 0.01                             | 0.00                              | 0.00              | 0.00                       |
| 26 | PAH Benzo[ghi]perylene     | 3.46E-04              | 1.94E-05                                           | 2.31E-04                                                           | 1.09E-06          | 1.69E-08                | 3.38E-06                   | 6.06E-07                   | 92.73                                                                                                          | 3.25                             | 38.67                                | 0.18                        | 00.0                             | 0.00                              | 0.00              | 00:00                      |
| 27 | PCB-77                     | 5.73E-10              | 1.31E-11                                           | 4.12E-10                                                           | 1.80E-12          | 3.92E-13                | 2.76E-09                   | 0.00E+00                   | 28.64                                                                                                          | 99.0                             | 20.60                                | 60.0                        | 0.02                             | 0.00                              | 20.00             | 00.00                      |
| 28 | PCB-118                    | 5.76E-10              | 8.55E-12                                           | 4.14E-10                                                           | 1.81E-12          | 1.59E-13                | 2.76E-09                   | 0.00E+00                   | 28.78                                                                                                          | 0.43                             | 20.70                                | 60.0                        | 0.01                             | 0.00                              | 20.00             | 00.00                      |
| 29 | PCB-156                    | 5.76E-10              | 7.19E-12                                           | 4.15E-10                                                           | 1.81E-12          | 3.19E-14                | 2.76E-09                   | 0.00E+00                   | 28.82                                                                                                          | 0.36                             | 20.73                                | 60.0                        | 00.0                             | 00.0                              | 20.00             | 0.00                       |
| 30 | PCB-189                    | 5.77E-10              | 6.80E-12                                           | 4.15E-10                                                           | 1.81E-12          | 7.08E-15                | 2.76E-09                   | 0.00E+00                   | 28.83                                                                                                          | 0.34                             | 20.74                                | 60.0                        | 00.0                             | 00.0                              | 20.00             | 0.00                       |

| CLEA Software Version 1.06 | sion 1. | 90                                               |                  |                                                        | Repor                  | rt generated                                                  | Report generated 30-Mar-15                         | 2                                             |                                                             |                              |                                     |                                               |                                                         |                                                                        | Page 8                                                    | of 11                                                      |
|----------------------------|---------|--------------------------------------------------|------------------|--------------------------------------------------------|------------------------|---------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| Environment Agency         |         | (hđ kđ., BM qsλ.,)<br>Oral Health Culteris Asine | dilant asinondal | Inhalation Health Criteria Value<br>(µg kg.' BW day.') | Oral Mean Daily Intake | (hô qs $\lambda_1$ )<br>Iupsisijou Mesu Dsij $\lambda$ lutske | Air-water partition coefficient (% <sub>e</sub> X) | Coefficient of Diffusion in Air $(m^2s^{-1})$ | Coefficient of Diffusion in Water $({\sf m}^2{\sf s}^{-1})$ | log K <sub>∞</sub> (cm³ g¹¹) | log K <sub>ow</sub> (dimensionless) | Dermal Absorption Fraction<br>(dimensionless) | Soil-to-dust transport factor<br>(9 g <sup>ri</sup> DW) | Sub-surface soil to indoor air<br>correction factor<br>(dimensionless) | Relative bioavailability via soil<br>ingestion (unitless) | Relative bioavailability via dust<br>inhalation (unitless) |
| Arsenic                    | Q       | 0.3                                              | Q                | 0.002                                                  | N.                     | NR                                                            | R.                                                 | NR.                                           | N.                                                          | AN.                          | Ä                                   | _                                             |                                                         |                                                                        | -                                                         | -                                                          |
| 2 Boron                    | Ē       | 160                                              | ē                | 2.9                                                    | 3700                   | 0.398                                                         | Ж                                                  | Ä                                             | NR                                                          | R.                           | Ä                                   | 0                                             | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 3 Cadmium                  | ΙD      | 0.36                                             | 頁                | 0.0014                                                 | 13.4                   | 0.02                                                          | χ.                                                 | NR.                                           | N.                                                          | A.                           | N.                                  | 0.001                                         | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 4 Chromium III             | Ē       | 150                                              | Ē                | 0.03                                                   | 60.2                   | 0.27                                                          | N.                                                 | N.                                            | N.                                                          | N.                           | Ä.                                  | 0                                             | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 5 Copper                   | Ω       | 160                                              | 巨                | 0.286                                                  | 2000                   | 0.68                                                          | Ν.<br>Ω                                            | N.                                            | NR                                                          | N.                           | Æ                                   | 0                                             | 0.5                                                     | -                                                                      | -                                                         |                                                            |
| 6 Mercury, elemental       | N.      | 0                                                | ĪΩ               | 90.0                                                   | 0                      | 0.05                                                          | 1.17E-01                                           | 6.34E-06                                      | 2.00E-09                                                    | 4.16                         | 0.62                                | 0                                             | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 7 Nickel                   | 旦       | 12                                               | ĪΩ               | 9000                                                   | 130                    | 90.0                                                          | χ<br>Ω                                             | N.                                            | N.                                                          | N.                           | ĸ                                   | 0.005                                         | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 8 Selenium                 | Œ       | 6.4                                              | Ä                | 0                                                      | 35                     | 90.0                                                          | R                                                  | Ä                                             | NR.                                                         | ĸ.                           | ĸ                                   | 0                                             | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 9 Zinc                     | ΙŒ      | 009                                              | ΙŒ               | 009                                                    | 27000                  | 2.4                                                           | R.                                                 | R.                                            | N.                                                          | ĸ.                           | Ä                                   | 0                                             | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 10 Phenol                  | Ē       | 700                                              | ΙŒ               | 10                                                     | 350                    | 40                                                            | 8.35E-06                                           | 7.90E-06                                      | 6.36E-10                                                    | 1.92                         | 1.48                                | 0.3                                           | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 11 PAH Naphthalene         | Ē       | 20                                               | ΙŒ               | 98.0                                                   | 7                      | 2.8                                                           | 6.62E-03                                           | 6.52E-06                                      | 5.16E-10                                                    | 2.81                         | 3.34                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 12 PAH Acenaphthylene      | Ē       | 09                                               | ΙŒ               | 9                                                      | 0.14                   | 0.011                                                         | 5.68E-04                                           | 5.97E-06                                      | 4.82E-10                                                    | 3.26                         | 3.91                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 13 PAH Acenaphthene        | ΞĒ      | 09                                               | IQL              | 09                                                     | 0.98                   | 0.025                                                         | 7.59E-04                                           | 5.85E-06                                      | 4.70E-10                                                    | 3.37                         | 4.03                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 14 PAH Fluorene            | Ē       | 40                                               | 巨                | 40                                                     | 0.59                   | 960.0                                                         | 4.12E-04                                           | 5.58E-06                                      | 4.47E-10                                                    | 3.45                         | 4.13                                | 0.13                                          | 0.5                                                     | τ-                                                                     | -                                                         | -                                                          |
| 15 PAH Phenanthrene        | 巨       | 12.5                                             | 豆                | 12.5                                                   | 1.54                   | 0.518                                                         | 1.43E-04                                           | 5.34E-06                                      | 4.32E-10                                                    | 3.74                         | 4.5                                 | 0.13                                          | 0.5                                                     | -                                                                      | 1                                                         | -                                                          |
| 16 PAH Anthracene          | Ē       | 300                                              | 巨                | 300                                                    | 0.08                   | 0.041                                                         | 1.81E-04                                           | 5.36E-06                                      | 4.36E-10                                                    | 3.75                         | 4.5                                 | 0.13                                          | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 17 PAH Fluoranthene        | Ē       | 12.5                                             | 巨                | 12.5                                                   | 0.35                   | 0.084                                                         | 6.29E-05                                           | 5.01E-06                                      | 4.11E-10                                                    | 4.26                         | 5.13                                | 0.13                                          | 0.5                                                     | -                                                                      |                                                           | -                                                          |
| 18 PAH Pyrene              | Ē       | 30                                               | 巨                | 8                                                      | 0.35                   | 0.065                                                         | 5.64E-05                                           | 5.01E-06                                      | 4.15E-10                                                    | 4.21                         | 5.08                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
|                            | Ω       | 0.138                                            | ۵                | 0.00048                                                | 90.0                   | 0.011                                                         | 3.16E-05                                           | 4.60E-06                                      | 3.80E-10                                                    | 4.89                         | 5.91                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                         | -                                                          |
| 20 PAH Chrysene            | ₽       | 0.2                                              | 0                | 20000                                                  | 0.11                   | 0.047                                                         | 2 400 00                                           | A 575 AC                                      | 2775 40                                                     |                              |                                     |                                               |                                                         | ,                                                                      |                                                           | ,                                                          |

| 귕  | CLEA Software Version 1.06 | on 1.    | 90.                                              |                             |                                          | Report                 | generated                                | Report generated 30-Mar-15                                   | 5                                        |                                                    |                               |                                     |                                               |                                                         |                                                                        | Page 9 of                                              | if 11                                                      |
|----|----------------------------|----------|--------------------------------------------------|-----------------------------|------------------------------------------|------------------------|------------------------------------------|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| •  | Environment<br>Agency      |          | Oral Health Criteria Value<br>(µg kg.¹ BW day.¹) | 200 3 2 2 20 30 20 20 37 37 | (hg kg.' BW day.')<br>(hg kg.' BW day.') | Oral Mean Daily Intake | Inhalation Mean Daily Intake ( ${ m Hg}$ | Air-water partition coefficient (K <sub>∞</sub> x) (cm³ cm³) | Coefficient of Diffusion in Air (m² s²l) | Coefficient of Diffusion in Water $(m^2 \ s^{-1})$ | log K <sub>oc</sub> (cm³ g⁻¹) | log K <sub>ow</sub> (dimensionless) | Dermal Absorption Fraction<br>(dimensionless) | Soil-to-dust transport factor<br>(g g <sup>-1</sup> DW) | Sub-surface soil to indoor air<br>correction factor<br>(dimensionless) | Relative bioavailability via soil ingestion (unitless) | Relative bioavailability via dust<br>inhalation (unitless) |
| 21 | PAH Benzo[b]fluoranthene   | Ω        | 0.142                                            | ΩI                          | 0.0005                                   | 0.11                   | 0.013                                    | 2.05E-06                                                     | 4.38E-06                                 | 3.62E-10                                           | 5.02                          | 80.9                                | 0.13                                          | 0.5                                                     |                                                                        | -                                                      | -                                                          |
| 22 | PAH Benzo[k]fluoranthene   | Q        | 0.2                                              | ₽                           | 0.0007                                   | 60.0                   | 0.007                                    | 1.74E-06                                                     | 4.36E-06                                 | 3.62E-10                                           | 5.17                          | 6.26                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                      | -                                                          |
| 23 | PAH Benzo[a]pyrene         | Ω        | 0.02                                             | ₽                           | 0.00007                                  | 0.11                   | 900'0                                    | 1.76E-06                                                     | 4.38E-06                                 | 3.67E-10                                           | 5.11                          | 6.18                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                      | -                                                          |
| 24 | PAH Indeno[123-cd]pyrene   | ₽        | 0.086                                            | Ω                           | 0.0003                                   | 0.1                    | 600'0                                    | 2.05E-06                                                     | 4.17E-06                                 | 3.51E-10                                           | 4.94                          | 5.97                                | 0.13                                          | 9.0                                                     | -                                                                      | -                                                      | -                                                          |
| 22 | PAH Dibenz[ah]anthracene   | <u></u>  | 0.018                                            | ₽                           | 0.000063                                 | 0.04                   | 0.033                                    | 5.40E-06                                                     | 4.08E-06                                 | 3.40E-10                                           | 5.27                          | 6.38                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                      | -                                                          |
| 56 | PAH Benzo[ghi]perylene     | ₽        | 0.909                                            | ₽                           | 0.0032                                   | 90.0                   | 0.01                                     | 2.86E-06                                                     | 4.22E-06                                 | 3.56E-10                                           | 5.62                          | 6.81                                | 0.13                                          | 0.5                                                     | -                                                                      | -                                                      | -                                                          |
| 27 | PCB-77                     | 2        | 0.000002                                         | A.                          | 0                                        | 0.000049               | 0                                        | 7.11E-04                                                     | 4.52E-06                                 | 3.63E-10                                           | 6.22                          | 89.9                                | 0.14                                          | 0.5                                                     | +                                                                      | -                                                      | -                                                          |
| 28 | PCB-118                    | <u>P</u> | 0.000002                                         | N.                          | 0                                        | 0.000049               | 0                                        | 1.04E-03                                                     | 4.32E-06                                 | 3.47E-10                                           | 6.73                          | 7.19                                | 0.14                                          | 0.5                                                     | -                                                                      | -                                                      | -                                                          |
| 29 | PCB-156                    | T I      | 0.000002                                         | Ä                           | 0                                        | 0.000049               | 0                                        | 6.20E-04                                                     | 4.14E-06                                 | 3.33E-10                                           | 7.26                          | 7.71                                | 0.14                                          | 0.5                                                     | -                                                                      | -                                                      | -                                                          |
| 30 | PCB-189                    | 1        | 0.000002                                         | NR                          | 0                                        | 0.000049               | 0                                        | 3.70E-04                                                     | 3.98F-06                                 | 3.21E-10                                           | 7 78                          | 8 24                                | 0.14                                          | 22                                                      | -                                                                      |                                                        | •                                                          |

| CLE | CLEA Software Version 1.06 | 1.06                                |                      |                           | Report generated 30-Mar-15                                                                                                  | 30-Mar-15                                                                                                                           |                                                                                                                                            |                                                                                                         |                                                                                                                                       | Page 10 of 11                                                                                                                        |
|-----|----------------------------|-------------------------------------|----------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|     | Environment<br>Agency      | Soll-to-water partition coefficient | Vapour pressure (Pa) | Water solubility (mg L⁻¹) | Soil-to-plant concentration factor for green vegetables (mg g <sup>-1</sup> DW or FW basis over mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration factor for root vegetables (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> blant soil) | Soil-to-plant concentration<br>factor for tuber vegetables<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration fector for herbaceous fruit (mg g" plant DW or FW basis over mg g" DW soil) | Soil-to-plant concentration<br>factor for shrub fruit<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration<br>factor for tree fruit<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) |
| -   | Arsenic                    | 5.00E+02                            | NR                   | 1.25E+06                  | 0.00043 fw                                                                                                                  | 0.0004 fw                                                                                                                           | 23                                                                                                                                         | 333                                                                                                     | 02 6                                                                                                                                  | 11 6                                                                                                                                 |
| 7   | Boron                      | 1.00E+01                            | NR                   | 6.35E+04                  | 0.4 fw                                                                                                                      | 0.2 fw                                                                                                                              | 0.2 fw                                                                                                                                     | 0.2 fw                                                                                                  | 0.2 fw                                                                                                                                | 0.0002 dw                                                                                                                            |
| က   | Cadmium                    | 1.00E+02                            | NR                   | 1.62E+06                  | 0.052 fw                                                                                                                    | 0.029 fw                                                                                                                            | 0.031 fw                                                                                                                                   | 0.016 fw                                                                                                | 0.0031 fw                                                                                                                             | 0.0014 fw                                                                                                                            |
| 4   | Chromium III               | 4.80E+03                            | NR                   | 5.85E+05                  | 0.00003 fw                                                                                                                  | 0.00003 fw                                                                                                                          | 0.00003 fw                                                                                                                                 | 0.00003 fw                                                                                              | 0.00003 fw                                                                                                                            | 0.00003 fw                                                                                                                           |
| သ   | Copper                     | 1.00E+02                            | N.                   | 1.38E+06                  | 0.0206 fw                                                                                                                   | 0.0206 fw                                                                                                                           | 0.0206 fw                                                                                                                                  | 0.0233 fw                                                                                               | 0.0206 fw                                                                                                                             | 0.0206 fw                                                                                                                            |
| 9   | Mercury, elemental         | 2.93E+02                            | 7.03E-02             | 5.60E-02                  | 0.00E+00                                                                                                                    | 0.00E+00                                                                                                                            | 0.00E+00                                                                                                                                   | 0.00E+00                                                                                                | 0.00E+00                                                                                                                              | 0.00E+00                                                                                                                             |
| 7   | Nickel                     | 5.00E+02                            | NR                   | 2.50E+06                  | 0.0038 fw                                                                                                                   | 0.0043 fw                                                                                                                           | 0.0019 fw                                                                                                                                  | 0.0025 fw                                                                                               | 0.0025 fw                                                                                                                             | 0.0034 fw                                                                                                                            |
| ω   | Selenium                   | 5.00E+01                            | N.                   | 2.17E+06                  | 0.0108 fw                                                                                                                   | 0.00364 fw                                                                                                                          | 0.00083 fw                                                                                                                                 | 0.00271 fw                                                                                              | 0.003 fw                                                                                                                              | 0.003 fw                                                                                                                             |
| 6   | Zinc                       | 3.80E+01                            | AN.                  | 4.32E+06                  | 0.054 fw                                                                                                                    | 0.054 fw                                                                                                                            | 0.054 fw                                                                                                                                   | 0.143 fw                                                                                                | 0.054 fw                                                                                                                              | 0.054 fw                                                                                                                             |
| 10  | Phenol                     | 1.69E+00                            | 1.15E+01             | 8.41E+04                  | model                                                                                                                       | model                                                                                                                               | labom                                                                                                                                      | 0.00E+00                                                                                                | 0.00E+00                                                                                                                              | model                                                                                                                                |
| 7   | PAH Naphthalene            | 1.31E+01                            | 2.31E+00             | 1.90E+01                  | model                                                                                                                       | model                                                                                                                               | lapom                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | lepom                                                                                                                                |
| 12  | PAH Acenaphthylene         | 3.69E+01                            | 7.08E-02             | 7.95E+00                  | lapom                                                                                                                       | model                                                                                                                               | model                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 13  | PAH Acenaphthene           | 4.76E+01                            | 7.37E-02             | 4.11E+00                  | model                                                                                                                       | lapom                                                                                                                               | lepom                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 14  | PAH Fluorene               | 5.72E+01                            | 1.56E-02             | 1.86E+00                  | model                                                                                                                       | model                                                                                                                               | lepom                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 15  | PAH Phenanthrene           | 1.12E+02                            | 2.82E-03             | 1.12E+00                  | model                                                                                                                       | model                                                                                                                               | model                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 16  | PAH Anthracene             | 1.14E+02                            | 8.49E-05             | 5.60E-02                  | model                                                                                                                       | lapom                                                                                                                               | model                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | lapom                                                                                                                                |
| 17  | PAH Fluoranthene           | 3.69E+02                            | 1.31E-04             | 2.30E-01                  | model                                                                                                                       | model                                                                                                                               | model                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 18  | PAH Pyrene                 | 3.29E+02                            | 1.53E-05             | 1.30E-01                  | model                                                                                                                       | model                                                                                                                               | lapom                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 19  | PAH Benz[a]anthracene      | 1.58E+03                            | 1.24E-06             | 3.80E-03                  | model                                                                                                                       | model                                                                                                                               | model                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |
| 20  | PAH Chrysene               | 1.12E+03                            | 4.52E-08             | 2.00E-03                  | lebom                                                                                                                       | model                                                                                                                               | model                                                                                                                                      | model                                                                                                   | model                                                                                                                                 | model                                                                                                                                |

| EA | CLEA Software Version 1.06 | 1.06                                                                   |                      |                           | Report generated 30-Mar-15                                                                                                                 | 30-Mar-15                                                                                                       |                                                                                                                                   |                                                                                                                                            |                                                                                                                                       | Page 11 of 11                                                                                                                        |
|----|----------------------------|------------------------------------------------------------------------|----------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|    | Environment<br>Agency      | Soil-to-water partition coefficient (cm <sup>3</sup> g <sup>-1</sup> ) | Vapour pressure (Pa) | Water solubility (mg L⁻¹) | Soil-to-plant concentration<br>factor for green vegetables (mg<br>g <sup>-1</sup> plant DW or FW basis over<br>mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration<br>factor for root vegetables (mg<br>g² plant DW or FW basis over<br>mg g² DW soil) | Soil-to-plant concentration factor for tuber vegetables (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration<br>factor for harbaceous fruit (mg<br>g <sup>-1</sup> plant DW or FW basis over<br>mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration<br>factor for shrub fruit<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) | Soil-to-plant concentration<br>factor for tree fruit<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) |
| 21 | PAH Benzo[b]fluoranthene   | 2.13E+03                                                               | 6.34E-08             | 2.00E-03                  | model                                                                                                                                      | lebom                                                                                                           | lapom                                                                                                                             | lepom                                                                                                                                      | model                                                                                                                                 | model                                                                                                                                |
| 22 | PAH Benzo[k]fluoranthene   | 3.00E+03                                                               | 1.64E-08             | 8.00E-04                  | model                                                                                                                                      | lapom                                                                                                           | lapom                                                                                                                             | model                                                                                                                                      | model                                                                                                                                 | model                                                                                                                                |
| 23 | PAH Benzo[a]pyrene         | 2.62E+03                                                               | 2.00E-08             | 3.80E-03                  | model                                                                                                                                      | lepom                                                                                                           | lepom                                                                                                                             | model                                                                                                                                      | model                                                                                                                                 | model                                                                                                                                |
| 24 | PAH Indeno[123-cd]pyrene   | 1.77E+03                                                               | 2.12E-09             | 2.00E-04                  | model                                                                                                                                      | lepom                                                                                                           | labom                                                                                                                             | model                                                                                                                                      | lapom                                                                                                                                 | model                                                                                                                                |
| 25 | PAH Dibenz[ah]anthracene   | 3.78E+03                                                               | 1.66E-10             | 6.00E-04                  | model                                                                                                                                      | lepom                                                                                                           | lepom                                                                                                                             | model                                                                                                                                      | lapom                                                                                                                                 | шоде                                                                                                                                 |
| 26 | PAH Benzo[ghi]perylene     | 8.46E+03                                                               | 1.55E-10             | 2.60E-04                  | model                                                                                                                                      | lepom                                                                                                           | lebom                                                                                                                             | model                                                                                                                                      | model                                                                                                                                 | model                                                                                                                                |
| 27 | PCB-77                     | 3.37E+04                                                               | 3.86E-04             | 6.63E-02                  | model                                                                                                                                      | lapom                                                                                                           | lebom                                                                                                                             | 0.00E+00                                                                                                                                   | 0.00E+00                                                                                                                              | model                                                                                                                                |
| 28 | PCB-118                    | 1.09E+05                                                               | 1.68E-04             | 2.27E-02                  | model                                                                                                                                      | model                                                                                                           | model                                                                                                                             | 0.00E+00                                                                                                                                   | 0.00E+00                                                                                                                              | model                                                                                                                                |
| 29 | PCB-156                    | 3.69E+05                                                               | 2.94E-05             | 7.41E-03                  | model                                                                                                                                      | lepom                                                                                                           | lapom                                                                                                                             | 0.00E+00                                                                                                                                   | 0.00E+00                                                                                                                              | model                                                                                                                                |
| 30 | PCB-189                    | 1.22E+06                                                               | 5.14E-06             | 2.49E-03                  | model                                                                                                                                      | model                                                                                                           | model                                                                                                                             | 0.00E+00                                                                                                                                   | 0.00E+00                                                                                                                              | model                                                                                                                                |

30/03/2015 Report generated Tetlow Street, Liverpool Report title

Environment Agency

Page 1 of 5

Jack Harper BSc(Hons) MSc at Geoinvestigate Ltd. Created by

BASIC SETTINGS

Residential with homegrown produce Land Use

Semi-detached house Building Receptor Soil

Female (res) Sandy loam

**Exposure Pathways** 

Dermal contact with indoor dust Dermal contact with soil Consumption of homegrown produce Direct soil and dust ingestion

Inhalation of indoor dust Inhalation of outdoor vapour Inhalation of indoor vapour

years

9

Exposure Duration

9

End age class

Start age class 1

| CLEA Software | oftwa            | 1000          | Version 1.06                     | 1.06          |                                    |                                    | Report generated 30-Mar-15                 | -Mar-15                    |                                              | Page 2 of            | 5.                                          |
|---------------|------------------|---------------|----------------------------------|---------------|------------------------------------|------------------------------------|--------------------------------------------|----------------------------|----------------------------------------------|----------------------|---------------------------------------------|
| Lar           | Land Use Re      |               | sidential with homegrown produce | homeg         | rown pr                            | eonpo                              |                                            |                            |                                              |                      | onment                                      |
|               | Ш                | Exposure      | Frequencies                      |               | (days yr <sup>-1</sup> )           |                                    | Occupation Periods (hr dav. <sup>1</sup> ) | ds (hr dav <sup>-1</sup> ) |                                              | -200                 | ə                                           |
|               | noite            | oduce         | thiw t                           | thiw t        | bns izu                            | bns faud<br>Tr                     |                                            |                            | Soil to skin adherence<br>  factors (mg cm²) | adherence<br>mg cm²) | ten noits                                   |
| Age Class     | Direct soil inge | Consumption o | Dermal contac<br>indoor dust     | Dermal contac | Inhalation of di<br>vapour, indoor | Inhalation of di<br>vapour, outdoo | stoobnl                                    | snoobjuO                   | Joopul                                       | Outdoor              | Direct soil inge:<br>(g day <sup>-1</sup> ) |
| -             | 180              | 180           | 180                              | 180           | 365                                | 365                                | 23.0                                       | 1.0                        | 90.0                                         | 1.00                 | 0.10                                        |
| 2             | 365              | 365           | 365                              | 365           | 365                                | 365                                | 23.0                                       | 1.0                        | 90.0                                         | 1.00                 | 0.10                                        |
| က             | 365              | 365           | 365                              | 365           | 365                                | 365                                | 23.0                                       | 1.0                        | 90.0                                         | 1.00                 | 0.10                                        |
| 4             | 365              | 365           | 365                              | 365           | 365                                | 365                                | 23.0                                       | 1.0                        | 90.0                                         | 1.00                 | 0.10                                        |
| വ             | 365              | 365           | 365                              | 365           | 365                                | 365                                | 19.0                                       | 1.0                        | 90.0                                         | 1.00                 | 0.10                                        |
| 9             | 365              | 365           | 365                              | 365           | 365                                | 365                                | 19.0                                       | 1.0                        | 90.0                                         | 1.00                 | 0.10                                        |
| 7             | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| œ             | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 0             | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 10            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| =             | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 12            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 13            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 14            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 15            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 16            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |
| 17            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 00.00                | 0.00                                        |
| 18            | 0                | 0             | 0                                | 0             | 0                                  | 0                                  | 0.0                                        | 0.0                        | 0.00                                         | 0.00                 | 0.00                                        |

| CLEA Software Version | oftwa                 | re Ve           | rsion 1                                     | 90'                          |                  |                         | Repor            | Report generated 30-Mar-15 | 30-Mar-15        |                                                                 |                       | Page 3 of 5   |
|-----------------------|-----------------------|-----------------|---------------------------------------------|------------------------------|------------------|-------------------------|------------------|----------------------------|------------------|-----------------------------------------------------------------|-----------------------|---------------|
| Re                    | Receptor Female (res) | Female          | (res)                                       |                              |                  |                         |                  | 1                          |                  |                                                                 | Environment<br>Agency | ronment<br>cy |
| प्राची विक            |                       |                 |                                             | Max exposed skin factor      | skin factor      |                         |                  | Consur                     | nption rates (   | Consumption rates (q FW kg <sup>-1</sup> BW dav <sup>-1</sup> ) | N dav-1)              |               |
| Age Class             | Body weight (kg)      | Body height (m) | etrinoistion rate<br>(h'yeb <sup>e</sup> m) | Indoor (m² m <sup>-2</sup> ) | Outdoor (m² m-²) | Total skin area<br>(m²) | səldణిəgəv nəəาව | Root vegetables            | Tuber vegetables | Herbaceous fruit                                                | Jimi dundê            | Jiunì een l   |
| -                     | 5.60                  | 0.7             | 8.5                                         | 0.32                         | 0.26             | 3.43E-01                | 7.12             | 10.69                      | 16.03            | 1.83                                                            | 2.23                  | 3.82          |
| 2                     | 9.80                  | 8.0             | 13.3                                        | 0.33                         | 0.26             | 4.84E-01                | 6.85             | 3.30                       | 5.46             | 3.96                                                            | 0.54                  | 11.96         |
| က                     | 12.70                 | 6.0             | 12.7                                        | 0.32                         | 0.25             | 5.82E-01                | 6.85             | 3.30                       | 5.46             | 3.96                                                            | 0.54                  | 11.96         |
| 4                     | 15.10                 | 6.0             | 12.2                                        | 0.35                         | 0.28             | 6.36E-01                | 6.85             | 3.30                       | 5.46             | 3.96                                                            | 0.54                  | 11.96         |
| 2                     | 16.90                 | 1.0             | 12.2                                        | 0.35                         | 0.28             | 7.04E-01                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 9                     | 19.70                 | <u>:</u>        | 12.2                                        | 0.33                         | 0.26             | 7.94E-01                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 7                     | 22.10                 | 1.2             | 12.4                                        | 0.22                         | 0.15             | 8.73E-01                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| ∞                     | 25.30                 | 1.2             | 12.4                                        | 0.22                         | 0.15             | 9.36E-01                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| တ                     | 27.50                 | ر.<br>دن        | 12.4                                        | 0.22                         | 0.15             | 1.01E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 9                     | 31.40                 | 1.3             | 12.4                                        | 0.22                         | 0.15             | 1.08E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 7                     | 35.70                 | 4.              | 12.4                                        | 0.22                         | 0.14             | 1.19E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 12                    | 41.30                 | 4.              | 13.4                                        | 0.22                         | 0.14             | 1.29E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 13                    | 47.20                 | 7.5             | 13.4                                        | 0.22                         | 0.14             | 1.42E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 14                    | 51.20                 | 1.6             | 13.4                                        | 0.22                         | 0.14             | 1.52E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 15                    | 26.70                 | 1.6             | 13.4                                        | 0.21                         | 0.14             | 1.60E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 16                    | 59.00                 | 1.6             | 13.4                                        | 0.21                         | 0.14             | 1.63E+00                | 3.74             | 1.77                       | 3.38             | 1.85                                                            | 0.16                  | 4.26          |
| 17                    | 70.00                 | 1.6             | 14.8                                        | 0.33                         | 0.27             | 1.78E+00                | 2.94             | 1.40                       | 1.79             | 1.61                                                            | 0.22                  | 2.97          |
| 18                    | 70.90                 | 1.6             | 12.0                                        | 0.33                         | 0.27             | 1.80E+00                | 2.94             | 1.40                       | 1.79             | 1.61                                                            | 0.22                  | 2.97          |

| עבר יסומיים יסומיים ייסומיים ייסומיים            |          | Report generated 30-Mar-15                                | Page 4 of 5           |
|--------------------------------------------------|----------|-----------------------------------------------------------|-----------------------|
| Building Semi-detached house                     |          | Soil Sandy loam                                           | Environment<br>Agency |
| Building footprint ( $m^2$ )                     | 4.30E+01 | Porosity, Total (cm³ cm³)                                 | 1 5.30E-01            |
| Living space air exchange rate (hr¹)             | 5.00E-01 | Porosity, Air-Filled (cm <sup>3</sup> cm <sup>-3</sup> )  | 2.00E-01              |
| Living space height (above ground, m)            | 4.80E+00 | Porosity, Water-Filled (cm³ cm³)                          | 3.30E-01              |
| Living space height (below ground, m)            | 0.00E+00 | Residual soil water content (cm³ cm³)                     | 1.20E-01              |
| Pressure difference (soil to enclosed space, Pa) | 3.10E+00 | Saturated hydraulic conductivity (cm s <sup>-1</sup> )    | 3.56E-03              |
| Foundation thickness (m)                         | 1.50E-01 | van Genuchten shape parameter m (dimensionless)           | 3.20E-01              |
| Floor crack area (cm²)                           | 5.25E+02 | Bulk density (g cm <sup>-3</sup> )                        | 1.21E+00              |
| Dust loading factor (µg m <sup>-3</sup> )        | 5.00E+01 | Threshold value of wind speed at 10m (m s <sup>-1</sup> ) | 7.20E+00              |
|                                                  |          | Empirical function $(F_x)$ for dust model (dimensionless) | 1.22E+00              |
|                                                  |          | Ambient soil temperature (K)                              | 2.83E+02              |
|                                                  |          | Soil pH                                                   | 3.84E+00              |
|                                                  |          | Soil Organic Matter content (%)                           | 3.50E+00              |
|                                                  |          | Fraction of organic carbon (g g <sup>-1</sup> )           | 2.03E-02              |
|                                                  |          | Effective total fluid saturation (unitless)               | 5.12E-01              |
|                                                  |          | Intrinsic soil permeability (cm²)                         | 4.75E-08              |
|                                                  |          | Relative soil air permeability (unitless)                 | 6.42E-01              |
|                                                  |          | Effective air permeability (cm²)                          | 90 DEC 6              |

| CLEA Software Version 1.06                                                         |                                 | Report                             | Report generated 30-Mar-15                                                          | -Mar-15                | Page 5 of 5                      |
|------------------------------------------------------------------------------------|---------------------------------|------------------------------------|-------------------------------------------------------------------------------------|------------------------|----------------------------------|
| Soil - Vapour Model                                                                |                                 | Air Dispersion Model               | ion Model                                                                           |                        | Environment<br>Agency            |
| Depth to top of source (no building) (cm)                                          | 0                               | Mean annual w                      | Mean annual windspeed at 10m (m s <sup>-1</sup> )                                   | (m s <sub>-1</sub> )   | 2.00                             |
| Deptration to top of source (beneath building) (cm) Default soil gas ingress rate? | 65<br>Yes                       | Air dispersion fa                  | Air dispersion factor at height of 0.8m * Air dispersion factor at height of 1.6m * | 0.8m *<br>1.6m *       | 2400.00                          |
| Soil gas ingress rate (cm³ s⁻¹)                                                    | 2.50E+01                        | Fraction of site cover (m² m²)     | cover (m² m²)                                                                       |                        | 6.0<br>6.0                       |
| Building ventilation rate (cm <sup>3</sup> s <sup>-1</sup> )                       | 2.87E+04                        | Air dispersion                     | Air dispersion factor in a m <sup>-2</sup> s <sup>-1</sup> ner ka m <sup>-3</sup>   | per ko m <sup>-3</sup> |                                  |
| Averaging time surface emissions (yr)                                              | 9                               |                                    | 5<br>70<br>11                                                                       | :<br>D                 |                                  |
| Finite vapour source model?                                                        | Yes                             |                                    |                                                                                     |                        |                                  |
| Thickness of contaminated layer (cm)                                               | 170                             |                                    |                                                                                     |                        |                                  |
| Soil - Plant Model                                                                 | Dry weight conversion<br>factor | Homegrown fraction<br>Average High | rfraction<br>High                                                                   | Soil loading<br>factor | Preparation<br>correction factor |
|                                                                                    | g DW g <sup>-1</sup> FW         | dimensionless                      | onless                                                                              | gg-¹ DW                | dimensionless                    |
| Green vegetables                                                                   | 960.0                           | 0.05                               | 0.33                                                                                | 1.00E-03               | 2.00E-01                         |
| Root vegetables                                                                    | 0.103                           | 90.0                               | 0.40                                                                                | 1.00E-03               | 1.00E+00                         |
| Tuber vegetables                                                                   | 0.210                           | 0.02                               | 0.13                                                                                | 1.00E-03               | 1.00E+00                         |
| Herbaceous fruit                                                                   | 0.058                           | 90:0                               | 0.40                                                                                | 1.00E-03               | 6.00E-01                         |
| Shrub fruit                                                                        | 0.166                           | 60.0                               | 09.0                                                                                | 1.00E-03               | 6.00E-01                         |
| Tree fruit                                                                         | 0.157                           | 0.04                               | 0.27                                                                                | 1.00E-03               | 6.00F-01                         |

Gardener type Average



## CLEA v1.06 RISK ASSESSMENT: NOTES

Justification of Settings Utilised in CLEA v1.06 to generate Site Specific Assessment Criteria

| ected Option sidential with me-grown produce naltered mi-detached house naltered male (residential) | Justification  Best fit to current intended development  Best fit to current intended development  Default setting representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| me-grown produce naltered mi-detached house naltered male (residential)                             | Best fit to current intended development Default setting representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| naltered<br>mi-detached house<br>naltered<br>male (residential)                                     | Best fit to current intended development Default setting representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mi-detached house<br>naltered<br>male (residential)                                                 | development  Default setting representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| naltered<br>male (residential)                                                                      | development  Default setting representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| male (residential)                                                                                  | Default setting representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| naitered                                                                                            | read are applicated by the state of the stat |
| - H. ( - 2 - 2                                                                                      | most vulnerable receptor  Majority of soils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                                                                                                   | Majority of soils encountered during intrusive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| iaitereu                                                                                            | works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50%                                                                                                 | Analytically derived value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                     | (estimated from Analytically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                     | derived TOC) from soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                     | sampled at site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34                                                                                                  | Average analytically derived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                     | value from soils sampled at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                     | site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| T                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| itched on                                                                                           | No on-going addition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                     | contamination to soils at site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| '0m                                                                                                 | Maximum encountered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                     | depth of made ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | encountered at site 1.70m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                     | though generally ≤0.95m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                     | Understood to be greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                     | than 90% covering of site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                     | with hard standing or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                     | vegetative cover following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                     | completion of development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                                                                   | ndy loam naltered .0%  4  itched on  Om                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |