

LAND AT GATEACRE GARDEN CENTRE LIVERPOOL

GEO-ENVIRONMENTAL INVESTIGATION, RISK ASSESSMENT AND REMEDIAL STRATEGY

Prepared for: Macbryde Homes Ltd Unit 28 St Asaph Business Park Glascoed Road St Asaph LL17 0LJ

By:

LK Consult Ltd Bury Business Centre Kay Street Bury Lancashire BL9 6BU

> Date: January 2015 Ref: LKC 14 1086

PART OF THE LK GROUP

Site Address	Gateacre Garden Centre, Acrefield Road, Liverpool, L25 5JW				
Report Title	Overarching Geo-Environmental Investigation and Risk Assessment and Remedial Strategy				
Job Number	LKC 14 1086	Document Ref.	CL-602-LKC 14 1086- 04		
Date Issued	January 2015	Report Version	R0		
Prepared By	Michelle Pickford	Signature	explayord		
Reviewed By	Colin Crompton	Signature	Culu		

Disclaimer

This report has been prepared by LKC who have exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant experienced in preparing reports of a similar scope. However, to the extent that the report is based on or relies upon information contained in records, reports or other materials provided to LKC which have not been independently produced or verified, LKC gives no warranty, representation or assurance as to the accuracy or completeness of such information.

This report is issued on the condition that LKC will not be held liable for any loss arising from ground conditions between sampling points (i.e. boreholes/trial pits/hand augers/surface samples) which have not been shown by the sampling points or related testing carried out during the investigation, nor for any loss arising from conditions below the maximum depth of the investigation. Opinions on such conditions, where given, are for general guidance only.

This report is prepared solely for the benefit of Macbryde Homes Ltd. It may not be relied upon by, or submitted to a third party for their reliance for the purposes of valuation, mortgage, insurance and regulatory approval, until all invoices have been settled in full.

Those using this information in subsequent assessments or evaluations do so at their own risk.

EXECUTIVE SUMMARY

Site Details	This report was undertaken in support of a future planning application for the redevelopment
	of the site for a residential end use.
	The site is located at National Grid Reference 342520E 387560N, east of Acrefield Road in
	the Gateacre area of Liverpool.
Previous Work	A preliminary risk assessment has previously been undertaken on the study site. The site was
	historically a nursery and currently a garden centre.
	Contamination relates to potential pesticides and heavy metals from use as a nursery, made
	ground on-site relating to ash and clinker (metals, PAHs and sulphate) and asbestos from
	former building structures on site.
	The conceptual model identified four potential pollutant linkages.
Ground Investigation	The investigation comprised the drilling of 21no. window sample boreholes and the excavation
_	of one hand dug trial pit.
	29no. representative soil samples were taken during the site investigation and selected for
	chemical contamination analysis. In addition, 6no. samples were scheduled for leaching tests.
Ground Conditions	The ground conditions beneath the site comprised made ground underlain by natural gravelly
	sand and / or sandy gravelly clay. These natural strata are underlain by shallow sandstone
	bedrock.
Conceptual Site Model	Three pollutant linkages have been identified for the site, relating to risks from direct contact of
-	arsenic and lead in soils, sulphate attack on concrete and risk to potable water supplies. A
	further linkage requires a watching brief in the former pond area.
Soil Risk Assessment &	Elevated arsenic and lead have been identified in the soils (WS107 and WS204 - located on
Recommendations	the central southern part of the site) which will require remediation.
(Human Health)	Elevated organic contaminants indicate PE pipe should be installed in made ground around
	WS104 and WS203.
Controlled Waters	One slightly elevated lead concentration is not considered to pose a significant risk to
Assessment &	controlled waters.
Recommendations	
Gas Risk Assessment &	Possible pond on site may pose localised risk of hazardous gas and a watching brief should
Recommendations	be maintained in this area during development works (foundation and service excavation).
Preliminary Geotechnical	Sulphate resistant concrete may be required in the northwestern part of the site if concrete is
Assessment &	laid in contact with the made ground (WS103, TH201 and WS208). This should be confirmed
Recommendations	by the structural engineer.
Remediation Strategy	Determination of option for remediating arsenic and lead hotspots.
	Validation of imported subsoil and topsoil material for garden / soft landscaping areas.
	Watching brief during foundation and service excavations in area of former pond.
	Confirmation of potable water pipe installation as per UU risk assessment form.
	A Completion/Validation Report detailing all validation work should be provided to the Local
	Authority. Once this has been approved any contamination conditions can be discharged.

CONTENTS

1	INTRODUCTION	1
2	PREVIOUS WORK	2
3	GROUND INVESTIGATION	8
4	GROUND CONDITIONS	12
5	GEOTECHNICAL APPRAISAL	14
6	GENERIC RISK ASSESSMENT	17
7	SUMMARY CONCLUSIONS	27
8	REMEDIAL STRATEGY	29

FIGURES

Figure 1: Site Location Plan
Figure 2: Site Boundary Plan
Figure 3: Proposed Layout Plan
Figure 4: Sampling Location Plan (current layout)
Figure 5: Sampling Location Plan (proposed layout)
Figure 6: Estimated Depth to Rockhead

APPENDICES

Appendix A:	Risk Matrix
Appendix B:	Profile Logs
Appendix C:	Certificates of Analysis - Contamination
Appendix D:	Certificates of Analysis – Geotechnical
Appendix E:	Generic Soil Assessment Criteria
Appendix F:	Statistical Analysis Output Sheets
Appendix G:	UU Risk Assessment
Appendix H:	CATWASTE Assessment

1 INTRODUCTION

1.1 Background

LK Consult Ltd (LKC) has been commissioned by Macbryde Homes Ltd to carry out a geoenvironmental investigation and risk assessment for land at Gateacre Garden Centre, Liverpool. The investigation was undertaken in support of a future planning application for the redevelopment of the site for residential dwellings. Information is therefore required on the properties of any potential contaminants that may be present in, on or under the site.

A Preliminary Risk Assessment (PRA) report (Ref: LKC 14 1086-0 R0, dated April 2014) and Geoenvironmental Investigation and Risk Assessment report (Ref. LKC 14 1086-02 R0, dated April 2014) have previously been undertaken by LKC. The PRA report is summarised in Section 2. This report should be read in conjunction with these previous reports.

The Geoenvironmental Investigation and Risk Assessment report recommended further work was undertaken on site once access was possible. The data from the previous investigation is provided and assessed alongside data from this phase of works, to provide an overarching assessment of site conditions.

Macbryde Homes Ltd has received permission to utilise the previous data in this assessment.

1.2 Site Details

A summary of site settings is presented in Table 1-1. Figures 1 and 2 indicate the site location and boundary and Figure 3 indicates the proposed layout.

Location	East of Acrefield Road in the Gateacre area of Liverpool.			
	National Grid Reference 342520E 387560N.			
Area	5500m ² .			
Topography	47 metres above ordnance datum (AOD) in the west to 44m AOD in the east.			
Land Use	Site			
	Hardstood tarmac and concrete ground across the entire site, bounded by			
	wooden fencing.			
	Surrounding Area			
	North, East, South and West: Residential Properties.			
	Acrefield Road adjacent to the western site boundary.			
Proposed	10 no. detached dwellings.			
Development				

Table 1-1. Summary of site details for land at Gateacre Garden Centre, Liverpool.

2 PREVIOUS WORK

2.1 Summary of Existing Information

A PRA report (Ref: CL-602-LKC 14 1086-01 R0, dated April 2014) has previously been undertaken by LKC.

The report comprised a review of factual information sources such as site history via historical mapping, geology, hydrogeology and an Envirocheck search. A preliminary contamination conceptual model was provided which identified several potential pollutant linkages. A summary of the available information is provided below along with the preliminary conceptual model.

2.2 Site History

The site history is summarised in Table 2-1.

Site Features	Location	Map Dates Present	Comments
Possible small pond	W	1893-1894	-No longer present by 1907 mapping.
Nursery	Whole site	1927-2014	 Building present in north-eastern corner. Access track added to centre of site by 1937 mapping. Glass houses present on site by 1952 mapping. Annotated as Acrefield Nursery from 1961 mapping. Annotated as Garden Centre from 1993 mapping. Some glass houses have been removed by 1993 mapping.
Surrounding Area	Distance/	Map Dates Present	Comments
Acrefield Road	Adi. W	1849-2014	
Garden of residential dwelling	Adj. N	1849-2014	
Possible mound	50m SW	1893-1956	-No longer present by 1961 mapping.
Cutting	130m SW	1893-1956	-No longer present by 1951 mapping.
Cutting	80m S	1893-1982	-No longer present by 1993 mapping.
Cutting	80m N	1893-1982	-No longer present by 1993 mapping although level difference remains indicated.
Cutting	160m E	1893-2014	
Cutting	60m WNW	1907-1938	No longer present by 1952 mapping.
The Brae	Adj. N	1927-2014	
Orchard	30m E	1927-1938	-No longer present by 1952 mapping.
Cutting	10m NW	1937-1938	-No longer present by 1952 mapping
Unreferenced building	Adj. S	1952-2014	-Annotated as Cherryvale from 1961 mapping.

Table 2-1: Summary of significant historical features; surrounding area features include significant potentially contaminative features within 100m of the site or 250m of the site if a potential landfill (i.e. a possible source of landfill gas) is identified.

Surrounding Area	Distance/	Map Dates	Comments
Features	Location	Present	
Nursery	Adj. S	1952-1974	-No longer present by 1982 mapping.
Bowling Green	Adj. E	1952-1953	-No longer present by 1956 mapping.
Virgo Potens Hospital	70m N	1952-1974	-Annotated as Gateacre Grange by 1978
			mapping.
Grange Nursery	70m N	1961-1965	-No longer present by 1968 mapping.
Warehouse	90m E	1968-2014	
Residential dwellings	Adj. E	1974-2014	
Residential dwellings	Adj. S	1974-2014	
Hunts Cross Avenue	Adj. S	1974-2014	

Table 2-1 (continued): Summary of significant historical features; surrounding area features include significant potentially contaminative features within 100m of the site or 250m of the site if a potential landfill (i.e. a possible source of landfill gas) is identified.

2.3 Environmental Setting

The environmental setting is summarised in Table 2-2.

Summary of Environmental Setting					
	Superficial		-Till on eastern part of site. No drift recorded on western part.		
	Bedrock		-Chester Pebble Beds -Wilmslow Sandstone Formation to the east.		
	Faulting		-None within influencing distance.		
Geology	BGS logs		-2 within 250m located 203m and 220m NE. -Nearest SJ48NW14 203m NE. Soil to 0.8m, brown clay to 2.18m, brown sand with occasional pebbles to 4.57m, clay and sand to 8.53m, sandstone with bands of clay to 10.06m, red sandstone with soft bands to 76.2m).		
	Aquifer	Superficial	-Unproductive.		
Hydrogeology	Designation	Bedrock	-Principal Aquifer.		
. If all ogo clogy	Groundwater abstractions		-1 within 250m. Located 172m NE for manufacturing. The licence has been revoked.		
	Nearest surface water		-Drain 710m E.		
	Flooding		-No risk from rivers or the sea.		
Hydrology	Surface water abstractions		-None within 1km.		
	Discharge consent		-None within 1km.		
	Pollution Incidents		-None within 500m.		
	Coal Mining Referral Area		-Standing Advice.		
Mining	Coal Report		-Not within likely zone of influence from past underground coal workings. -No shafts present within 20m of the site.		
	Ground Stability		-Very low to no hazard of ground instability.		
	Mineral Abstraction		-None within 250m.		
	Known/Register	red	-None within 250m.		
(within 250m)	Potential		-4 cuttings located 10m to 130m from site. Nearest potentially infilled by 1952 mapping.		
Padan			-Probability of <1% of homes above Action Level.		
Radon			-No further action required.		
Designated Sites			-Site within Nitrate Vulnerable Zone.		
Contemporary Trade Directory			-4 within 250m, nearest 57m SW (tyre dealers listed as inactive).		

Table 2-2: Summary of the environmental settings for land at Gateacre Garden Centre, Liverpool.

2.4 Site Reconnaissance

A site reconnaissance of the study site area was carried out by LKC on the 18th March 2014. The site was accessed off Acrefield Road via a gated driveway along the west site boundary. The site is currently used as a garden centre with associated car park. The site was observed to be sloping downwards towards the east.

The western and southern areas of the site were used as a car parking area, with the north and east comprising the garden centre building, planting and storage area.

The garden centre area comprised the following:

- Raised flower beds.
- Wooden out-houses / sheds storing garden supplies / materials.
- Storage areas for plant potting/flowering/construction materials.
- Trolley storage and garden furniture areas.
- Large metal storage containers and gas canisters.
- Pesticides / Herbicides.
- Domestic appliances, such as fridge-freezers, cooling trays.

The ground across the study site was observed to be hard surfaced with tarmac and concrete across the majority of the site. A small area of bare ground was present on the south-eastern part of the site. The site was bounded by wooden fencing and large conifer trees. Several manhole covers were observed across the site surface. No fuel stains or leakages were apparent within the car parking area.

2.5 Preliminary Contamination Conceptual Model

The preliminary contamination conceptual model using contaminant-pathway-receptor linkages based on guidance in CLR11¹ has been summarised in Table 2-3. This is based on the premise that if there is no pollutant linkage then there will be no risk to the receptor.⁻ The site will follow a Residential land use scenario.

A summary of contamination sources are as follows:

- Demolition of structures and land raising using ash and clinker heavy metals, PAHs, asbestos (ACM).
- Nursery Pesticides and heavy metals, such as arsenic and lead, which were historically used in pesticides.
- Former pond hazardous gas (primarily carbon dioxide and methane).

A summary of possible pathways are as follows:

- Human Health ingestion (of soil, dust, home produce), inhalation (of dust, fibres, vapours), dermal contact (of soils and dust).
- Controlled Waters: Migration of mobile contaminants through permeable strata or through preferential pathways.
- Building and Services: Direct contact.
- Flora: Root uptake.

A summary of possible receptors are as follows:

- Human Health: Future site residents.
- Controlled Waters: Underlying Principal Aquifer. Surface water is not considered a potential receptor due to its distance from the site.
- Buildings and Services: Hazardous gas and organic/corrosive contaminants that could affect integrity of building materials and service pipes.
- Flora: Within future gardens.

It should be noted that there may be risk from short term exposure from contaminated soil to site workers. The Preliminary Contamination Conceptual Model deals with long term exposure to key receptors. Acute risks can be easily mitigated by good environmental management of the site during site works. Standard health and safety precautions (as per HSE guidance²) should be adopted by all workers involved with site enabling and construction works. Therefore, this receptor is not considered in the contamination conceptual model.

Seven generic potential pollutant linkages have been identified for the study site. Each linkage is described along with an assessment of the risk based upon guidance on probabilities and consequences outlined in CIRIA C552³.

This conceptual model is based upon contaminant-pathway-receptor pollutant linkages, on the premise that if there is no pollutant linkage then there will be no risk to the receptor⁴.

In order to assess the potential risk for each pollutant linkage, an assessment of the magnitude of the potential consequence (severity) of the risk occurring and the magnitude of the probability (likelihood) of the risk occurring has been considered and classified. This

 ² HSE (1991). "Protection of workers and the general public during development of contaminated land" London HMSO.
 ³ CIRIA (2001). "Contaminated land risk assessment: A guide to good practice". C552.

⁴ EA (2004). "Model Procedures for the Management of Land Contamination." R&D Publication CLR 11.

is based on the guidance provided in CIRIA C552 and further details including a risk matrix is provided in Appendix A.

Where LKC identifies a moderate or higher risk intrusive work or precautionary remedial measures will be recommended. Where there is a moderate/low risk an assessment will be undertaken to establish what category the pollutant linkage will fall into.

Pollutant Linkage	Pathway	Receptor	Contaminant (source)	Probability	Consequence	Risk	Assessment
DI 1	- Dermal contact. - Inhalation of soil and	-Future	-Heavy metals, PAHs and pesticides (whole site).	Likely	Medium	Moderate	 Probability: Considered a likely probability for heavy metals, PAHs and pesticides. Considered low for ACM as significant quantities
	- Ingestion of soil and dust.	residents	-Possible ACM (former buildings / structures).	Low	Severe	Moderate	not anticipated. - Recommendation: An intrusive investigation across the site.
PL2	 Inhalation of vapours. Migration through permeable strata and preferential pathways. 	-Future residents	-Volatile Contaminants (made ground).	Unlikely	Medium	Low	 Probability: Considered low as a significant source has not been identified. Recommendation: Watching brief during site investigation and development.
PL3	 Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces. 	-Future residents -Buildings -Offsite land users	-Methane, Carbon Dioxide & Trace Gases. (made ground)	Low	Severe	Moderate	 Probability: Low localised possibility in area of former pond. Recommendation: Further assessment once ground conditions are known.
PL4	 Surface run-off. Migration through permeable strata and preferential pathways Perched waters migration. 	-Groundwater.	-Pesticides (whole site)	Likely	Mild	Moderate / Low	 Probability: Considered likely associated with nursery use. Risk: Moderate. Recommendation: Further assessment on risk of pesticides on completion of soil analysis.
PL5	 Sulphate attack on concrete. 	-Building structure	-Sulphate (made ground on site).	Likely	Mild	Moderate / Low	 Probability: Considered likely associated with potential ash and clinker materials. Risk: Considered low as significant quantities not anticipated. Recommendation: Limited sampling.
PL6	 Ingestion of tainted water supply. 	-Future residents	-PAHs (whole site) -Petroleum hydrocarbons.	Likely	Medium	Moderate / Iow	 Probability: Considered likely in for PAHs associated with nursery land use. Risk: moderate. Recommendation: Further assessment on completion of site investigation. Standard PE pipe can be placed in natural strata.
PL7	 Direct Contact (plant uptake). 	-Flora	-Inorganic (whole site).	Low	Minor	Very Low	 Probability: Considered unlikely as no evidence of vegetation stress identified during the study area reconnaissance. Recommendation: No investigation required at this stage.

Table 2-3: Preliminary Contamination Conceptual Model for land at Gateacre Garden Centre, Liverpool

3 **GROUND INVESTIGATION**

3.1 Site Investigation Design and Methodology

In order to assess the ground conditions at the site and to investigate the potential pollutant linkages identified in the preliminary contamination conceptual model intrusive investigation was undertaken in two phases.

The first phase of investigation was carried out on 18th and 19th March 2014 in the accessible areas around the current buildings and structures. The site investigation comprised the following:

- Drilling of 12no. window sample boreholes to depths of between 0.82mbgl and 2.45mbgl (referenced WS101 to WS112).
- Standard Penetration Tests (SPTs) approximately every 1m in natural strata.
- Installation of two boreholes (WS102 and WS105).
- Head space samples were collected for onsite testing using a Photoionisation Detector (PID) and further soil samples were collected for laboratory chemical analysis.

The second phase of works was undertaken on the 15th and 16th October 2014 and concentrated on those areas of the site which were previously inaccessible. The site investigation comprised the following:

- Drilling of 9no. window sample boreholes to depths of between 0.99mbgl and 2.43mbgl (referenced WS201 to WS209).
- Standard Penetration Tests (SPTs) approximately every 1m in natural strata.
- Installation of five boreholes (WS202, WS204, WS206, WS207 and WS209).
- Excavation of one hand dug trial hole to a depth of 0.85mbgl (referenced TH201).
- Head space samples were collected for onsite testing using a Photoionisation Detector (PID) and further soil samples were collected for laboratory chemical analysis.

All borehole locations are shown in Figure 4 (current layout) and Figure 5 (proposed layout).

The sampling points were undertaken to give good site coverage across open areas and within the footprint of former buildings and also to target the location of the former pond

(WS101, WS103 and WS207) in an approximate herringbone pattern. The investigation was undertaken in line with BS10175⁵.

All profile logs are provided in Appendix B and are in line with BS14688-1⁶.

3.2 Well Installations

Seven boreholes were installed with monitoring wells for groundwater monitoring and groundwater sampling. Monitoring wells were installed in accordance with BS10175 and CIRIA C665⁷ and generally comprised approximately 0.5m plain pipe over a length of slotted pipe surrounded by pea gravel and sealed at the top with bentonite and concrete.

The response zones for the window sample boreholes were installed along the entire length of the borehole.

Well installation details are provided in the Profile Logs in Appendix B.

3.3 Sampling Protocol

3.3.1 Soil Sample Collection

Standard sampling protocol and preservation of samples was undertaken as described in the EA guidance on site investigation⁸.

Soil was collected for onsite testing. A plastic zip bag was half filled with soil allowing a suitably sized headspace. The bag was sealed and stored for at least 20 minutes before being tested for total volatile organic compounds using a TVA-1000 photoionisation detector (PID). Results of the PID readings are presented on the profile logs (Appendix B). The on-site monitoring was carried out in line CIRIA C665 and C682⁹ to aid in screening samples for volatile analysis.

Soil samples of approximately 500g were recovered in amber jars, amber vials for volatile analysis and plastic tubs. All the samples were labelled and stored in cool boxes prior to being collected by courier at the end of the day for delivery to the Chemtest laboratory in Newmarket. If collection was not possible the same day then samples were stored in the

⁵ British Standard (2011). "Investigation of Potentially Contaminated Sites – Code of Practice." BS10175:2011.

⁶ British Standards (2002) Geotechnical investigation and testing – Identification and Classification of Soil. Part 1: Identification and description. BS EN ISO 14688-1:2002.

⁷ CIRIA (2007). "Assessing Risks Posed by Hazardous Ground Gases to Buildings." CIRIA C665

⁸ EA (2000). "Technical Aspects Of Site Investigation. Volumes 1 & 2 Text Supplements Research and Development Technical Report." P5-065/Tr.

⁹ CIRIA (2009). "Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination" CIRIA C682.

sample storage fridge at the LK Group offices below 4°C. Samples were tracked using appropriate Chain of Custody forms provided by Chemtest.

Representative soil samples taken during the site investigation and were selected for chemical and geotechnical testing. Six samples were also subjected to leaching tests. Table 3-1 shows the testing undertaken.

The majority of soil samples were taken from the made ground to represent likely worst case site conditions. Six samples of natural strata were also analysed (WS107, 0.7-0.9m, WS109, 0.3-0.8m, WS110 0.3m, WS111, 0.1-0.5m, WS205, 0.3-0.5m and WS207, 0.3-0.5m).

It should be noted that hexavalent chromium soil is analysed using the USEPA recommended method of alkaline leach. This method limits chromium (VI) reduction to chromium (III)¹⁰.

Many of the tests are UKAS or MCERTS accredited and further details are given in the Certificate of Analysis presented in Appendix C. The soil risk assessment is presented in Section 6.2 and the controlled waters risk assessment is presented in Section 6.3.

3.3.2 Geotechnical Testing

In-situ geotechnical tests were performed in the boreholes to further characterise the subsoil conditions. In total, twenty-nine Standard Penetration Tests were performed on the underlying sub-soils.

Five Atterberg Limits tests were undertaken on selected clay samples to ascertain the risk of shrinkability from trees. In addition, two sand samples were subjected to particle size distribution testing. These tests were undertaken at Murray Rix Laboratories in Stockport. Certificates of analysis are presented in Appendix D.

¹⁰ Palmer, CD and Roberts, WP (1994). "Natural Attenuation of Hexavalent Chromium in Groundwater and Soils." EPA Issue EPA/540/5-94/505.

3.3.3 Summary of Analysis Suites

A summary of analysed soil and water samples are presented in Table 3-1.

	S	ampling Suites	No. Soil Samples	No. Leaching Samples
s	Arsenic	Lead		
talloid	Cadmium	Mercury		
/ Met	Chromium (total)	Nickel	26	6
letals	Copper	Selenium	20	0
avy N	Zinc	Chromium (VI)		
ĥ	Vanadium			
	Bulk Asbestos Analysi	S	26	-
	Free Cyanide		7	3
	Total Cyanide	Water Soluble Boron	7	3
anic	PAH 16 (speciated)		26	6
Inorg	Combined pesticide suite		7	-
	Phenols (total)		7	3
	TPHCWG		7	2
	BTEX & MTBE			5
	рН		29	6
_	SOM		29	-
enera	Particle Size Distribution	on	2	-
Ű	Atterberg Limits		5	-
	Hardness		-	6

Table 3-1: Contamination Sampling Suites for land at Gateacre Garden Centre, Liverpool.

4 **GROUND CONDITIONS**

4.1 Summary of Ground Conditions

The ground conditions beneath the site comprised tarmac over made ground underlain by natural strata comprising gravelly sand and sandy gravelly clay.

These natural strata are underlain by shallow sandstone bedrock. The upper part of this strata was weathered which allowed penetration by the window sample borehole and the SPT sampler and was recovered as sand and gravel. A summary of typical ground conditions are detailed below in Table 4-1.

Depth to Top of Strata (mbgl)	Depth to Base of Strata (mbgl)	Thickness of Strata (m)	Description
0.0 to 0.2	0.0 to 0.75	0.1 to 0.75	MADE GROUND 1: Dark brown, very gravelly sand with ash, clinker, coal and brick fragments, tarmacadam gravel and rare roots. Gravel is fine to medium, sub-rounded to angular. Construction sub-base between 0.10-0.75mbgl, only evident in WS101, WS105 and WS107, WS204, WS206, WS207, WS209.
0.0 to 0.5	0.3 to 0.9	0.3 to 0.6	MADE GROUND 2:Brown sandy gravelly clay with ash, clinker, brick, coal and pottery.Only evident in WS107, WS108, WS201, WS202, WS204, WS206,WS209. Frequent ash noted in WS107 and WS204.
0.3 to 0.75	1.0 to 2.20	0.4 to 1.6	SAND: Medium dense, brown, clayey gravelly SAND with occasional coal fragments and frequent sandy clay lenses. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular. Becomes more clayey with depth. Evident in WS101, WS102, WS103, WS104 and WS106.
0.3 to 1.0	0.5 to 2.0	0.3 to 1.4	CLAY: Firm to stiff consistency, high strength, brown, very sandy gravelly CLAY with occasional coal fragments and rare rootlets. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular. Evident in WS104, WS105, WS107, WS110, WS111, WS112, WS203, WS204, WS205, WS207, WS208, WS209 and TH201.
0.3 to 2.2	>2.45+	0.11 to >1.15	SANDSTONE: Strong red fine grained weathered sandstone. Recovered as sand and gravel until refusal. Evident in all boreholes.

Table 4-1: Summary of ground conditions for land at Gateacre Garden Centre, Liverpool.

4.2 Groundwater

No groundwater strikes were recorded during the drilling works.

4.3 Vapour Assessment

LKC undertook an assessment using the PID on selected soil strata (<1.0 to 2.45mbgl) to screen soils for analysis. The results are summarised in Table 4-2 (TVOC readings from soil samples). The soil PID results are also presented on all the LKC profile logs in Appendix B.

It should be noted that PID is at best a semi-quantitative screen for TVOCs. In soils heterogeneity can cause large variations in readings, where pockets of hydrocarbon impacted soils may not represent the whole strata. However, it is useful to confirm what olfactory and visual evidence has observed. The actual concentrations in parts per million (ppm) are only indicative of TVOCs and should only be used to state one soil sample has a higher reading of TVOCs than another sample, since actual concentration will differ depending upon the composition of volatiles measured.

ВН	Depth (mbgl)	PID (ppm)	Depth (mbgl)	PID (ppm)	Depth (mbgl)	PID (ppm)
WS101	0.4	0	-	-	-	-
WS102	0.1-0.6	0	0.6-1.3	0.1	-	-
WS103	0.5	0	1.1	0.1	-	-
WS104	0.1-0.6	2.0	0.6-1.0	0	1.0-1.5	0.1
WS105	0.4	0.7	0.8	0	-	-
WS106	0.1-0.3	0	0.3-1	0	-	-
WS107	0.2	0	0.7-0.9	0	-	-
WS108	0.1-0.3	0.1	0.3-0.7	0	-	-
WS109	0.1-0.3	0.2	0.3-0.8	0.1	-	-
WS110	0.3	0	0.3-0.7	0	-	-
WS111	0.1-0.5	0	-	-	-	-
WS112	0.1-0.2	0	0.5-0.8	0	-	-
WS203	0.3	0.9				
TH201	0.5	0.1				

Table 4-2: Summary of soil vapour screening results for land at Gateacre Garden Centre, Liverpool.

The low concentrations of vapours encountered across all samples would appear to corroborate visual and olfactory evidence indicate an absence of significant volatile contamination in the soils on the study site.

5 GEOTECHNICAL APPRAISAL

5.1 Standard Penetration Tests

Twenty-nine in-situ standard penetration tests (SPTs) were undertaken, all of which were in the natural ground. The results are summarised in Table 5-1 below and provided within the profile logs in Appendix B.

Borehole	0.6-1.0 mbgl	1.5-2.0 mbgl
WS101	24 (S)	50 (SS)
WS102	1 (S)	42 (SS)
WS103	4 (S)	50 (SS)
WS104	29 (S)	50 (SS)
WS105	32 (C)	50 (SS)
WS106	50 (SS)	-
WS107	50 (SS)	-
WS108	50 (SS)	-
WS109	50 (SS)	-
WS110	50 (SS)	-
WS111	50 (SS)	-
WS112	50 (SS)	-
WS201	50 (SS)	-
WS202	14 (SS)	50 (SS)
WS203	50 (SS)	-
WS204	50 (SS)	-
WS205	50 (SS)	_
WS206	50 (SS)	-
WS207	21 (C)	50 (SS)
WS208	50	-
WS209	4 (C)	50 (SS)

Table 5-1: Summary of SPT (N) values recorded for land at Gateacre Garden Centre, Liverpool. S=Sand; C=Clay; Sandstone (SS)

5.2 Concrete Specification

Water soluble sulphate and pH tests were carried out on soil and leaching test samples. Full results are presented in Appendix C.

The concentrations of soluble sulphate in the made ground when contrasted to BRE Digest 2005¹¹ categorise the concrete requirement as DS-2 AC-1s in the area of WS103, TH201 and WS208. These locations are in the northwestern part of the site.

¹¹ BRE (2005)."Concrete in Aggressive Ground." Special Digest 1.

5.3 Particle Size Distribution

Particle size distribution (PSDs) tests were carried out on two samples logged in the field as clayey sand / sand. Full results are presented in Appendix D and summarised below in Table 5-2.

Comple	Depth		Percen	ıgh sieve	
Sample	(mbgl)	Material	50mm	2mm	0.063mm
WS103	1.1	Clayey slightly gravelly sand.	100	93	43
WS109	0.3-0.8	Weathered sandstone.	87	57	25

Table 5-2: Summary of Particle Size Distribution results for land at Gateacre Garden Centre, Liverpool.

5.4 Atterberg Limits and Moisture Content

Five representative samples of natural clay (WS104 1.0-1.5m, WS107 0.7-0.9m, WS203 0.5-0.6m, WS204 0.5-0.7m and WS208 0.6-0.8m) were subjected to Atterberg Limits and Moisture Content testing. The results of two samples are provided in Appendix D and summarised in Table 5-3.

Chapter 4.2 of the NHBC standards gives guidance on building near trees and indicates a modified plasticity index should be calculated prior to consideration of the type of adjacent trees, height and water demand. The above factors can then be used to select an appropriate foundation depth.

The modified plasticity index (I'p) as stipulated in NHBC Chapter 4.2-D5 is given by the formula:

Sample Ref. and depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 425 micron (%)	Modified Plasticity Index (%)
WS104 1.0-1.5m	11	31	13	18	98	17.64
WS107 0.7-0.9m	17	33	14	19	90	17.1
WS203 0.5-0.6m	15	27	17	10	80	8
WS204 0.5-0.7m	24	29	17	12	80	9.6
WS208 0.6-0.8m	19	34	16	18	97	17.46

I'p = plasticity index (Ip) x % less than 425µm sieve / 100%

Table 5-3: Summary of moisture content and plasticity index testing for land at Gateacre Garden Centre, Liverpool.

The modified plasticity index is between 8% and 17.64%. This characterises the clay in these samples as having a low volume change potential.

5.5 Foundation Solution Options

No foundation loads for the proposed new buildings on the site have been provided, however buildings are proposed across the site, therefore all profile logs are considered relevant.

Sandstone bedrock is relatively shallow across the site at between 2.2m in the west to 0.3 in the eastern part. Figure 6 illustrates the depth to bedrock across the site.

Generally LKC consider the underlying sandstone is the appropriate founding strata for the site. Foundations should be taken or piled to bedrock.

Sulphate resistant concrete is required where it is to be laid in contact with the made ground in the areas of WS103, TH201 and WS208.

The results of the Atterberg Limits tests on clay samples recovered from site indicate that the clay has a low volume change potential.

Further advice from a suitably qualified structural engineer should be sought.

GENERIC RISK ASSESSMENT 6

6.1 Introduction

Current good practice requires that the findings from a site investigation should be evaluated on a site specific basis, using a risk based approach. Risk assessment involves identification and evaluation of the hazards presented by the concentrations of contaminants measured followed by an evaluation of the risks which are associated with these hazards (CLR11¹²). Information gathered from the risk assessment has been collated in the revised contamination conceptual model in Section 6.6.

6.2 Soil Risk Assessment

LKC compared all available soil data to Soil Guideline Values (SGVs) or new Category 4 Screening Levels (C4SLs)^{13,14}. The recent change to the contaminated land guidance has changed the evaluation of risk from 'minimal' (SGVs) to 'low' (referred to as Lowest Level of Toxicological Concern (LLTCs).

Unfortunately, there are only a select number of new SGVs and C4SLs currently available and therefore, where there are no SGVs or C4SLs, ATRISK Soil Screening Values (SSVs) have been used as screening values. These have been generated using the CLEA V1.06 model¹⁵ based on 1% and 6% SOM and are considered scientifically robust and conservative. All these criteria now follow current UK methodology^{16,17,18,19}.

The site will follow a residential with home-grown produce land use scenario. A summary of the ATRISK SSVs (Revision 3 for 1 % SOM and Revision 5 for 6% SOM from 2011) and CSL4 criteria are provided in Appendix E.

For ATRISK SSVs where contaminants (such as PAHs) are above the lowest aqueous or vapour saturation limits by <10% the combined values have been used, as per the EA CLEA user manual where no free product has been observed.

¹² EA (2004). "Model Procedures for the Management of Land Contamination." R&D Publication CLR 11.

¹³ Defra (2014). "SP1010: Development of Category 4 Screening Levels and Assessment of Land Affected by Contamination – Policy Companion Document."

¹⁴ CL:AIRE (2013). "SP1010: Development of Category 4 Screening Levels and Assessment of Land Affected by Contamination - Final project Report."

 ¹⁵ EA (2008). "CLEA Software (Version 1.05) Handbook." Science Report – SC050021/SR4.
 ¹⁶ EA (2008). "Updated Technical Background to the CLEA Model." Science Report – SC050021/SR3.

¹⁷ EA (2008). "Human Health Toxicological Assessment of Contaminants in Soils." Science Report – SC050021/SR2.

¹⁸ EA (2008). "A Review of Body Weight and Height Data used within the Contaminated Land Exposure Assessment Model (CLEA)." Project SC050021/Technical Review 1.

EA (2009). "Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values." Science report SC050021/SR7.

ATRISK derived values for volatile petroleum hydrocarbons take into account the conservative nature of the J&E model, as described in the /SR3 report (10 to 100 times overestimation for petroleum hydrocarbons²⁰) by applying a 10x sub-surface soil to indoor air correction factor. A similar approach was undertaken when generating the BTEX SGVs. There is some additional conservatism in the SSV values, since ATRISK considers a generic 50% background exposure which may not necessarily be the case. Research commissioned by Canadian Ministry²¹ noted the petroleum hydrocarbon fraction >EC10 were not prevalent in food and water due to their low solubility and volatility and recommended the background concentration should be treated as zero. This did not include PAHs however, where the risk assessment was treated separately.

LKC consider the main risk drivers for PAHs are benzo(a)pyrene (B(a)P) and naphthalene. This is due to B(a)P possibly being carcinogens and most toxic of the PAHs^{22,23} and naphthalene the most volatile and soluble²⁴. The new C4SLs indicate B(a)P as a surrogate marker for non-volatile PAHs. Naphthalene will be treated separately using the ATRISK SSV.

Elevated results are presented in Table 6-1 below and all analysis sheets are presented in Appendix C.

	Contaminant	Units	No. of samples	Result Ranges	Exceedences	Assessment Criteria	Source of Criteria	
Metals	Lead	mg/kg	26	23 to 740	290 (WS110, 0.3m) 280 (WS111, 0.1-0.5m) 740 (WS107, 0.2m) 360 (WS203, 0.1-0.3m) 920 (WS204, 0.2-0.4m) 280 (WS206, 0.2-0.4m) 260 (WS209, 0.6-0.8m)	200mg/kg	C4SL	
	Arsenic	mg/kg	14	6.4 to 54	54 (WS107, 0.2m)	37mg/kg	C4SL	
-	рН	рН	29	Range 6.9 to 10.7				
enera	SOM	%	26	Range 0.88 to 17				
0	Bulk analysis		26	None detected.				

Table 6-1: Summary of elevated analytical results for land at Gateacre Garden Centre, Liverpool. **Notes:**

Only results that exceeded generic assessment criteria have been shown and results from **all depths** are noted.

²⁰ EA (2008). "Updated Technical Background to the CLEA Model." Science Report – SC050021/SR3.

²¹ CCME (2008). "Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document."

²² EA (2002). "Contaminants in Soils: Collation of Toxicological Data and Intake Values for Humans. Benzo[a]pyrene." R&D Publication TOX2.

²³ USEPA (1984). "Health Effects Assessment of Polycyclic Aromatic Hydrocarbons (PAHs). EPA 540/1-86-013."

²⁴ EA (2003). "Review of the Fate and Transport of Selected Contaminants in the Soil Environment." Draft technical report P5-079/TR1.

Seven elevated lead and one elevated arsenic results were identified at the site and likely related to ash and brick present in the made ground. The highest lead and arsenic concentrations in WS107 and WS204 may relate in part to the presence of pottery and more frequent ash.

6.2.1 Statistical Analysis

Statistical analysis has been undertaken on the data generated from the made ground as the nature of the soil and the proposed land use is similar. The exception is for WS107 and WS204, which are located in the central southern part of the site and have significantly higher concentrations of lead (both locations) and arsenic (WS107 only) and may relate to more frequent ash. It was assumed that these would be outliers and would require some form of remediation.

Fourteen soil samples were used in the statistical analysis. Output sheets are provided in Appendix F.

Current UK guidance on the use of statistical testing (CL:AIRE²⁵) for contaminated land has been revised from the original CLR7²⁶ methodology. The latest guidance separates the planning and Part 2A regimes and is based upon the Null Hypothesis and Alternate Hypothesis approach. LKC have used the ESI contaminated land statistics calculator²⁷ to undertake this work, which follows the new UK guidance.

For the planning scenario the question to be answered will be "can we confidently say that the level of contamination on this land is low relative to some appropriate measure of risk [e.g. SGV, C4SL, SSV or GAC values]." The statistical test should show which hypothesis is true within a defined level of confidence (normally 95%), using the upper confidence limit ($UCL_{0.95}$).

For the planning scenario, where the aim is demonstrate the land is suitable for use the Null Hypothesis is the level of concentration that "is the same as, or higher than, the critical concentration [e.g. SGV, SSV or GAC value]" and the Alternative Hypothesis will be where the level of concentration "is lower than the critical concentration (Cc)."

If the Null Hypothesis is rejected then it can be concluded that the Alternative Hypothesis is true (true mean (μ)<Cc) and that the potentially the site may be 'suitable for use.' If the

²⁵ CL:AIRE (2008). "Guidance on Comparing Soil Contamination Data with a Critical Concentration."

²⁶EA (2002). "Assessment of Risks to Human Health from Land Contamination: An Overview of the Development of Soil Guideline Values and related Research (CLR7)."

²⁷ ESI (2011). "ESI Contaminated Land Statistics Calculator User Manual." Version 2.

Null Hypothesis is accepted (μ >Cc) then further measures may be needed and land may not be 'suitable for use.'

Care must be used in selecting data for the statistical test. Where possible the site should be zoned (vertically and laterally). This is because these statistics cannot be undertaken on targeted (unbiased) samples. LKC did not undertake targeted sampling at the site, where the dataset was taken and therefore the use of the statistical analysis is considered applicable.

Soil concentrations that are considered outliers may show areas that deviate from the true mean concentration and need to be investigated separately (e.g. they may be hotspots that need to be remediated separately). These are calculated using the Grubb test originally described in CLR7, but only relates to normally distributed data. Log transformation may be used on data to also establish normal distribution for outliers, if required, following CL:AIRE guidance. The test for outliers was based on a 5% level of significance.

In addition, detection limits are dealt with by using half the limits of detection (LOD) as per the guidelines.

No outliers were present on the remaining data and therefore concentrations were considered applicable across the site except for the areas of WS107 and WS204.

Furthermore, the guidance takes into account if the data follows a normal distribution (parametric), where a one-sided t-test can be used or non-normal distribution (non-parametric), where the Chebychev theorem should be used. This is done by using the Shapiro-Wilk test and graphical use of q-q plots.

The test for normality was adjusted to follow CL:AIRE (2013) guidelines²⁸ in deriving the C4SLs. This also uses the ESI statistical programme and guidance set out in CL:AIRE (2008)²⁹. The changes relate to the test for normality, where it was stated the use of Chebychev theorem was implemented unnecessarily when the T-test could still be appropriate. This was ascertained by examining the standard deviation and producing a Relative Standard Error (RSE) of 20% as a threshold for normality. Furthermore, The ESI statistical programme was still used to calculate the upper 95th% (UCL_{0.95}) and lower 5th%

²⁸ CL:AIRE (2013). "SP1010: Development of Category 4 Screening Levels and Assessment of Land Affected by Contamination – Final project Report."
²⁹ CL:AIRE (2008). "Guidance on Comparing Soil Contamination Data with a Critical Concentration."

(LCL_{0.95}) confidence limits. The findings are presented in Table 6-2 and the information using the Chebychev theorem has been calculated for completeness.

Value	T- Test (Normal Distribution)	Chebychev (Non-Normal Distribution)	125	Pb
Critical Concentration (Cc)	200	mg/kg	100 -	
Mean Concentration (µ)	148	mg/kg	C C	
Standard Deviation (SD)	103	mg/kg	ortio (%)	
Sample Number (n)	14		d o 75 -	
Confidence (1-tailed)	95%		a p	
Relative Standard Deviation (RSD)	0	.70	cen as	
Relative Standard Error (RSE) of the Mean	0.19		con	
Lower Interval (LCL _{0.95})	99.3mg/kg	27.9mg/kg	cal	
Upper Interval (UCL _{0.95})	197mg/kg	268mg/kg	25 - 25 -	
Interval as Proportion of Cc at LCL _{0.95}	50%	14%	00	
Interval as Proportion of Cc at UCL _{0.95}	98%	134%	Jear	
µ <cc (normal="" distribution="" td="" used)<=""><td colspan="2">✓ DSE <2001/</td><td>= 0+-</td><td>Normal Distribution Non-Normal Distribution</td></cc>	✓ DSE <2001/		= 0+-	Normal Distribution Non-Normal Distribution

Table 6-2: Summary of statistical analysis (UCL_{0.95} and LCL_{0.95}) for a residential end use using modified statistical methodology by CL:AIRE (2013). The graph illustrates the range for both distributions as % mean of the Cc. <u>Notes</u>

RSE = RSD / \sqrt{n} . The RSE threshold is assumed to be 20% (0.2) for normality test; RSD = SD / μ .

Considering the above the upper confidence limit (UCL_{0.95}) on the true mean concentration for the made ground lead dataset is 197 mg/kg compared with the C4SL of 200 mg/kg.

The Null Hypothesis for lead can be rejected and is not statistically considered a significant risk.

6.2.2 Direct Contact Risk – Pollutant Linkage 1

Lead (7 samples) and arsenic (1 sample) were above the generic guideline values for a residential end use. Direct contact (ingestion, dermal and inhalation of dust) are the primary pathways to the receptor for these contaminants.

The highest concentration of lead and arsenic were present in WS107 and WS204 likely related to more frequent ash and possible pottery in the made ground. These are close to each other and were considered outliers.

One sample of natural clay in WS111 contained a concentration of lead at 280mg/kg. LKC consider that this may be associated with coal fragments identified within the clay as no evidence of cross-contamination was identified. Given the level of exceedence and the natural source of this contaminant LKC does not consider that the natural strata pose a risk to human health.

Statistical analysis of the remaining made ground generated an UCL_{0.95} of 197mg/kg for lead, which below the generic criteria value of 200mg/kg.

Based on the above Pollutant Linkage 1 has been identified as a likely probability for arsenic and lead for the plots associated with WS107 and WS204 (Plot 8 'Buckingham' and Plot 9 'B1-OP').

6.2.3 Inhalation Risk – Pollutant Linkage 2

No elevated concentrations of potentially volatile contaminants have been identified in the soil sample results. There was no visual or olfactory evidence of such contaminants during the site investigation and no elevated headspace testing results were recorded. Therefore LKC consider Pollutant Linkage 2 to be an unlikely probability in the locations tested.

6.3 **Controlled Water Assessment**

LKC considers the Principal Aquifer as the primary receptor.

LKC considers groundwater results should be compared to Environment Agency Values for UK Drinking Water Standard^{30,31} (UKDWS), where available. This is considered a conservative measure as there are no potable water abstractions within 250m of the study site.

It should be noted that the leaching test is aggressive (de-ionised water) and is not in aqueous equilibrium (steady state) with the solid sample. This may cause rapid dissolution and overestimation of the aqueous phase concentrations compared to groundwater in contact with contaminated soils. Although dissolution may be reduced for highly hydrophobic contaminants³², such as B(a)P it is likely that the initial leaching will remove the most readily available hydrocarbons and subsequent flushing would reduce the leachable concentrations³³. Traditionally the leaching test was developed for inorganic constituents and the leaching of organics is poorly understood³⁴.

Elevated contaminants are presented in Table 6-3 below and all analysis sheets are presented in Appendix C.

³⁰ EA (2002). "Environment Agency technical advice to third parties on Pollution of Controlled Waters for Part IIA of the Environment Protection Act 1990.". ³¹ HMSO (2009) "Water England: The private Water Supplies Regulations". Statutory Instruments No.3101.

³² EA (1999)."Methodology for the Derivation of Remedial Targets for the Soil and Groundwater to Protect Water Resources." R&D Technical Report, P20

EA (2006)."Remedial targets Methodology: Hydrological Risk Assessment for Land Contamination."

³⁴ EA (2009). "Petroleum Hydrocarbons in Groundwater: Supplementary Guidance for Hydrological Risk Assessment."

	Contaminant	Contaminant Units No. of Resu		Result Ranges	No. Exceeded	Assessment Criteria	Source of Criteria
Metals	Lead	µg/l	3	<1 to 24 (WS108)	1	10	UKDWS
heral	рН	рН	3	Range 8.5 to 11			
Get	Hardness	mg/I CaCO ₃	3	Range 300 to 1400			

Table 6-3: Summary of elevated leaching test results for land at Gateacre Garden Centre, Liverpool.

Given the level of exceedence of the stringent UKDWS value and the absence of any water abstractions in the vicinity of the site, LKC does not consider that this exceedence poses a significant risk to controlled waters.

Based on the above LKC considers Pollutant Linkage 4 to be an unlikely probability for pesticides and lead.

6.4 Gas Risk Assessment

No landfill sites have been identified within 250m of the study site. Four areas of potential infilling have been identified within 250m, however given their age and size LKC does not consider them to pose a significant risk of hazardous gas.

The possible pond on site may have been infilled. WS101 and WS103 have been undertaken in this area of the site and have identified bedrock at 1.2mbgl and 0.6mbgl respectively. Given the depth to bedrock LKC considers the risk of significant quantities of gas generating materials in the area of the former pond to be low. LKC recommend that a watching brief is undertaken in this area of the site during construction works.

LKC have not identified any significant quantities of putrescible or degradable material. Therefore Pollutant Linkage 3 is considered an unlikely probability.

6.5 Additional Risk Assessment

6.5.1 Concrete

Based upon the results of the soil sample analysis and groundwater results, sulphate resistant concrete is required at the site as a precaution in the area of WS103, TH201 and WS208 (located in the northwestern part of the site). The highest concentrations of soluble sulphate in the made ground when contrasted to BRE Digest 2005³⁵ categorise the concrete requirement as DS-2 AC-1s.

Therefore Pollutant Linkage 5 is considered likely in the northwestern part of the site.

³⁵ BRE (2005)."Concrete in Aggressive Ground." Special Digest 1.

6.5.2 Potable Water Supply

United Utilities (UU) guidelines have been recently replaced with new guidance³⁶, where sampling is required for contaminants that include speciated petroleum hydrocarbons, chlorinated compounds, BTEX compounds, phenols, cresols, ethers, nitrobenzene, ketones, aldehydes and amines. However, the guidelines do state a robust risk assessment can be undertaken on why specific pipework is not required.

A completed UU Risk Assessment form is provided in Appendix G and indicates that Standard PE water pipes are considered suitable for the site. Therefore Pollutant Linkage 6 is considered a low probability.

6.5.3 Phytotoxicity

One analysed soil concentration of zinc in WS204 is considered phytotoxic as outlined in BS3882³⁷. Given the marginal exceedence of the assessment criteria LKC does not consider this concentration to pose a significant risk.

Based on the above the risk from pollutant linkage 7 is considered very low and no specific remediation to protect flora is required. Although consideration to the soil matrix should be assessed to establish if made ground is a suitable growing medium for flora.

6.5.4 CATWASTE Assessment

As an initial screen the soil results were inputted into 'CAT-WASTE^{*soil.*}. This is a webbased facility that allows an assessment of contaminant soils and classifies the soils as either hazardous or non-hazardous waste. It is understood that CAT-WASTE^{*soil.*} has been designed to cover the European Waste Catalogue code number 17 05 03 "soil and stones containing dangerous substances" and follows current guidance^{38,39,40,41,42}.

Where less than limits of detection (LOD) were recorded, the value of the LOD was input.

The CAT-WASTE^{*soll*} output sheets are provided in Appendix H. The results show that all the samples are classified as **non-hazardous**.

³⁶ UU(2011). "United Utilities Water Supplementary Guidance for the Selection of Water Pipes in Land Potentially Affected by Contamination."

⁷⁷ BS (2007). "Specifications for Topsoil and Requirements for use." BS3882:2007

³⁸ EA (2013). "Hazardous Waste: Interpretation of the Definition and Classification of Hazardous Waste". Technical Guidance WM2. 3rd Edition 2013.

³⁹ The Hazardous Waste Directive, (HWD, Council Directive 91/689/EC).

⁴⁰ European Waste Catalogue, 2002 (EWC 2002, Commission Decision 2000/532/EC) as amended by Commission Decision 2001/118/EC, 2001/119/EC and Council Decision 2001/573/E.

 ⁴¹ List of Waste (England) Regulations 2005.
 ⁴² Approved Supply List (Eighth Edition), 2002. ISBN: 0 7176 2368 8.

6.6 Revised Conceptual Model

A revised conceptual model may be undertaken for the site using all available data and this is presented in Table 6-4.

In order to assess the potential risk for each pollutant linkage, an assessment of the magnitude of the potential consequence (severity) of the risk occurring and the magnitude of the probability (likelihood) of the risk occurring has been considered and classified. This is based on the guidance provided in CIRIA C552⁴³ and further details including a risk matrix is provided in Appendix A.

Where LKC identifies a moderate or higher risk intrusive work or precautionary remedial measures will be recommended. Where there is a moderate/low risk an assessment will be undertaken to establish what category the pollutant linkage will fall into.

⁴³ CIRIA (2001). "Contaminated land risk assessment: A guide to good practice". C552.

Pollutant Linkage	Pathway	Receptor	Contaminant (source)	Probability	Consequence	Risk	Assessment
PL1	 Dermal contact. Inhalation of soil and dust. Ingestion of soil and dust. 	-Future residents	-Arsenic and Lead (Area of WS107 and WS204 only)	Likely	Medium	Moderate	 Probability: Likely risk in the locations of WS107 and WS204 as concentrations, particularly lead, exceed generic assessment criteria by 3-4 times and are considered hotspots. Recommendation: Remedial measures in garden areas of WS107 and WS204 (Plots 'B1' and 'Buckingham').
PL2	 Inhalation of vapours. Migration through permeable strata and preferential pathways. 	-Future residents	-Volatile Contaminants (made ground).	Unlikely	Medium	Low	 Probability: No elevated concentrations of volatile contaminants identified on site. Recommendation: No further action.
PL3	 Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces. 	-Future residents -Buildings -Offsite land users	-Methane, Carbon Dioxide & Trace Gases. (made ground)	Unlikely	Severe	Moderate / Low	 Probability: Low probability as no significant quantities of putrescible or degradable materials identified and shallow bedrock encountered on site. Risk: Assumed Low Risk due to ground conditions. Recommendation: Watching brief in area of former pond.
PL4	 Surface run-off. Migration through permeable strata and preferential pathways Perched waters migration. 	-Groundwater.	-Pesticides (whole site) -Lead (WS108 only)	Unlikely	Mild	Very Low	 Probability: No pesticides identified in soil samples. Elevated lead concentration considered localised. Recommendation: No further action.
PL5	 Sulphate attack on concrete. 	-Building structure	 Sulphate (made ground on site). 	Likely (NW Part of the site)	Mild	Moderate (NW part of the site)	 Probability: Three elevated sulphate results within soil samples. Risk: Moderate risk assumed in these locations. Recommendation: Sulphate resistant concrete will be required around locations WS103, TH201 and WS208 where concrete is laid in contact with the made ground.
PL6	 Ingestion of tainted water supply. 	-Future residents	-PAHs and hydrocarbons	Low	Medium	Moderate / Low	 Probability: Elevated concentrations encountered in two locations in the made ground (WS104 and WS203). Moderate risk assumed as deepening works required to retain the suitability of standard PE pipes. Recommendation: Installation in natural strata around WS104 and WS203, consultation with UU and completion of their RA.
PL7	– Direct Contact (plant uptake).	-Flora	- Inorganic (whole site).	Low	Minor	Very Low	 Probability: One marginal exceedence which is not considered a significant risk to flora. Recommendation: No further action as remediation of the one marginal exceedence at WS204 will be mitigated with PL1.

Table 6-4: Revised Contamination Conceptual Model for land at Gateacre Garden Centre, Liverpool.

7 SUMMARY CONCLUSIONS

A ground investigation has been carried out to confirm the ground conditions below the site. This investigation included 21no. window sample boreholes and one hand dug trial pit.

Ground Conditions

The ground conditions beneath the site comprised tarmac over made ground underlain by natural gravelly sand and / or sandy gravelly clay. These natural strata are underlain by shallow sandstone.

No groundwater was encountered during the drilling of the boreholes on site.

Geotechnical Assessment

The underlying shallow bedrock is considered the most likely founding strata for the site. Depths to bedrock vary between 0.3mbgl and 2.2mbgl.

Clay is present as a thin layer above the bedrock over much of the site and is of low volume change potential.

The concrete requirement has been classified as DS-2 AC-1s in the made ground in locations WS103, TH201 and WS208. These are located in the northwestern part of the site.

Contamination Assessment

When compared to residential with plant uptake assessment criteria, one elevated arsenic and seven lead concentrations were identified in the made ground. One slightly elevated level of lead was identified in the natural ground.

Outliers were assumed for WS107 and WS204 for lead and arsenic. These contaminants may pose a risk to future residents in garden and soft landscaped areas and require remediation. Therefore remedial works area required in the rear gardens of Plots 8 and 9.

Statistically the remaining soil was not elevated for lead (UCL_{0.95} of 197mg/kg) compared to the generic value of 200mg/kg. LKC consider no specific remediation is required in gardens for the rest of the site.

No volatile contamination was identified at the site.

No significant source of hazardous gas has been identified therefore no protection measures are required in future buildings.

An elevated level of EC10-16 hydrocarbons and one elevated level of naphthalene were encountered in the made ground when compared to very stringent UU pipework criteria. The analytical data indicates a slight exceedance of naphthalene (0.51mg/kg vs 0.5mg/kg trigger level) in WS203 (0.1-0.3mbgl) and an exceedance of EC10-EC16 hydrocarbons (65.5mg/kg vs 10mg/kg trigger level) in WS104 (0.1-0.6mbgl). If the pipes were installed in the made ground in these areas then barrier pipe would be required.

However if the pipework is laid in the natural strata (usually at depths of at least 0.75mbgl) then standard PE pipe is considered appropriate.

One elevated phytotoxic contaminant was identified in WS204 however this is not considered to pose a significant risk to flora and the elevated concentration will be remediated as part of pollutant linkage 1.

A revised contamination conceptual model has been produced by LKC which is summarised in Table 7-1 below (more detailed model provided in Section 6). Where a moderate / low risk was identified, the assumed risk at this stage has been shown.

	Pollutant Linkage	Risk	Further Action Required
1	Non-volatile contaminants (lead and arsenic) posing a risk to site users via dermal contact, ingestion and inhalation (of soil, dust, fibres and vegetables).	Moderate	 Contamination around WS107 and WS204 Recommendations: Capping layer or source removal required in rear garden areas to Plots 8 and 9.
2	Volatile contaminants posing a risk to site users via the inhalation of vapours.	Low	 No volatile source encountered. Recommendations: No specific remediation required.
3	Gas posing a risk to buildings and site users via the migration of gas into building causing explosion and asphyxiation.	Low	-No significant gas risk identified. -Recommendations: Watching brief maintained during excavations in and around the former pond. No specific remediation required for other areas of the site.
4	Mobile contamination posing a risk to controlled waters via the migration through permeable strata.	Low	 No significant risk posed to principal Aquifer. Recommendations: No remediation required.
5	Sulphate posing a risk to building via direct contact (sulphate attack).	Moderate	 Elevated sulphate identified in parts of the site. Recommendations: Sulphate resistant concrete (DS-2 AC-1) in localised areas of site.
6	Organic contaminants posing a risk to water pipes.	Moderate	 Elevated organic contaminants in the made ground in WS104 and WS203. Recommendations: Submit risk assessment and agree with UU. Pipes to be installed in natural strata in these areas.
7	Phytotoxic metals posing a risk to flora via root uptake.	Low	 One marginal exceedence (WS204) of phytotoxic metals above generic criteria. Likely Remediation: This area will be remediated as part of PL1.

Table 7-1: Summary Risk Table for land at Gateacre Garden Centre, Liverpool.

8 REMEDIAL STRATEGY

8.1 Introduction

The recommendations provided below are considered appropriate for the site based on the site investigation and detail the recommended remediation and validation works along with general site wide considerations. The general site wide considerations are:

- Health and safety considerations.
- Watching brief for potential unidentified contamination.

The risk assessment has identified the following specific remedial requirements to be implemented:

- Removal of made ground or installation of a cover system in the rear garden areas of Plots 8 and 9.
- Watching brief for putrescible or organic material in foundation excavations for the former pond on site.
- Installation of potable pipework in natural strata around WS104 and WS203.
- Possibly use of sulphate resistant in ground concrete around WS103, TH201 and WS208. Requirement of and use of, on site to be specified and validated by the structural engineer.

8.2 Site Wide Considerations

8.2.1 Health and Safety Considerations

In working with and removing or treating any contaminating material it is important that any potential risks associated with the actual site works are mitigated by good environmental management of the site during the remedial phases. Standard health and safety precautions (as per HSE guidance) should be adopted by all workers involved with site enabling and construction works.

8.2.2 Watching Brief

The available site investigation data has not identified any potential odorous or mobile contamination.

The groundworks supervisor and site manager will report any evidence of unexpected ground conditions, such as odd colours or odours or mobile contamination such as oils / fuel to LKC. Works will stop pending further sampling and assessment and LKC will inform LCC and the Environment Agency.

Delineation works will be undertaken and this may include collection of appropriate samples for laboratory analysis to further characterise the material and allow a risk assessment to be undertaken or removal of the impacted material to quarantine.

If obvious gross contamination is encountered then impacted soils will be carefully excavated and quarantined. The quarantine area will be contained in a bunded area and depending on the nature of the contamination for example odour nuisance or potential for ACM fibre release the material will be covered.

Soil samples will be taken and analysed for an appropriate suite of contaminants.

Soil samples should represent the impacted area and in order to determine that significantly impacted soils have been removed samples will be collected from the base and sides of the excavation.

LKC do not consider, in light of the available site investigation data, that a full time presence during in ground works is required by LKC.

8.3 Soil Contamination

Remediation is required for the rear gardens associated with WS107 and WS204 (Plots 8 and 9). Two options are presented.

Option 1

Made ground is present to 0.7-0.9mbgl in the rear gardens of Plots 8 and 9. In order to mitigate the direct contact risk then removal of made ground to natural strata within the two plots is appropriate.

The material should be appropriately removed off site or placed under handstanding (e.g. roads or buildings) if it is geotechnically suitable. Validation for the removal of the made ground should be undertaken from sides and base of the excavation to ensure remaining material is suitable for use.

Any imported topsoil and subsoil should be chemically validated to ensure it is suitable for use.

Option 2

An environmental capping layer could be placed in garden areas of the impacted plots and should comprise a total of 600mm cover. This would comprise the following:

• 100mm physical break layer (MOT type 1 material, 20-30mm, minimal fines) and at least 500mm comprising clean inert fill and sufficient topsoil for a growing medium.

Due reference will be made to Liverpool CC guidance note ⁴⁴ on the validation of capping layers.

In summary, the depth will be validated by excavating one hole through the capping layer in each garden area and collecting photographic evidence with a staff. Photographic evidence of the granular break layer will also be collected for the Completion Report.

Any imported topsoil and subsoil should be chemically validated to ensure it is suitable for use.

Imported Soil Validation

All soil to be imported for use in garden and soft landscaping areas must be chemically validated.

Imported soil will be chemically validated at a rate of 1 sample per 50m³ where the source is 'brownfield' or unknown or 1 sample per 200m³ where the material is from a known 'greenfield' source. A minimum of 3 samples per soil source will be undertaken. The validation criteria will comprise 'residential' SGVs, C4SLs, and 'residential with plant uptake' SSVs (Appendix E).

The typical testing suite will comprise:

 Arsenic, boron, cadmium, chromium (total and hexavalent), copper, lead, mercury, nickel, selenium, vanadium, zinc, water soluble sulphate, pH, USEPA PAH 16, asbestos (presence or absence) and organic matter.

Where the source is 'brownfield' or unknown the soil will additionally be tested for speciated banded hydrocarbons and BTEX.

⁴⁴ https://liverpool.gov.uk/media/91008/requirements-for-contaminated-land-validation.pdf

If a granular break layer comprising site won or imported recycled or 'brownfield' material is used then this will be validated as per the above suites, with a sampling rate of 1 per 500m³ and a minimum of 3 samples per source. If a first generation material is used such as MOT Type 1 or 'crusher run' then confirmation of the material source and its 'first generation' nature will be provided and validation sampling will not be undertaken.

Selected topsoil samples will also be subjected to the multi-purpose topsoil suite and assessment criteria as detailed in BS3882⁴⁵.

8.4 Gas Risk

A watching brief for any unusual ground conditions such as organic material should be maintained during foundation and service excavations around the former pond area. Any suspect material should be reported to LKC and the local authority for further assessment.

This may require removal of infill materials or the installation of precautionary gas protection measures in the adjacent plots.

8.5 Sulphate Resistant Concrete

The concentrations of soluble sulphate in the soil when contrasted to BRE Digest 2005 categorise the concrete requirement as DS-2 AC-1s in the area of WS103, TH201 and WS208.

This will be communicated to the appointed structural engineer and will be specified on the construction drawings. The structural engineer will be detailed to validate the correct concrete specification has been used.

8.6 Barrier Pipe

The United Utilities Risk Assessment Document should be submitted to UU for their approval of the recommendations.

LKC consider that standard PE pipe will be suitable subject to installation of the pipes in natural strata around WS104 and WS203.

8.7 Roles and Responsibilities

With regards to undertaking the works outlined in this document the following roles and responsibilities have been identified:

32

⁴⁵ BS (2007). "Specifications for Topsoil and Requirements for use." BS3882:2007
Company	Role and Responsibility
LK Consult Ltd	Validation of the removal made ground or installation of capping layer to the
	rear gardens of Plots 8 and 9.
	Watching brief in area of former pond and further assessment of risk from gas.
	Report unexpected contamination to LCC and the EA.
	Provide completion report.
Macbryde Homes	Ensuring that the requirements of this document are carried out.
Ltd	Consult with UU and submit UU pipeline risk asessement.
	Implement recommendations on managing contamination as provided by LKC
	during the works.
	Maintain a watching brief for unexpected ground conditions and report to LKC.
	Maintain daily records of works undertaken including information such as
	weather and ground conditions and any steps taken to mitigate potential dust
	and odour nuisance to adjacent properties, as required.
Structural	Specify sulphate resistant concrete as required.
Engineer	Validate the use of the recommended concrete.

8.8 Site Completion Report

The Site Completion Report will include details of the watching brief for any reported contamination, the validation of made ground removal or installation of the soil capping layer, further assessment of the former pond area and evidence of the installation of potable water pipes in natural strata around WS104 and WS203.

The site wide planning conditions may only be discharged once LCC are satisfied that, in accordance with the National Planning Policy Framework (NPPF)⁴⁶:

- The site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation;
- After remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and,
- Adequate site investigation information, prepared by a competent person, is presented.

⁴⁶ DCL (2012). "National Planning Policy Framework." Department of Communities and Local Government. March 2012.

FIGURES

APPENDIX A

RISK MATRIX

Risk Evaluation

The method for risk evaluation is a qualitative method of interpreting the output from the risk estimation stage of the assessment, based on CIRIA 552⁴⁷. It involves the classification of the:

- Magnitude of the potential consequence (severity) of the risk occurring (Table A-1).
- Magnitude if the probability (likelihood) of the risk occurring (Table A-2).

	Consequence (Severity)	
Classification	Definition	Example
Severe	 Short term (acute) risk to human health likely to results in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short term risk of pollution (note: water Resources Act contains no scope for considering significance of pollution) of sensitive water resource. Catastrophic damage to buildings/properties. A short term risk to a particular ecosystem, or organism forming part of such ecosystem (note: the definition of ecological systems within the Draft Circular on Contaminated Land, DETR, 2000). 	 High Concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled waters. Explosion, causing building collapse (can also equate to short term human health risk if buildings are occupied).
Medium	 Chronic damage to Human Health ('significant harm' as defined in DETR, 2000). Pollution of sensitive water resources (note Water Resources Act contains no scope for considering significance of pollution). A significant change in a particular ecosystem, or organism forming part of such ecosystem. 	 Concentrations of a contaminant from site exceed generic, or site specific assessment criteria. Leaching of contaminants from a site to a major or minor aquifer (Principal and Secondary). Death of a species within a designated nature reserve.
Mild	 Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in DETR, 2000). Damage to sensitive buildings/structures/services or the environment. 	 Pollution of non-classified groundwater. Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor	 Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc). Easily repairable damage to buildings, structures and services. 	 The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discoloration of concrete.

Table A-1. Classification of Consequence

⁴⁷ CIRIA C552 (2001) Contaminated Land Risk Assessment - A guide to good practice.

	Probability (Likelihood)
Classification	Definition
High Likelihood	- There is a pollutant linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution.
Likely	 There is a pollutant linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	 There is a pollutant linkage and circumstances are possible under which an event could occur. However it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	- There is a pollutant linkage but circumstances are such that it is improbable that an event would occur in the very long term.

Table A-2. Classification of Probability.

These classifications are then compared to indicate the risk presented by each pollutant linkage (Table A-3). It is important that this classification is only applied where there is a possibility (which can range from high likelihood to unlikely) of a pollutant linkage existing.

		Consequence							
		Severe	Medium	Mild	Minor				
	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate / Low Risk				
ability	Likely	High Risk	Moderate Risk	Moderate / Low Risk	Low Risk				
Prob	Low Likelihood	Moderate Risk	Moderate / Low Risk	Low Risk	Very Low Risk				
	Unlikely	Moderate / Low Risk	Low Risk	Very Low Risk	Very Low Risk				

Table A-3. Comparison of Consequence against Probability

Once the risk has been determined the corresponding action can be assessed (Table A-4).

Risk	Action Required
Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that sever harm to a designated receptor is currently happening. This risk, if realised, is likely to results in a substantial liability. Urgent investigation (if not already undertaken) and remediation are likely to be required.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Table A-4. Description of the Classification and Likely Action Required.

Where the risk falls into the moderate/low risk, LKC will undertake an assessment to establish what category the pollutant linkage will fall into (i.e. moderate or low risk will be chosen).

Where LKC identifies a moderate or higher risk intrusive work or precautionary remedial measures will be recommended.

Where LKC identified a low to very low risk either limited intrusive investigation work, a watching brief (during construction work) or no investigation work will be recommended. This will be dependent on the nature of the site and the proposed development.

APPENDIX B

PROFILE LOGS

LK		LK (Bury E Tel: 01	CONSULT LTD Business Centre, Kay Str 61 763 7200 web: www.	eet, Bury, E thelkgroup.	BL9 6BU com	Site Gateacre Garden Centre, Huyton	Number WS101	
Excavation Drive-in Win	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Number LKC 14 1086	
		Locatio	n	Dates 18	3/03/2014	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S	
0.40-0.40 0.40-0.40 1.00-1.45 2.00-2.38	C1 PID1 0ppm SPT N=24 SPT 50/230		1,7/5,5,6,8 7,8/16,16,18		(0.08) (0.67) (0.45) (0.45) (0.45) (0.45) (0.45) (0.45) (0.10) (0.18) 2.38	MADE GROUND: Tarmac. MADE GROUND: Construction sub base gravel and sand. MADE GROUND: Brown clayey gravelly sand with brick and coal fragments and rootlets. Becomes more clayey with deph. Gravel is fine to medium and angular. Medium dense orange brown gravelly clayey SAND with occasional coal fragments. Gravel is fine to medium, angular to sub-rounded. Strong red with white lenses fine grained weathered SANDSTONE. Complete at 2.38m		
Remarks No groundw SPT refusal	ater strike encounter in sandstone at 2.38	red. m.				Scale (approx) 1:25	Logged By MP	
						1:25 Figure LKC 14	М No. 1086.W	

LK		LK Bury E Tel: 01	CONSULT LTD Business Centre, Kay Stree 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton			Number WS102		
Excavation Drive-in Wine	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		Jo N LKO	ob umber C 14 1086		
		Locatio	n	Dates 18	8/03/2014	Engineer		Sh			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr		
0.10-0.60 0.10-0.60	C1 PID1 0ppm				(0.10) 0.10 - (0.50)	MADE GROUND: Tarmac. MADE GROUND: Dark brown, very gravelly sand with ash, clinker, coal and brick fragments, and rare rootles. Gravel is fine to medium, sub-rounded to angular.					
0.60-1.30 0.60-1.30	C2 PID2 0.1ppm				0.60	Very loose, orange brown gravelly clayey SAND with occasional coal fragments and frequent sandy clay lenses. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular.			" \$0,5 5 5 7 5 0 5 7 5 0 5 2 5 0 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		
1.00-1.45	SPT N=1		0,0/0,1,0,0								
					- 1.30 - (0.90)	Loose to medium dense, orange brown gravelly clayey SAND. Sand is fine to medium. Gravel is sub-rounded to sub-angular (Likely weathered sandstone).					
2.00-2.45	SPT N=42		3,6/8,9,11,14		2.20 (0.25) 2.45	Strong red with white lenses fine grained weathered SANDSTONE. Complete at 2.45m					
Remarks No groundwa	ater strike encounter	ed.	1	<u> </u>	<u> </u>		Scale (approx)	La B	ogged y		
						_	1:25 Figure N	 o.	AF		
							LKC 14 1	086	.WS102		

LK		LK CONSULT LTD Bury Business Centre, Kay Street, Bury, BL9 6BU Tel: 0161 763 7200 web: www.thelkgroup.com				Site Gateacre Garden Centre, Huyton	Number WS103
Excavation Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Number LKC 14 1086
		Locatio	n	Dates 18	8/03/2014	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S
0.50-0.50 0.50-0.50 1.00-1.45 1.10-1.10	C1 PID1 0ppm SPT N=4 C2 D20 0 4 correct		1,1/1,1,1,1		(0.68)	MADE GROUND: Tarmac. MADE GROUND: Brown very gravelly sand with ash, clinker, coal and brick fragments. Gravel is fine to medium and angular. Increased ash and clinker content with depth.	
2.00-2.38	PID2 0.1ppm SPT 57/225		1,3/7,18,32		- (1.60) - (1.60)		
						Strong red fine grained SANDSTONE. Complete at 2.38m	
Remarks No groundwa SPT refusal	ater strike encounter in sandstone at 2.38	ed. mbgl.				Scale (approx)	Logged By
						1:25 Figure LKC 14	MP No. 1086.WS103

LK		LK Bury E Tel: 01	CONSULT LTD Business Centre, Kay Street 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton		Number WS104
Excavation Drive-in Win	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		Job Number LKC 14 1086
		Locatio	n	Dates	8/03/2014	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Fedend S
0.10-0.60 0.10-0.60 0.60-1.00 0.60-1.00 1.00-1.45 1.00-1.50 1.00-1.50	C1 PID1 2.0ppm C2 PID2 0ppm SPT N=29 B1 PID3 0.1ppm		3,5/7,7,7,8		(0,10) 0.10 (0.50) 0.60 (0.40) 1.00 (1.00)	MADE GROUND: Tarmac. MADE GROUND: Dark brown, very gravelly sand clinker, coal and brick fragments, and rare rootlets fine to medium, sub-rounded to angular. Brown, clayey silty gravelly SAND with occasional fragments and rare rootlets. Sand is fine to medium is fine to medium, sub-rounded to sub-angular. Firm to stiff consistency, high strength, brown, very gravelly CLAY with occasional coal fragments and rootles. Sand is fine to medium. Gravel is fine to medium. sub-rounded to sub-angular.	vith ash, Gravel is coal m. Gravel y sandy rare nedium,	
						Strong red fine grained weathered SANDSTONE. Complete at 2.11m		
Remarks SPT refusal No groundwa	in sandstone at 2.11 ater stike encountere	mbgl. ed.	1		1	1	Scale (approx)	Logged By
							1:25 Figure N	AF 0.
							LKC 14 1	086.WS104

LK		LK Bury E Tel: 01	CONSULT LTD Business Centre, Kay Stree 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton			Number WS105		
Excavation Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		J N LK(ob umber C 14 1086		
		Locatio	n	Dates	8/03/2014	Engineer		Sheet 1/1			
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr		
0.40-0.40 0.40-0.40 0.80-0.80 1.00-1.45 2.00-2.16	C1 PID1 0.7ppm B1 PID2 0ppm SPT N=32 SPT 25*/120 50/35		4,7/7,8,8,9 8,17/50			MADE GROUND: Tarmac. MADE GROUND: Construction sub base sand and gravel. MADE GROUND: Dark brown, very gravelly sand with clinker, coal and brick fragments and occasional rootlets. Gravel is fine to medium, angular. Sand is fine grained. Very stiff friable consistency, very high strength, orange brown, slightly gravelly sandy CLAY with occasional coal fragments. Gravel is fine to medium, sub-rounded to sub-angular. Strong red fine grained weathered SANDSTONE. Complete at 2.16m					
Remarks No groundwa SPT refusal	ater strike encounter in sandstone at 2.16	ed. mbgl.			<u>-</u>		Scale (approx) 1:25 Figure N LKC 14 1	L B Io. 086	Dygged y MP .WS105		

LK		LK (Bury E Tel: 01	CONSULT LTD Business Centre, Kay Street 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton	Number WS106	Number WS106		
Excavation Drive-in Wine	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Number LKC 14 108	.86		
		Locatio	n	Dates	8/03/2014	Engineer	Sheet 1/1	_		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water		
0.10-0.30 0.30-1.00 0.30-1.00	C1 PID1 0ppm C2 PID2 0ppm SPT 50/180		10,15/19,16,15			MADE GROUND: Tarmac. MADE GROUND: Dark brown, very gravelly sand with as clinker, coal and brick fragments and rare rootlets. Grave fine to medium, sub-rounded to angular. Orange brown, gravelly clayey SAND with occasional co- fragments and rare rootlets. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular. Very dense, orange brown gravelly SAND. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular (Likely weathered sandstone). Strong red fine grained weathered SANDSTONE. Complete at 1.33m	sh, al al vel			
Remarks SPT refusal i No groundwa	in sandstone at 1.33 ater strike encounter	mbgl. ed.				Sc: (app 1:2 Fig LKC	ale rox) 25 AF ure No. C 14 1086.WS106	06		

LK		LK Bury E Tel: 01	CONSULT LTD Business Centre, Kay Stree 61 763 7200 web: www.the	et, Bury, B elkgroup.	BL9 6BU com	Site Gateacre Garden Centre, Huyton		Number WS107		
Excavation Drive-in Win	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Ľ	Job Number KC 14 1086		
		Locatio	n	Dates	3/03/2014	Engineer		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	.egend S		
0.20-0.20 0.20-0.20 0.70-0.90 1.00-1.31	C1 PID1 0ppm C2 PID2 0ppm SPT 50/158		5,11/14,31,5		(0.10) (0.30) (0.30) (0.50) (0.41) (0.41) 1.31	MADE GROUND: Tarmac underlain by sub-base gravel. MADE GROUND: Brown, reworked gravelly very sandy cla with frequent ash and clinker, coal and brick fragments. Gravel is fine to medium, angular. Firm to stiff consistency, orange brown, sandy gravelly CLA with rare coal fragments. Gravel is fine to medium, sub-rounded. Strong red fine grained weathered SANDSTONE. Complete at 1.31m	Y 0.1			
Remarks SPT refusal No groundw	in sandstone at 1.31 ater strike encounter	mbgl. ed.				Scale (appro 1:25 Figur LKC 1	; x) e No 4 10{	Logged By MP B6.WS107		

LK		LK (Bury E Tel: 01	CONSULT LTD Business Centre, Kay Stru 61 763 7200 web: www.	eet, Bury, B thelkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton	Number WS108	8
Excavation Drive-in Wir	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Number LKC 14 10	r)86
		Locatio	n	Dates	8/03/2014	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.10-0.30 0.10-0.30 0.30-0.70 0.30-0.70 0.80-1.06	C1 PID1 0.1ppm C2 PID2 0ppm SPT 50/110		3,11/29,21			MADE GROUND: Tarmac. MADE GROUND: Dark brown, reworked gravelly sandy clay with ash, clinker, coal and brick fragments with rare roots. Gravel is fine to medium, sub-rounded to angular. Orange brown, gravelly SAND. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular (Likely weathered sandstone). Strong red fine grained weathered SANDSTONE. Complete at 1.06m		
Remarks SPT refusal	in sandstone at 1.06	mbgl.			 - -	Scale	Logged	
No groundw	ater strike encounter	ed.				(approx) 1:25	AF	
						Figure LKC 14	No. 1086.WS10)8

LK	LK (Bury E Tel: 01	CONSULT LTD Business Centre, Kay Str 61 763 7200 web: www.	eet, Bury, B thelkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton	Number WS109)
Excavation Method Drive-in Window Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Number LKC 14 108	36
	Locatio	n	Dates 18	3/03/2014	Engineer	Sheet 1/1	
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	water
				(0.10)	MADE GROUND: Tarmac.		
0.10-0.30 C1 0.10-0.30 PID1 0.2ppm				(0.20)	Medium dense, orange brown, clayey gravelly SAND with occasional coal fragments and rare rootlets. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-aparter.		
0.30-0.80 PID2 0.1ppm				- - (0.50)	Firm to stiff consistency, brown, very sandy gravelly CLAY with occasional coal fragments and rare rootlets. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular.		
0.80-1.04 SPT 50/85		9,16/34,16		0.80	Strong red fine grained weathered SANDSTONE.	······	
				- 1.04			
Remarks SPT refusal in sandstone at 1.04	Imbgl.			<u> </u>	Scale (approx)	Logged By	_
No groundwater strike encounter	rea.				1:25	AF	
					Figure	No.	<u>_</u>

LK		LK Bury E Tel: 01	CONSULT LTD Business Centre, Kay Stree 161 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton	Number WS11	0
Excavation Drive-in Win	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Number LKC 14 10	r)86
		Locatio	n	Dates	9/03/2014	Engineer	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.20-0.30 0.30-0.70 0.30-0.70 1.00-1.27	C1 PID1 0ppm B1 PID2 0ppm SPT 25*/120 50/146		14,11/21,29			MADE GROUND: Tarmac. MADE GROUND: Dark brown, gravelly sand with ash, clinker, coal and brick fragments. Gravel is fine to medium, sub-rounded to angular. Firm to stiff consistency, brown, very sandy gravelly CLAY with occasional coal fragments and rare rootles. Sand is fin to medium. Gravel is fine to medium, sub-rounded to sub-angular. Strong red fine grained weathered SANDSTONE. Complete at 1.27m		
Remarks No groundw SPT refusal	ater strike encounter in sandstone at 1.27	ed. mbgl.				Scale (approx 1:25 Figure LKC 14) Logged By AF • No. • 1086.WS11	0

	1	LK (CONSULT LTD			Site		Number
LK		Bury E Tel: 01	Business Centre, Kay Street 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Gateacre Garden Centre, Huyton		WS111
Excavation	Method	Dimens	ions	Ground	Level (mOD)	Client		Job
Drive-in Wind	dow Sampler				. ,	Macbryde Homes Ltd		Number LKC 14 1086
		Locatio	n	Dates 19	0/03/2014	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend X
0.10-0.50 0.10-0.50	C1 PID1 0ppm				(0.10) 0.10 (0.50)	MADE GROUND: Tarmac. Firm to stiff consistency, brown, sandy gravelly CLAY occasional coal fragments and rare rootlets. Sand is f medium. Gravel is fine to medium, sub-rounded to sub-angular.	with fine to	
0.60-0.82	SPT 50/74		15,10/50			Strong red fine grained weathered SANDSTONE. Complete at 0.82m		
Remarks SPT refusal i No groundwa	in sandstone at 0.82	mbgl. ed.		<u> </u>	<u> </u>	(a	Scale approx)	Logged By
							1:25	AF
						F L	Figure No LKC 14 10	o. 086.WS111

Excavation Method Drive-in Window Sampler	Dimens	ions n	Ground	Level (mOD)	Client	Job Number
	Locatio Water Depth (m)	n			Macbryde Homes Ltd	LKC 14 1086
	Water Depth (m)		Dates 19	/03/2014	Engineer	Sheet 1/1
Depth (m) Sample / Tests	. ,	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend X
0.10-0.20 C1 0.10-0.20 PID1 0ppm				(0.10) 0.10 (0.40)	MADE GROUND: Tarmac. MADE GROUND: Dark brown gravelly sand with ash, clinker, coal and brick fragments. Gravel is fine to medium, sub-rounded to angular.	
0.50-0.80 B1 0.50-0.80 PID2 0ppm				0.50 (0.30) 0.80	Firm to stiff consistency, brown, very sandy gravelly CLAY with occasional coal fragments and rare rootlets. Sand is fine to medium. Gravel is fine to medium, sub-rounded to sub-angular.	
1.00-1.37 SPT 50/217		4,5/10,18,22			Gravel is fine to medium, sub-rounded to sub-angular (Likely weathered sandstone). Strong red fine grained weathered SANDSTONE. Complete at 1.37m	
Remarks No groundwater strike encount SPT refusal in sandstone at 1.3	ered. 37mbgl.			<u> </u>	Scale (approx) 1:25 Figure M	Logged By AF

		LK (CONSULT LTD			Site		Number
LK		Bury E Tel: 01	Business Centre, Kay Street 61 763 7200 web: www.the	t, Bury, E elkgroup.	SL9 6BU com	Gateacre Garden Centre, Huyton		WS201
Excavation Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		Job Number LKC 14 1086
		Locatio	n	Dates	5/10/2014	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend X
0.00-0.30	C1				(0.30) 0.30	MADE GROUND: Brown gravelly very sandy clay with occasional brick fragments, rare glass and rootlets. Sand i fine to medium. Gravel is fine to coarse, subrounded to angular of sandstone. Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel).	is	
0.70-0.99	SPT 25*/120 50/173		16,9/14,19,17			Complete at 0.99m		
Remarks SPT refusal i Borehole dry	in sandstone at 0.99	mbgl.			<u> </u>	Scal (appro 1:25 Figur LKC 1	le ox) 5 ire No 14 10	AF 0.086.WS201

LK			LK CONSULT LTD Bury Business Centre, Kay Street, Bury, BL9 Tel: 0161 763 7200 web: www.thelkgroup.com				Site Gateacre Garden Centre, Huyton			umber /S202
Excavation	Method dow Sampler	Dimens	ions	Ground	Level (m	D)	Client Macbryde Homes Ltd		Ja N LKO	ob umber C 14 1086
		Locatio	n	Dates 15	5/10/2014		Engineer		S	n eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickne	ss)	Description	Legend	Water	Instr
0.40-0.60 1.00-1.45	C1 SPT N=14		1,1/1,2,3,8			20) 20 0) 30 60)	MADE GROUND: Stone gravel and compost. MADE GROUND: Tarmacadam and concrete. MADE GROUND: Brown gravelly very sandy clay with occasional coal fragments, rare brick fragments and rootlets. Sand is fine to medium, gravel is fine to medium, subangular to angular of sandstone. Strong red with white lenses fine grained weathered SANDSTONE. (recovered as sand and gravel).			
1.70-2.05	SPT 50/198		9,14/14,19,17		(1. 	5)				
Remarks SPT refusal i Borehole dry	n sandstone at 2.05	mbgl.						Scale (approx)	L(B	ogged y
							-	1:25 Figure N LKC 14 1	lo. 086	AF .WS202

	LK CONSULT LTD					Site		Number
LK		Bury E Tel: 01	Business Centre, Kay Street 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Gateacre Garden Centre, Huyton		WS203
Excavation Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		Job Number LKC 14 1086
		Locatio	n	Dates 15	5/10/2014	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kater Kater
					- (0.10) - 0.10	_MADE GROUND: Tarmacadam.		
0.10-0.30	C1				(0.20) 0.30	MADE GROUND: Brown very gravelly sand with fr brick, ash, clinker and coal fragments. Rare rootlet fine to medium. Gravel is fine to medium, subangu	equent s. Sand is lar to	
0.30-0.30	PID 0.9ppm				-	angular. Soft consistency, brown gravelly very sandy CLAY	with	·····
0.50-0.60	B1				(0.60)	occasional coal fragments. Sand is fine to medium is fine to medium, subangular to angular of sandst	. Gravel one.	
1 00 1 43	SDT 57/277		2 5/7 15 20 15		0.90	Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel).		
1.00-1.43	01101/211		2,07,10,20,10		(0.53)			
					1.43	Complete at 1 43m		
					-			
					-			
					-			
					-			
					-			
					 - 			
					- -			
					-			
					-			
					-			
					-			
					-			
					-			
					-			
					Ē			
Remarks SPT refusal i	in sandstone at 1.43	mbgl.			<u>-</u>		Scale (approx)	Logged By
Dorenole ury							1:25	AF
							Figure N LKC 14 10	o. 086.WS203

LK	LK CONSULT LTD Bury Business Centre, Kay Str Tel: 0161 763 7200 web: www.				L9 6 com	BU	Site Gateacre Garden Centre, Huyton		N W	umber /S204
Excavation I Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Leve	el (mOD)	Client Macbryde Homes Ltd		Ji N LK(ob umber 0 14 1086
		Locatio	n	Dates 15	5/10/2	2014	Engineer		S	h eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	C (Thi	Depth (m) ickness)	Description	Legend	Water	Instr
0.20-0.40	C1 B1 SPT 50/218		8,5/15,17,18			0.05 0.10 (0.40) 0.50 (0.20) 0.70 (0.67) 1.37	MADE GROUND: Flagstone. MADE GROUND: Construction sub base sand and cement. MADE GROUND: Brown gravelly very sandy clay with frequent brick, ash, clinker, pottery and coal fragments. Rare rootlets. Sand is fine to medium. Gravel is fine to medium, subrounded to angular. Soft consistency, brown gravelly very sandy CLAY with occasional coal fragments. Sand is fine to medium. Gravel is fine to medium, subrounded to angular. Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel). Complete at 1.37m			
Remarks Borehole dry. SPT refusal i	r. in sandstone at 1.37	mbgl.			<u> </u>			Scale (approx) 1:25 Figure N LKC 14 1	L B No. 086	ogged y AF .WS204

LK		LK (Bury E Tel: 01	CONSULT LTD Business Centre, Kay Stru 161 763 7200 web: www.	eet, Bury, B thelkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton	Numi WS2	^{ber} 205
Excavation Drive-in Wir	Method ndow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd	Job Numi	b er 1086
		Locatio	n	Dates 15	5/10/2014	Engineer	Shee 1/	t 1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	p. Water
0.30-0.50	C1				(0.20) 0.20 0.30 (0.20) 0.30 0.50 0.50	MADE GROUND: Stone gravel. MADE GROUND: Grey very gravelly sand with rare brick fragments. Sand is fine to medium. Gravel is fine to coarse, subrounded to angular. Brown gravelly very sandy CLAY with occasional coal fragments. Sand is fine to medium. Gravel is fine to coarse, subrounded to angular of sandstone. Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel).		
1.00-1.39	SPT 50/243		5,12/14,12,17,7		(0.89) 			
						Complete at 1.39m		
Remarks Borehole Dr SPT refusal	y. in sandstone at 1.39	imbgl.			<u> </u>	Scale (approx) Logg By	ed
						1:25	AF	
						Figure	NO. 1086.WS	\$205

						Site			umber
LK		Bury E Tel: 01	Business Centre, Kay Stree	et, Bury, B elkgroup.	L9 6BU com	Gateacre Garden Centre, Huyton		W	S206
Excavation Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		Je N	ob umber
									14 1086
		Locatio	n	Dates 15	5/10/2014	Engineer		S	neet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.20-0.40	C1 SPT 50/247		5,9/13,15,14,8			MADE GROUND: Tarmacadam. MADE GROUND: Construction sub base sand and gravel. MADE GROUND: Brown gravelly very sandy CLAY with frequent brick and pottery fragments, occasional ash, clinker and rare rootlets. Sand is fine to medium. Gravel is fine to coarse, subangular to angular. Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel). Complete at 1.20m			
Remarks SPT refusal	in sandstone at 1.20	mbgl.			-		Scale (approx)	L	ogged
Borehole dry							1:25		AF
							Figure N LKC 14 1	lo. 086	WS206

LK		LK Bury E Tel: 01	CONSULT LTD Business Centre, Kay Street 61 763 7200 web: www.the	t, Bury, B elkgroup.	L9 6BU com	Site Gateacre Garden Centre, Huyton		N W	umber /S207
Excavation Drive-in Wind	Method dow Sampler	Dimens	ions	Ground	Level (mOD)	Client Macbryde Homes Ltd		Ji N LK(ob umber 0 14 1086
		Locatio	n	Dates 15	5/10/2014	Engineer		s	h eet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.10-0.20 0.30-0.50 1.00-1.45 1.50-1.89	C1 C2 SPT N=21 SPT 50/237		2,3/3,3,5,10 14,10/15,15,17,3		0.05 (0.15) 0.20 (0.30) 0.50 (1.00) 1.89 1.89	MADE GROUND: Tarmacadam. MADE GROUND: Construction sub base sand and gravel. Soft consistency, brown gravelly very sandy CLAY with occasional coal fragments. Sand is fine to medium. Gravel is fine to coarse, subrounded to angular. Firm to stiff consistency, high strength, brown gravelly very sandy CLAY with occasional coal fragments. Sand is fine to medium. Gravel is fine to coarse, subrounded to angular. Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel). Complete at 1.89m			
Remarks SPT refused Borehole dry	in sandstone at 1.89)mbgl.					Scale (approx) 1:25 Figure N LKC 14 1	L B Io. 086	AF .WS207

LK CONSULT LTD					Site		Number		
LK		Bury Business Centre, Kay Street Tel: 0161 763 7200 web: www.the		t, Bury, BL9 6BU elkgroup.com		Gateacre Garden Centre, Huyton		WS208	
Excavation Method		Dimensions		Ground Level (mOD)		Client		Job	
Drive-in Window Sampler						Macbryde Homes Ltd		Number LKC 14 1086	
		Location		Dates 16/10/2014		Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Sater Kater	
0.20-0.40	C1				- 0.05 - (0.35) - 0.40	MADE GROUND: Carpet over tarmacadam over concret MADE GROUND: Brown very gravelly sand with frequen brick fragments, occasional ash, clinker and coal fragme Sand is fine to medium. Gravel is fine to coarse, subrounded to angular. Soft consistency, brown gravelly very sandy CLAY with occasional coal fragments. Sand is fine to medium. Grav	te. it ents.		
0.60-0.80	B1				(0.40) 0.80	is fine to coarse, subangular to angular of sandstone. Strong red with white lenses fine grained weathered SANDSTONE (recovered as sand and gravel)	······································	· · · · · · · · · · · · · · · · · · ·	
1.00-1.33	SPT 50/180		6,11/12,18,20			Complete at 1.33m			
Remarks								Logged By	
						1:2	25	AF	
						Fig LKC	j ure No C 14 10	. 86.WS208	

LK		LK CONSULT LTD Bury Business Centre, Kay Street, Bury, BL9 6BU Tel: 0161 763 7200 web: www.thelkgroup.com				Site Gateacre Garden Centre, Huyton			Number WS209	
Excavation Method Drive-in Window Sampler		Dimensions		Ground Level (mOD)		Client Macbryde Homes Ltd			Job Number LKC 14 1086	
		Location		Dates 16/10/2014		Engineer		Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level Depth (m) Description		Legend	Water	Instr		
0.30-0.50 0.60-0.80 1.00-1.45 2.00-2.43	C1 C2 SPT N=4 SPT 50/282		1,1/1,1,1,1		0.05 (0.15) 0.20 (0.30) (0.30) 0.80 (1.00) 1. (1.00) 1. (0.63) 2.43	MADE GROUND: Flagstone. MADE GROUND: Construction sub base sand and gravel mixed with cement. MADE GROUND: Brown slightly clayey very gravelly sand with frequent brick fragments, rare pottery, concrete, ash and clinker fragments. Sand is fine to medium. Gravel is fine to medium, subangular to rounded. Becoming clayey with depth. MADE GROUND: Brown to dark brown gravelly very sandy organic clay with occasional brick, coal and ash fragments. Sand is fine to medium. Gravel is fine to medium, subangular to angular. (STRONG ORGANIC ODOUR NOTED). Soft consistency, brown gravelly very sandy CLAY with occasional coal fragments. Sand is fine to medium. Gravel is fine to medium, subrounded to angular of sandstone. Strong red fine grained weathered SANDSTONE. (recovered as sand and gravel). Complete at 2.43m				
Remarks Borehole dry SPT refused	/. in sandstone at 2.43	3mbgl.					Scale (approx) 1:25	L	ogged y AF	
							Figure N LKC 14 1	lo. 086	.WS209	

LK		LK C Bury Bu Tel: 016	ONSULT LTD siness Centre, Kay St 1 763 7200 web: www	reet, Bury, B <i>.</i> .thelkgroup.	L9 6BU com	Site Gateacre Garden Centre,	Trial Pit Number TH201	
Excavation Method Hand excavated trial hole.		Dimensio	ns	Ground	Level (mOD)	Client Macbryde Homes Ltd		Job Number LKC 14 1086
		Location		Dates	5/10/2014	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
					- 0.05	ADE GROUND: Carpet	over tiles over concrete.	
0.20-0.50	C1				(0.65)	MADE GROUND: Brown v brick, coal, concrete, tile, a fine to medium. Gravel is f angular.	very gravelly sand with freque ash and clinker fragments. S ine to coarse, subangular to	ent and is
0.50-0.50	PID 0.1ppm							
					- 0.70 - (0.10) - 0.80 - 0.85	Soft consistency, brown gr occasional coal fragments is fine to medium, subrour	avelly very sandy CLAY with . Sand is fine to medium. Gr ded to angular.	avel
					-	Strong red fine grained we	athered SANDSTONE.	
Plan .		·			•••	Trial hole obstructed in sand	lstone at 0.85mbgl.	
						Trial hole dry.	-	
					•••			
					<u>.</u>	Scale (approx)	Logged By	Figure No.
						1:25	AF	LKC 14 1086.TH201

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

APPENDIX C

CERTIFICATES OF ANALYSIS - CONTAMINATION
M Pickford

FAO

LABORATORY TEST REPORT Asbestos in Soils

Results of analysis of 14 samples received 21 March 2014

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

Login Batch No: 254076

Qualitative Results

Quantative in	coullo				
				SOP	2192
				ACM Type	Asbestos Identification
Chemtest ID	Sample ID	Sample Desc	Depth (m)		
AJ98715	WS101		0.40	-	No Asbestos Detected
AJ98716	WS102		0.00 - 0.60	-	No Asbestos Detected
AJ98718	WS103		0.50	-	No Asbestos Detected
AJ98719	WS104		0.00 - 0.60	-	No Asbestos Detected
AJ98720	WS105		0.40	-	No Asbestos Detected
AJ98721	WS106		0.00 - 0.30	-	No Asbestos Detected
AJ98724	WS107		0.20	-	No Asbestos Detected
AJ98725	WS107		0.70 - 0.90	-	No Asbestos Detected
AJ98727	WS108		0.00 - 0.30	-	No Asbestos Detected
AJ98728	WS109		0.00	-	No Asbestos Detected
AJ98729	WS109		0.30 - 0.80	-	No Asbestos Detected
AJ98730	WS110		0.30	-	No Asbestos Detected
AJ98731	WS111		0.10 - 0.50	-	No Asbestos Detected
AJ98732	WS112		0.00 - 0.20	-	No Asbestos Detected

The detection limit for this method is 0.001%

Signed

Lauren Quinn Asbestos Analyst

LABORATORY TEST REPORT

Results of analysis of 3 samples received 21 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

Login B	Batch No					254076	
Chemte	est LIMS ID				AJ98733	AJ98734	AJ98735
Sample	: ID				WS103	WS104	WS108
Sample	e No						
Sampli	ng Date				18/3/2014	18/3/2014	18/3/2014
Depth					0.50m	0.00m - 0.60m	0.00m
Matrix					LEACHATE	LEACHATE	LEACHATE
SOP↓	Determinand↓	CAS No↓ L	Jnits↓ *				
1010	рН	PH		U	11.0	10.0	9.5
1300	Cyanide (total)	57125	mg l-1	U		<0.050	
	Cyanide (free)	57125	mg l-1	U		<0.050	
1610	Total Organic Carbon	TOC	mg l-1	Ν	11	17	100
1270	Hardness	HARD_TOT	mg CaCO3 I-1	U	940	1400	300
1220	Sulfate	14808798	mg l-1	U	27	7.7	1.3
1450	Arsenic	7440382	µg l-1	U	2.3	4.9	33
	Boron	7440428	µg l-¹	U		<20	
	Cadmium	7440439	µg l-1	U	<0.08	<0.08	0.08
	Chromium	7440473	µg l-¹	U	<1.0	<1.0	<1.0
	Copper	7440508	µg l-1	U	2.7	1.3	12
	Mercury	7439976	µg l-¹	U	<0.5	<0.5	<0.5
	Nickel	7440020	µg l-1	U	<1.0	<1.0	<1.0
	Lead	7439921	µg l-¹	U	3.3	<1.0	24
	Selenium	7782492	µg l-1	U	<1.0	<1.0	1.0
	Vanadium	7440622	µg l-¹	U	16	7.7	19
	Zinc	7440666	µg l-1	U	2.4	<1.0	5.2
1490	Chromium (hexavalent)	18540299	µg l-¹	U	<20	<20	<20
1675	TPH aliphatic >C5-C6		µg l-1	Ν		< 0.1	
	TPH aliphatic >C6-C8		µg l-¹	Ν		< 0.1	
	TPH aliphatic >C8-C10		µg l-1	Ν		< 0.1	
	TPH aliphatic >C10-C12		µg l-¹	Ν		< 0.1	
	TPH aliphatic >C12-C16		µg l-¹	Ν		< 0.1	
	TPH aliphatic >C16-C21		µg l-1	Ν		< 0.1	

* Accreditation status

LABORATORY TEST REPORT

Results of analysis of 3 samples received 21 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

					254076	
			- 1	AJ98733	AJ98734	AJ98735
				WS103	WS104	WS108
			-	18/3/2014	18/3/2014	18/3/2014
			-	0.50m	0.00m 0.60m	0.00m
			-			
				LEACHATE	LEACHATE	LEACHATE
1675 TPH aliphatic >C21-C35		µg l-¹	N		< 0.1	
TPH aliphatic >C35-C44		µg l-1	Ν		< 0.1	
TPH aromatic >C5-C7		µg l-1	Ν		< 0.1	
TPH aromatic >C7-C8		µg l-1	Ν		< 0.1	
TPH aromatic >C8-C10		µg l-1	Ν		< 0.1	
TPH aromatic >C10-C12		µg l-1	Ν		< 0.1	
TPH aromatic >C12-C16		µg l-1	N		< 0.1	
TPH aromatic >C16-C21		µg l-¹	N		< 0.1	
TPH aromatic >C21-C35		µg l-1	N		< 0.1	
TPH aromatic >C35-C44		µg l-¹	N		< 0.1	
Total Petroleum Hydrocarbons		µg l-1	Ν		< 10	
Total Aliphatic Hydrocarbons		µg l-¹	N		< 5	
Total Aromatic Hydrocarbons		µg l-1	Ν		< 5	
700 Naphthalene	91203	µg l-¹	N	<0.01	<0.01	<0.01
Acenaphthylene	208968	µg l-1	Ν	<0.01	<0.01	<0.01
Acenaphthene	83329	µg l-¹	Ν	<0.01	<0.01	<0.01
Fluorene	86737	µg l-¹	N	<0.01	< 0.01	<0.01
Phenanthrene	85018	µg l-¹	Ν	<0.01	< 0.01	<0.01
Anthracene	120127	µg l-¹	Ν	<0.01	<0.01	<0.01
Fluoranthene	206440	µg l-¹	Ν	0.7	<0.01	<0.01
Pyrene	129000	µg l-¹	Ν	0.7	<0.01	<0.01
Benzo[a]anthracene	56553	µg l-¹	Ν	<0.01	<0.01	<0.01
Chrysene	218019	µg l-¹	Ν	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	205992	µg l-¹	Ν	<0.01	<0.01	<0.01
Benzo[k]fluoranthene	207089	µg l-¹	Ν	<0.01	<0.01	<0.01

All tests undertaken between 21/03/2014 and 27/03/2014

* Accreditation status

This report should be interpreted in conjunction with the notes on the accompanying cover page.

Column page 1 Report page 2 of 8 LIMS sample ID range AJ98715 to AJ98735

LABORATORY TEST REPORT

Results of analysis of 3 samples received 21 March 2014

Report Date 27 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

						254076	
					AJ98733	AJ98734	AJ98735
					WS103	WS104	WS108
					18/3/2014	18/3/2014	18/3/2014
					0.50m	0.00m - 0.60m	0.00m
					LEACHATE	LEACHATE	LEACHATE
1700	Benzo[a]pyrene	50328	µg l-¹	N	<0.01	<0.01	<0.01
	Dibenzo[a,h]anthracene	53703	µg l-¹	Ν	<0.01	<0.01	<0.01
	Indeno[1,2,3-cd]pyrene	193395	µg l-¹	Ν	<0.01	<0.01	<0.01
	Benzo[g,h,i]perylene	191242	µg l-¹	Ν	<0.01	<0.01	<0.01
	Total (of 16) PAHs		µg l-¹	N	1.3	<0.2	<0.2
1750	Fuel Type (waters)			n/a		n/a	
1760	Methyl tert-butylether	1634044	µg l-¹	N		<1.0	
	Benzene	71432	µg l-¹	U		<1.0	
	Toluene	108883	µg l₋¹	U		<1.0	
	Ethylbenzene	100414	µg l-¹	U		<1.0	
	m- & p-Xylene	1330207	µg l-¹	U		<1.0	
	o-Xylene	95476	µg l₋¹	U		<1.0	
1920	Phenols (total)		mg l-1	Ν		< 0.03	

All tests undertaken between 21/03/2014 and 27/03/2014

* Accreditation status

Column page 1 Report page 3 of 8 LIMS sample ID range AJ98715 to AJ98735

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Report Date 27 March 2014

FAO M Pickford

Login	Batch No				254076							
Chemt	est LIMS ID				AJ98715	AJ98716	AJ98718	AJ98719	AJ98720	AJ98721		
Sample	e ID				WS101	WS102	WS103	WS104	WS105	WS106		
Sample	e No											
Sampli	ng Date				18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014		
Depth					0.40m	0.00m - 0.60m	0.50m	0.00m - 0.60m	0.40m	0.00m - 0.30m		
Matrix					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
SOP↓	Determinand↓	CAS No↓ U	nits↓ *									
2030	Moisture		%	М	13	8.08	15.5	6.34	7.02	14.5		
	Stones content (>50mm)		%	М	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02		
2040	Soil colour			М	brown	brown	brown	brown	brown	brown		
	Soil texture			М	clay	sand	loam	loam	sand	loam		
	Other material			М	stones	stones	stones	stones	stones, roots	stones		
2010	рН			М	7.8	9.3	10.7	9.7	7.8	8.8		
2300	Cyanide (free)	57125	mg kg-1	М				<0.50	<0.50			
2300 2625 2120	Cyanide (total)	57125	mg kg-1	М				1.3	<0.50			
2625	Organic matter		%	М	2.9	11	11	16	13	17		
2120	Boron (hot water soluble)	7440428	mg kg-1	М				0.6	1.0			
	Sulfate (2:1 water soluble) as SO4	14808798	g l-1	М	<0.01	0.15	0.82	0.17	0.09	0.20		
2490	Chromium (hexavalent)	18540299	mg kg-1	Ν	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
2450	Arsenic	7440382	mg kg-1	М	20	12	23	23	21	33		
	Cadmium	7440439	mg kg-1	М	0.90	0.29	0.17	0.26	0.29	0.26		
	Chromium	7440473	mg kg-1	М	20	16	21	17	44	24		
	Copper	7440508	mg kg-1	М	55	43	59	59	46	78		
	Mercury	7439976	mg kg-1	M	0.29	<0.10	<0.10	0.22	0.26	0.22		
	Nickel	7440020	mg kg-1	М	22	27	32	35	40	50		
	Lead	7439921	mg kg-1	М	180	56	74	50	130	64		
	Selenium	7782492	mg kg-1	М	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20		
	Vanadium	7440622	mg kg-1	М	18	35	35	33	37	62		
	Zinc	7440666	mg kg-1	М	260	52	76	53	100	69		
2675	TPH aliphatic >C5-C6		mg kg-1	Ν				< 0.1	< 0.1			
	TPH aliphatic >C6-C8		mg kg-1	Ν				< 0.1	< 0.1			

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Report Date 27 March 2014

FAO M Pickford

Logi	n Batch No			[2540	76		
Cher	ntest LIMS ID				AJ98724	AJ98725	AJ98727	AJ98728	AJ98729	AJ98730
Sam	ble ID				WS107	WS107	WS108	WS109	WS109	WS110
Sam	ble No			-						
Sam	oling Date			-	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	19/3/2014
Dept	h				0.20m	0.70m - 0.90m	0.00m - 0.30m	0.00m	0.30m - 0.80m	0.30m
Matri	x			-	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SOP	↓ Determinand↓	CAS No↓	Units↓	*						
2030	Moisture		%	М	20.5	16	16.3	10.2	12.1	11.2
	Stones content (>50mm)		%	М	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02
2040	Soil colour			М	brown	brown	brown	brown	brown	brown
	Soil texture			М	clay	clay	clay	clay	clay	sand
	Other material			М	none	none	stones	stones	stones	stones
2010	рН			М	7.7	8.1	8.1	8.0	7.5	8.3
2300	Cyanide (free)	57125	mg kg-1	М						
2300	Cyanide (total)	57125	mg kg-1	М						
2625	Organic matter		%	М	9.5	0.88	3.4	9.5	1.1	7.1
2120	Boron (hot water soluble)	7440428	mg kg-1	М						
	Sulfate (2:1 water soluble) as SO4	14808798	g -1	М	0.05	<0.01	0.04	0.05	<0.01	<0.01
2490	Chromium (hexavalent)	18540299	mg kg-1	N	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2450	Arsenic	7440382	mg kg-1	М	54	10	17	21	6.4	20
	Cadmium	7440439	mg kg-1	М	1.8	<0.10	0.30	0.36	<0.10	0.30
	Chromium	7440473	mg kg-1	М	50	43	28	14	20	18
	Copper	7440508	mg kg-1	М	120	21	43	39	13	27
	Mercury	7439976	mg kg-1	М	0.44	<0.10	0.19	0.27	<0.10	0.11
	Nickel	7440020	mg kg-1	М	32	37	22	19	19	20
	Lead	7439921	mg kg-1	М	740	35	140	110	43	290
	Selenium	7782492	mg kg-1	М	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	43	37	27	21	21	29
	Zinc	7440666	mg kg-1	М	300	51	100	63	35	78
2675	TPH aliphatic >C5-C6		mg kg-1	N						
	TPH aliphatic >C6-C8		mg kg-1	N						

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

Logi	n Batch No				254	076
Cher	ntest LIMS ID				AJ98731	AJ98732
Sam	ole ID				WS111	WS112
Sam	ole No					
Sam	pling Date				19/3/2014	19/3/2014
Dept	h				0.10m - 0.50m	0.00m - 0.20m
Matri	x				SOIL	SOIL
SOF	↓ Determinand↓	CAS No↓	Units↓	*		
2030	Moisture		%	М	15	9.91
	Stones content (>50mm)		%	М	<0.02	<0.02
2040	Soil colour			М	brown	brown
	Soil texture			М	clay	loam
	Other material			М	none	stones
2010	рН			М	7.8	8.1
2300	Cyanide (free)	57125	mg kg-1	М		
	Cyanide (total)	57125	mg kg-1	М		
2625	Organic matter		%	М	2.9	11
2120	Boron (hot water soluble)	7440428	mg kg-1	М		
	Sulfate (2:1 water soluble) as SO4	14808798	g l-1	М	0.06	<0.01
2490	Chromium (hexavalent)	18540299	mg kg-1	N	<0.5	<0.5
2450	Arsenic	7440382	mg kg-1	М	19	27
	Cadmium	7440439	mg kg-1	М	0.28	0.28
	Chromium	7440473	mg kg-1	М	24	23
	Copper	7440508	mg kg-1	М	48	84
	Mercury	7439976	mg kg-1	М	0.30	0.13
	Nickel	7440020	mg kg-1	М	26	39
	Lead	7439921	mg kg-1	М	280	94
	Selenium	7782492	mg kg-1	М	<0.20	<0.20
	Vanadium	7440622	mg kg-1	М	29	37
	Zinc	7440666	mg kg-1	М	140	150
2675	TPH aliphatic >C5-C6		mg kg-1	Ν		
	TPH aliphatic >C6-C8		mg kg-1	N		

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Chemtes The right chemistry to deliver result

Report Date

FAO M Pickford

27	7 N	larc	h 2	201	4

							254	4076		
				I	AJ98715	AJ98716	AJ98718	AJ98719	AJ98720	AJ98721
				[WS101	WS102	WS103	WS104	WS105	WS106
					18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
					0.40m	0.00m - 0.60m	0.50m	0.00m - 0.60m	0.40m	0.00m - 0.30m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2675	TPH aliphatic >C8-C10		mg kg-1	Ν				< 0.1	< 0.1	
	TPH aliphatic >C10-C12		mg kg-1	М				6.0	< 1	
	TPH aliphatic >C12-C16		mg kg-1	М				49	< 1	
	TPH aliphatic >C16-C21		mg kg-1	М				1.7	< 1	
	TPH aliphatic >C21-C35		mg kg-1	М				< 1	< 1	
	TPH aliphatic >C35-C44		mg kg-1	Ν				< 1	< 1	
	TPH aromatic >C5-C7		mg kg-1	Ν				< 0.1	< 0.1	
	TPH aromatic >C7-C8		mg kg-1	Ν				< 0.1	< 0.1	
	TPH aromatic >C8-C10		mg kg-1	Ν				< 0.1	< 0.1	
	TPH aromatic >C10-C12		mg kg-1	Ν				3.0	< 1	
	TPH aromatic >C12-C16		mg kg-1	М				7.5	< 1	
	TPH aromatic >C16-C21		mg kg-1	М				3.7	< 1	
	TPH aromatic >C21-C35		mg kg-1	Ν				14	< 1	
	TPH aromatic >C35-C44		mg kg-1	Ν				< 1	< 1	
	Total Petroleum Hydrocarbons		mg kg-1	Ν				85	< 10	
2700	Naphthalene	91203	mg kg-1	М	0.32	< 0.1	0.5	< 0.1	< 0.1	< 0.1
	Acenaphthylene	208968	mg kg-1	М	0.77	< 0.1	0.59	< 0.1	< 0.1	< 0.1
	Acenaphthene	83329	mg kg-1	М	0.34	< 0.1	0.28	< 0.1	< 0.1	< 0.1
	Fluorene	86737	mg kg-1	М	0.51	< 0.1	0.17	< 0.1	< 0.1	< 0.1
	Phenanthrene	85018	mg kg-1	М	3.1	< 0.1	1.8	1.6	0.53	< 0.1
	Anthracene	120127	mg kg-1	М	0.96	< 0.1	0.32	0.25	0.13	< 0.1
	Fluoranthene	206440	mg kg-1	М	6.7	< 0.1	2	2.7	0.87	< 0.1
	Pyrene	129000	mg kg-1	М	7.6	< 0.1	2.1	3.9	1.1	< 0.1
	Benzo[a]anthracene	56553	mg kg-1	М	4	< 0.1	0.77	1.4	0.33	< 0.1
	Chrysene	218019	mg kg-1	М	4.7	< 0.1	0.63	2.1	0.55	< 0.1

LABORATORY TEST REPORT

Report Date 27 March 2014

FAO M Pickford

							2540	76		
					AJ98724	AJ98725	AJ98727	AJ98728	AJ98729	AJ98730
					WS107	WS107	WS108	WS109	WS109	WS110
					18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	19/3/2014
					0.20m	0.70m - 0.90m	0.00m - 0.30m	0.00m	0.30m - 0.80m	0.30m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2675	TPH aliphatic >C8-C10		mg kg-1	Ν						
	TPH aliphatic >C10-C12		mg kg-1	М						
	TPH aliphatic >C12-C16		mg kg-1	М						
	TPH aliphatic >C16-C21		mg kg-1	М						
	TPH aliphatic >C21-C35		mg kg-1	М						
	TPH aliphatic >C35-C44		mg kg-1	Ν						
	TPH aromatic >C5-C7		mg kg-1	Ν						
	TPH aromatic >C7-C8		mg kg-1	Ν						
	TPH aromatic >C8-C10		mg kg-1	Ν						
	TPH aromatic >C10-C12		mg kg-1	Ν						
	TPH aromatic >C12-C16		mg kg-1	М						
	TPH aromatic >C16-C21		mg kg-1	М						
	TPH aromatic >C21-C35		mg kg-1	Ν						
	TPH aromatic >C35-C44		mg kg-1	Ν						
	Total Petroleum Hydrocarbons		mg kg-1	Ν						
2700	Naphthalene	91203	mg kg-1	М	0.13	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Acenaphthylene	208968	mg kg-1	М	0.33	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Acenaphthene	83329	mg kg-1	М	0.17	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Fluorene	86737	mg kg-1	М	0.21	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Phenanthrene	85018	mg kg-1	М	1.1	< 0.1	0.63	< 0.1	< 0.1	0.45
	Anthracene	120127	mg kg-1	М	0.17	< 0.1	< 0.1	< 0.1	< 0.1	0.13
	Fluoranthene	206440	mg kg-1	М	1.6	< 0.1	0.71	< 0.1	< 0.1	0.49
	Pyrene	129000	mg kg-1	М	1.8	< 0.1	0.82	< 0.1	< 0.1	0.6
	Benzo[a]anthracene	56553	mg kg-1	М	0.59	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Chrysene	218019	mg kg-1	М	0.79	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

					254	076
					AJ98731	AJ98732
					WS111	WS112
					19/3/2014	19/3/2014
					0.10m - 0.50m	0.00m - 0.20m
					SOIL	SOIL
2675 TF	PH aliphatic >C8-C10		mg kg-1	N		
TF	PH aliphatic >C10-C12		mg kg-1	М		
TF	PH aliphatic >C12-C16		mg kg-1	М		
TF	PH aliphatic >C16-C21		mg kg-1	М		
TF	PH aliphatic >C21-C35		mg kg-1	М		
TF	PH aliphatic >C35-C44		mg kg-1	N		
TF	PH aromatic >C5-C7		mg kg-1	Ν		
TF	PH aromatic >C7-C8		mg kg-1	Ν		
TF	PH aromatic >C8-C10		mg kg-1	Ν		
TF	PH aromatic >C10-C12		mg kg-1	N		
TF	PH aromatic >C12-C16		mg kg-1	М		
TF	PH aromatic >C16-C21		mg kg-1	М		
TF	PH aromatic >C21-C35		mg kg-1	N		
TF	PH aromatic >C35-C44		mg kg-1	N		
То	otal Petroleum Hydrocarbons		mg kg-1	N		
2700 Na	aphthalene	91203	mg kg-1	М	< 0.1	< 0.1
Ac	cenaphthylene	208968	mg kg-1	М	< 0.1	< 0.1
Ac	cenaphthene	83329	mg kg-1	М	< 0.1	< 0.1
Flu	uorene	86737	mg kg-1	М	< 0.1	< 0.1
Ph	nenanthrene	85018	mg kg-1	М	0.64	0.86
An	nthracene	120127	mg kg-1	М	0.14	0.22
Flu	uoranthene	206440	mg kg-1	М	1	0.91
Ру	/rene	129000	mg kg-1	М	1.3	1
Be	enzo[a]anthracene	56553	mg kg-1	М	0.79	0.34
Ch	nrysene	218019	mg kg-1	М	1.3	0.67

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Chemtes

Report Date

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

27 March 2014

				[25	4076		
					AJ98715	AJ98716	AJ98718	AJ98719	AJ98720	AJ98721
					WS101	WS102	WS103	WS104	WS105	WS106
				-	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
					0.40m	0.00m - 0.60m	0.50m	0.00m = 0.60m	0.40m	0.00m - 0.30m
				-	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2700	Benzo[b]fluoranthene	205992	mg kg-1	N	5	< 0.1	1.4	3	0.9	< 0.1
	Benzo[k]fluoranthene	207089	mg kg-1	N	2.1	< 0.1	0.8	0.85	0.54	< 0.1
	Benzo[a]pyrene	50328	mg kg-1	Μ	4.3	< 0.1	0.99	3.4	1	< 0.1
	Dibenzo[a,h]anthracene	53703	mg kg-1	Μ	1.1	< 0.1	< 0.1	0.69	< 0.1	< 0.1
	Indeno[1,2,3-cd]pyrene	193395	mg kg-1	М	2.7	< 0.1	< 0.1	3.2	< 0.1	< 0.1
	Benzo[g,h,i]perylene	191242	mg kg-1	М	2.7	< 0.1	< 0.1	4.3	< 0.1	< 0.1
	Total (of 16) PAHs		mg kg-1	М	47	< 2	12	27	6	< 2
2750	Fuel Type (soils)			Ν				w/diesel PAH	n/a	
2760	Methyl tert-butylether	1634044	µg kg-¹	М				< 1.0	< 1.0	
	Benzene	71432	µg kg-1	М				< 1.0	< 1.0	
2750 2760	Toluene	108883	µg kg-1	М				< 1.0	< 1.0	
	Ethylbenzene	100414	µg kg-1	М				< 1.0	< 1.0	
	m- & p-Xylene	1330207	µg kg-1	М				< 1.0	< 1.0	
	o-Xylene	95476	µg kg-1	М				< 1.0	< 1.0	
2820	Azinphos methyl	86500	mg kg-1	Ν						
	Coumaphos	56724	mg kg-1	N						
	Demeton (O+S)	8065483	mg kg-1	Ν						
	Disulfoton	298044	mg kg-1	N						
	Fensulfothion	115902	mg kg-1	Ν						
	Fenthion	55389	mg kg-1	N						
	Phorate	298022	mg kg-1	N						
	Prothiophos	34643464	mg kg-1	Ν						
	Sulprofos	35400432	mg kg-1	Ν						
	Trichloronate	327980	mg kg-1	Ν						
2830	Ametryn	834128	mg kg-1	Ν						

LABORATORY TEST REPORT

received 21 March 2014

Chemtest The right chemistry to deliver results

> Report Date 27 March 2014

FAO M Pickford

				254076								
				AJ98724	AJ98725	AJ98727	AJ98728	AJ98729	AJ98730			
				WS107	WS107	WS108	WS109	WS109	WS110			
				18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	19/3/2014			
				0.20m	0.70m - 0.90m	0.00m - 0.30m	0.00m	0.30m - 0.80m	0.30m			
			-	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
2700 Benzo[b]fluoranthene	205992	mg kg-1	N	1.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Benzo[k]fluoranthene	207089	mg kg-1	N	0.83	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Benzo[a]pyrene	50328	mg kg-1	М	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Dibenzo[a,h]anthracene	53703	mg kg-1	М	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Indeno[1,2,3-cd]pyrene	193395	mg kg-1	М	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Benzo[g,h,i]perylene	191242	mg kg-1	М	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1			
Total (of 16) PAHs		mg kg-1	М	10	< 2	2.2	< 2	< 2	< 2			
2750 Fuel Type (soils)			N									
2760 Methyl tert-butylether	1634044	µg kg-¹	М									
Benzene	71432	µg kg-¹	М									
Toluene	108883	µg kg-¹	М									
Ethylbenzene	100414	µg kg-¹	М									
m- & p-Xylene	1330207	µg kg-¹	М									
o-Xylene	95476	µg kg-¹	М									
2820 Azinphos methyl	86500	mg kg-1	N	< 0.2					< 0.2			
Coumaphos	56724	mg kg-1	Ν	< 0.2					< 0.2			
Demeton (O+S)	8065483	mg kg-1	Ν	< 0.2					< 0.2			
Disulfoton	298044	mg kg-1	Ν	< 0.2					< 0.2			
Fensulfothion	115902	mg kg-1	Ν	< 0.2					< 0.2			
Fenthion	55389	mg kg-1	Ν	< 0.2					< 0.2			
Phorate	298022	mg kg-1	N	< 0.2					< 0.2			
Prothiophos	34643464	mg kg-1	Ν	< 0.2					< 0.2			
Sulprofos	35400432	mg kg-1	N	< 0.2					< 0.2			
Trichloronate	327980	mg kg-1	Ν	< 0.2					< 0.2			
2830 Ametryn	834128	mg kg-1	Ν	< 0.2					< 0.2			

LABORATORY TEST REPORT

Report Date 27 March 2014

FAO M Pickford

					254076			
					AJ98731	AJ98732		
					WS111	WS112		
					19/3/2014	19/3/2014		
					0.10m - 0.50m	0.00m - 0.20m		
					SOIL	SOIL		
2700	Denzelhifuerenthene	205002	ma ka 1	NI	0.74	0.00		
2700	Benzolbjiluoranthene	205992	mg kg 1	IN N	0.74	0.09		
	Benzo[k]iluoraninene	207069	mg kg-	IN NA	0.38	0.33		
	Benzolajpyrene	50328	mg kg-	IVI	0.83	0.63		
		53703	nig kg-	IVI	0.29	< 0.1		
	Indeno[1,2,3-cd]pyrene	193395	mg kg-'	IVI	0.69	< 0.1		
		191242	mg kg-'	IVI	0.62	< 0.1		
	Total (of 16) PAHs		тд кд-'	M	8.7	5.7		
2750	Fuel Type (soils)			N				
2760	Methyl tert-butylether	1634044	µg kg-¹	M				
	Benzene	71432	µg kg-¹	M				
	Toluene	108883	µg kg-¹	M				
	Ethylbenzene	100414	µg kg-¹	M				
	m- & p-Xylene	1330207	µg kg-¹	Μ				
	o-Xylene	95476	µg kg-¹	М				
2820	Azinphos methyl	86500	mg kg-1	N		< 0.2		
	Coumaphos	56724	mg kg-1	N		< 0.2		
	Demeton (O+S)	8065483	mg kg-1	Ν		< 0.2		
	Disulfoton	298044	mg kg-1	N		< 0.2		
	Fensulfothion	115902	mg kg-1	Ν		< 0.2		
	Fenthion	55389	mg kg-1	Ν		< 0.2		
	Phorate	298022	mg kg-1	N		< 0.2		
	Prothiophos	34643464	mg kg-1	Ν		< 0.2		
	Sulprofos	35400432	mg kg-1	N		< 0.2		
	Trichloronate	327980	mg kg-1	N		< 0.2		
2830	Ametryn	834128	mg kg-1	Ν		< 0.2		

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Report Date

FAO M Pickford

27	March	2014

					254076							
					AJ98715	AJ98716	AJ98718	AJ98719	AJ98720	AJ98721		
					WS101	WS102	WS103	WS104	WS105	WS106		
					18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014		
					0.40m	0.00m - 0.60m	0.50m	0.00m - 0.60m	0.40m	0.00m - 0.30m		
				-	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2830	Atraton	1610179	mg kg-1	N								
	Atrazine	1912249	mg kg-1	Ν								
	Prometon	1610180	mg kg-1	N								
	Prometryn	7287196	mg kg-1	Ν								
	Propazine	139402	mg kg-1	N								
	Secbumeton	26259450	mg kg-1	Ν								
	Simazine	122349	mg kg-1	N								
	Simetryn	1014706	mg kg-1	N								
	Terbuthylazine	5915413	mg kg-1	N								
	Terbutryn	886500	mg kg-1	Ν								
2840	alpha-HCH	319846	mg kg-1	Ν								
	gamma-HCH	58899	mg kg-1	Ν								
	beta-HCH	319857	mg kg-1	N								
	Heptachlor	76448	mg kg-1	N								
	delta-HCH	319868	mg kg-1	N								
	Aldrin	309002	mg kg-1	N								
	Heptachlor epoxide	1024573	mg kg-1	N								
	gamma-Chlordane	5103742	mg kg-1	N								
	alpha-Chlordane	5103719	mg kg-1	N								
	Endosulfan I	959988	mg kg-1	N								
	4,4'-DDE	72559	mg kg-1	N								
	Dieldrin	60571	mg kg-1	N								
	Endrin	72208	mg kg-1	Ν								
	4,4'-DDD	72548	mg kg-1	Ν								
	Endosulfan II	33213659	mg kg-1	Ν								

LABORATORY TEST REPORT

received 21 March 2014

Report Date 27 March 2014

FAO M Pickford

					254076							
					AJ98724	AJ98725	AJ98727	AJ98728	AJ98729	AJ98730		
					WS107	WS107	WS108	WS109	WS109	WS110		
					18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	19/3/2014		
					0.20m	0.70m - 0.90m	0.00m - 0.30m	0.00m	0.30m - 0.80m	0.30m		
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
2830	Atraton	1610179	mg kg-1	Ν	< 0.2					< 0.2		
	Atrazine	1912249	mg kg-1	Ν	< 0.2					< 0.2		
	Prometon	1610180	mg kg-1	N	< 0.2					< 0.2		
	Prometryn	7287196	mg kg-1	N	< 0.2					< 0.2		
	Propazine	139402	mg kg-1	Ν	< 0.2					< 0.2		
	Secbumeton	26259450	mg kg-1	Ν	< 0.2					< 0.2		
	Simazine	122349	mg kg-1	Ν	< 0.2					< 0.2		
	Simetryn	1014706	mg kg-1	Ν	< 0.2					< 0.2		
	Terbuthylazine	5915413	mg kg-1	Ν	< 0.2					< 0.2		
	Terbutryn	886500	mg kg-1	Ν	< 0.2					< 0.2		
2840	alpha-HCH	319846	mg kg-1	Ν	< 0.2					< 0.2		
	gamma-HCH	58899	mg kg-1	N	< 0.2					< 0.2		
	beta-HCH	319857	mg kg-1	N	< 0.2					< 0.2		
	Heptachlor	76448	mg kg-1	N	< 0.2					< 0.2		
	delta-HCH	319868	mg kg-1	N	< 0.2					< 0.2		
	Aldrin	309002	mg kg-1	Ν	< 0.2					< 0.2		
	Heptachlor epoxide	1024573	mg kg-1	N	< 0.2					< 0.2		
	gamma-Chlordane	5103742	mg kg-1	Ν	< 0.2					< 0.2		
	alpha-Chlordane	5103719	mg kg-1	N	< 0.2					< 0.2		
	Endosulfan I	959988	mg kg-1	Ν	< 0.2					< 0.2		
	4,4'-DDE	72559	mg kg-1	N	< 0.2					< 0.2		
	Dieldrin	60571	mg kg-1	Ν	< 0.2					< 0.2		
	Endrin	72208	mg kg-1	N	< 0.2					< 0.2		
	4,4'-DDD	72548	mg kg-1	Ν	< 0.2					< 0.2		
	Endosulfan II	33213659	mg kg-1	Ν	< 0.2					< 0.2		

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

					254076		
					AJ98731	AJ98732	
					WS111	WS112	
					10/2/2014	10/2/2014	
					19/3/2014	19/3/2014	
					0.10m - 0.50m	0.00m - 0.20m	
					SOIL	SOIL	
2830	Atraton	1610179	mg kg-1	Ν		< 0.2	
	Atrazine	1912249	mg kg-1	N		< 0.2	
	Prometon	1610180	mg kg-1	N		< 0.2	
	Prometryn	7287196	mg kg-1	Ν		< 0.2	
	Propazine	139402	mg kg-1	Ν		< 0.2	
	Secbumeton	26259450	mg kg-1	N		< 0.2	
	Simazine	122349	mg kg-1	Ν		< 0.2	
	Simetryn	1014706	mg kg-1	N		< 0.2	
	Terbuthylazine	5915413	mg kg-1	N		< 0.2	
	Terbutryn	886500	mg kg-1	N		< 0.2	
840	alpha-HCH	319846	mg kg-1	Ν		< 0.2	
	gamma-HCH	58899	mg kg-1	N		< 0.2	
	beta-HCH	319857	mg kg-1	N		< 0.2	
	Heptachlor	76448	mg kg-1	N		< 0.2	
	delta-HCH	319868	mg kg-1	Ν		< 0.2	
	Aldrin	309002	mg kg-1	Ν		< 0.2	
	Heptachlor epoxide	1024573	mg kg-1	Ν		< 0.2	
	gamma-Chlordane	5103742	mg kg-1	Ν		< 0.2	
	alpha-Chlordane	5103719	mg kg-1	Ν		< 0.2	
	Endosulfan I	959988	mg kg-1	Ν		< 0.2	
	4,4'-DDE	72559	mg kg-1	Ν		< 0.2	
	Dieldrin	60571	mg kg-1	Ν		< 0.2	
	Endrin	72208	mg kg-1	Ν		< 0.2	
	4,4'-DDD	72548	mg kg-1	Ν		< 0.2	
	Endosulfan II	33213659	mg kg-1	N		< 0.2	

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Report Date 27 March 2014

FAO M Pickford

							25	4076		
					AJ98715	AJ98716	AJ98718	AJ98719	AJ98720	AJ98721
					WS101	WS102	WS103	WS104	WS105	WS106
					18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014
					0.40m	0.00m - 0.60m	0.50m	0.00m - 0.60m	0.40m	0.00m - 0.30m
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
2840	4,4'-DDT	50293	mg kg-1	N						
	Endrin aldehyde	7421934	mg kg-1	N						
	Endosulfan sulfate	1031078	mg kg-1	N						
	Methoxychlor	72435	mg kg-1	N						
	Endrin ketone	53494705	mg kg-1	N						
	Hexachlorobutadiene	87683	mg kg-1	N						
2920	Phenols (total)		mg kg-1	М				<0.3	<0.3	

LABORATORY TEST REPORT

Results of analysis of 17 samples

received 21 March 2014

FAO M Pickford

LKC 14 1086 - Gateacre Garden Centre, Liverpool

Report Date 27 March 2014

					254076								
					AJ98724	AJ98729	AJ98730						
					WS107	WS107	WS108	WS109	WS109	WS110			
					18/3/2014	18/3/2014	18/3/2014	18/3/2014	18/3/2014	19/3/2014			
					0.20m	0.70m - 0.90m	0.00m - 0.30m	0.00m	0.30m - 0.80m	0.30m			
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL			
2840	4,4'-DDT	50293	mg kg-1	Ν	< 0.2					< 0.2			
	Endrin aldehyde	7421934	mg kg-1	Ν	< 0.2					< 0.2			
	Endosulfan sulfate	1031078	mg kg-1	Ν	< 0.2					< 0.2			
	Methoxychlor	72435	mg kg-1	N	< 0.2					< 0.2			
	Endrin ketone	53494705	mg kg-1	N	< 0.2					< 0.2			
	Hexachlorobutadiene	87683	mg kg-1	N	< 0.2					< 0.2			
2920	Phenols (total)		mg kg-1	М									

LABORATORY TEST REPORT

Results of analysis of 17 samples received 21 March 2014

Report Date 27 March 2014

FAO M Pickford

					254076		
					AJ98731	AJ98732	
					WS111	WS112	
					19/3/2014	19/3/2014	
					0.10m - 0.50m	0.00m - 0.20m	
					SOIL	SOIL	
2840	4,4'-DDT	50293	mg kg-1	N		< 0.2	
	Endrin aldehyde	7421934	mg kg-1	N		< 0.2	
	Endosulfan sulfate	1031078	mg kg-1	N		< 0.2	
	Methoxychlor	72435	mg kg-1	N		< 0.2	
	Endrin ketone	53494705	mg kg-1	N		< 0.2	
	Hexachlorobutadiene	87683	mg kg-1	N		< 0.2	
2920	Phenols (total)		mg kg-1	М			

Report Number:	14-12449 Issue-1		
Initial Date of Issue:	24-Oct-14		
Client:	Leyden Kirby		
Client Address:	Unit 25 Bury Business Centre Kay Street Bury Lancashire BL9 6BU		
Contact(s):	Michelle Pickford		
Project:	LKC 14 1086 - Gateacre Garden, Centre. Live	erpool	
Quotation No.:		Date Received:	20-Oct-14
Order No.:	731030	Date Instructed:	20-Oct-14
No. of Samples:	15	Results Due:	22-Oct-14
Turnaround: (Weekdays)	3		
Date Approved:	24-Oct-14		
Approved By:			
Details:	Darrell Hall, Laboratory Director		

Client: Leyden Kirby		Chemtest Job No.:		14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	
Quotation No.:	(Chemte	est Sam	ple ID.:	60605	60606	60607	60608	60609	60610	60611	60612	60613
Order No.: 731030		Clie	nt Samp	ole Ref.:									
		Clie	ent Sam	ple ID.:	WS201	WS202	WS203	WS204	WS205	WS206	WS207	WS207	TH201
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0	0.4	0.1	0.2	0.3	0.2	0.1	0.3	0.2
		Bo	ottom De	epth(m):	0.3	0.6	0.3	0.4	0.5	0.4	0.2	0.5	0.5
			Date Sa	ampled:	15-Oct-14								
Determinand	Accred.	SOP	Units	LOD									
АСМ Туре	U	2192			-	-	-	-	-	-	-	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected								
Moisture	N	2030	%	0.02	14	15	8.0	19	9.5	20	2.8	12	10
Soil Colour	N				brown								
Other Material	N				stones								
Soil Texture	N				clay	clay	sand	clay	sand	clay	sand	clay	sand
рН	М	2010			8.9	7.4	8.0	7.5	7.9	7.6	8.4	7.8	9.3
Boron (Hot Water Soluble)	М	2120	mg/kg	0.4		0.68	0.66			0.54			
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/L	0.01	0.30	0.037	0.12	0.043	0.020	0.054	0.084	0.020	1.3
Cyanide (Total)	М	2300	mg/kg	0.5		< 0.50	< 0.50			< 0.50			
Cyanide (Free)	М	2300	mg/kg	0.5		< 0.50	< 0.50			< 0.50			
Arsenic	М	2450	mg/kg	1	8.9	6.7	19	14	10	15	7.4	< 1.0	31
Cadmium	М	2450	mg/kg	0.1	0.18	0.17	0.43	0.53	0.11	0.33	0.19	< 0.10	0.24
Chromium	М	2450	mg/kg	1	35	17	23	26	21	22	5.2	23	28
Copper	М	2450	mg/kg	1	24	42	49	62	31	47	6.2	13	59
Mercury	М	2450	mg/kg	0.1	< 0.10	0.12	0.27	0.30	< 0.10	0.41	< 0.10	< 0.10	0.14
Nickel	М	2450	mg/kg	1	32	20	28	28	23	19	5.0	23	36
Lead	М	2450	mg/kg	1	48	160	360	920	47	280	23	30	100
Selenium	М	2450	mg/kg	0.2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Vanadium	U	2450	mg/kg	5	36	14	16	22	7.9	73	< 5.0	< 5.0	38
Zinc	М	2450	mg/kg	1	75	85	160	380	79	66	11	27	78
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	М	2625	%	0.4	1.9	1.7	4.7	6.2	3.1	7.2	1.1	0.93	4.7
Fuel Type	N	2670				N/A	Lube Oil			N/A			
Aliphatic TPH >C5-C6	N	2675	mg/kg	0.1		< 0.10	< 0.10			< 0.10			
Aliphatic TPH >C6-C8	N	2675	mg/kg	0.1		< 0.10	< 0.10			< 0.10			
Aliphatic TPH >C8-C10	М	2675	mg/kg	0.1		< 0.10	< 0.10			< 0.10			
Aliphatic TPH >C10-C12	М	2675	mg/kg	1		< 1.0	< 1.0			< 1.0			
Aliphatic TPH >C12-C16	М	2675	mg/kg	1		< 1.0	< 1.0			< 1.0			
Aliphatic TPH >C16-C21	М	2675	mg/kg	1		< 1.0	< 1.0			< 1.0			
Aliphatic TPH >C21-C35	М	2675	mg/kg	1		< 1.0	190			< 1.0			
Aliphatic TPH >C35-C44	М	2675	mg/kg	1		< 1.0	36			< 1.0			

Client: Leyden Kirby	Chemtest Job No.:		14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449		
Quotation No.:	(Chemte	est Sam	ple ID.:	60605	60606	60607	60608	60609	60610	60611	60612	60613
Order No.: 731030		Clie	nt Samp	le Ref.:									
		Clie	ent Sam	ple ID.:	WS201	WS202	WS203	WS204	WS205	WS206	WS207	WS207	TH201
			Sample	e Type:	SOIL								
			Top Dep	oth (m):	0	0.4	0.1	0.2	0.3	0.2	0.1	0.3	0.2
		Bo	ottom De	pth(m):	0.3	0.6	0.3	0.4	0.5	0.4	0.2	0.5	0.5
			Date Sa	ampled:	15-Oct-14								
Determinand	Accred.	SOP	Units	LOD									
Total Aliphatic Hydrocarbons	М	2675	mg/kg	5		< 5.0	220			< 5.0			
Aromatic TPH >C5-C7	N	2675	mg/kg	0.1		< 0.10	< 0.10			< 0.10			
Aromatic TPH >C7-C8	N	2675	mg/kg	0.1		< 0.10	< 0.10			< 0.10			
Aromatic TPH >C8-C10	М	2675	mg/kg	0.1		< 0.10	< 0.10			< 0.10			
Aromatic TPH >C10-C12	М	2675	mg/kg	1		< 1.0	< 1.0			< 1.0			
Aromatic TPH >C12-C16	М	2675	mg/kg	1		< 1.0	< 1.0			< 1.0			
Aromatic TPH >C16-C21	М	2675	mg/kg	1		3.2	< 1.0			< 1.0			
Aromatic TPH >C21-C35	М	2675	mg/kg	1		4.4	130			< 1.0			
Aromatic TPH >C35-C44	N	2675	mg/kg	1		< 1.0	< 1.0			< 1.0			
Total Aromatic Hydrocarbons	М	2675	mg/kg	5		7.6	130			< 5.0			
Total Petroleum Hydrocarbons	М	2675	mg/kg	10		< 10	350			< 10			
Naphthalene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.51	0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.25	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.19	0.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.11	0.18	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.55	0.80	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.14	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	М	2700	mg/kg	0.1	1.3	1.6	1.4	1.2	0.40	0.77	< 0.10	< 0.10	0.36
Pyrene	М	2700	mg/kg	0.1	1.0	1.6	1.4	1.2	0.31	0.72	< 0.10	< 0.10	0.29
Benzo[a]anthracene	М	2700	mg/kg	0.1	0.51	0.57	0.31	0.46	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	М	2700	mg/kg	0.1	0.35	0.51	0.23	0.45	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	М	2700	mg/kg	0.1	< 0.10	0.66	1.4	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700	mg/kg	0.1	< 0.10	< 0.10	0.37	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	М	2700	mg/kg	0.1	< 0.10	0.61	0.55	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	М	2700	mg/kg	2	3.2	5.6	7.4	4.8	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	М	2760	µg/kg	1		< 1.0	< 1.0			< 1.0			
Toluene	М	2760	µg/kg	1		< 1.0	< 1.0			< 1.0			
Ethylbenzene	М	2760	µg/kg	1		< 1.0	< 1.0			< 1.0			
m & p-Xylene	М	2760	µg/kg	1		< 1.0	< 1.0			< 1.0			
o-Xylene	М	2760	µg/kg	1		< 1.0	< 1.0			< 1.0			

Client: Leyden Kirby		Che	mtest J	ob No.:	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449
Quotation No.:	(Chemte	est Sam	ple ID.:	60605	60606	60607	60608	60609	60610	60611	60612	60613
Order No.: 731030		Clie	nt Samp	le Ref.:									
		Clie	ent Sam	ple ID.:	WS201	WS202	WS203	WS204	WS205	WS206	WS207	WS207	TH201
			Sampl	e Type:	SOIL								
			Top De	pth (m):	0	0.4	0.1	0.2	0.3	0.2	0.1	0.3	0.2
		Bo	ottom De	epth(m):	0.3	0.6	0.3	0.4	0.5	0.4	0.2	0.5	0.5
			Date Sa	ampled:	15-Oct-14								
Determinand	Accred.	SOP	Units	LOD									
Methyl Tert-Butyl Ether	М	2760	µg/kg	1		< 1.0	< 1.0			< 1.0			
Demeton-O	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Phorate	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Demeton-S	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Disulphoton	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Fenthion	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Trichloronate	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Prothiophos	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Fensulphothion	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Sulprofos	Ν	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Azinphos-Methyl	N	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Coumaphos	N	2820	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Alpha-Lindane	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Gamma-Lindane	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Beta-Lindane	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Delta-Lindane	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Heptachlor	N	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Aldrin	N	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Heptachlor Epoxide	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Gamma-Chlordane	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Alpha-Chlordane	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Endosulphan I	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
4,4-DDE	N	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Dieldrin	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Endrin	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
4,4-DDD	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Endosulphan II	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Endrin Aldehyde	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
4,4-DDT	N	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Endosulphan Sulphate	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Methoxychlor	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Endrin Ketone	Ν	2840	mg/kg	0.2		< 0.20		< 0.20				< 0.20	
Total Phenols	М	2920	mg/kg	0.3		< 0.30	< 0.30			< 0.30			

Client: Leyden Kirby		Che	mtest J	ob No.:	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449
Quotation No.:	(Chemte	est Sam	ple ID.:	60614	60615	60616	60617	60618	60619
Order No.: 731030		Clie	nt Samp	le Ref.:						
		Clie	ent Sam	ple ID.:	WS208	WS209	WS209	WS203	WS204	WS208
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.2	0.3	0.6	0.5	0.5	0.6
		Bo	ottom De	epth(m):	0.4	0.5	0.8	0.6	0.7	0.8
			Date Sa	ampled:	16-Oct-14	16-Oct-14	16-Oct-14	15-Oct-14	15-Oct-14	16-Oct-14
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192			-	-	-			
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected			
Moisture	Ν	2030	%	0.02	6.7	7.9	17	14	16	16
Soil Colour	Ν				brown	brown	brown	brown	brown	brown
Other Material	Ν				stones	stones	stones	stones	stones	stones
Soil Texture	Ν				sand	sand	clay	sands	clay	clay
рН	М	2010			8.8	8.4	7.6	7.0	6.9	7.2
Boron (Hot Water Soluble)	М	2120	mg/kg	0.4	1.1		0.92			
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/L	0.01	1.2	0.16	0.18	0.065	0.048	0.063
Cyanide (Total)	М	2300	mg/kg	0.5	< 0.50		< 0.50			
Cyanide (Free)	М	2300	mg/kg	0.5	< 0.50		< 0.50			
Arsenic	М	2450	mg/kg	1	6.6	10	17			
Cadmium	М	2450	mg/kg	0.1	0.22	0.24	0.41			
Chromium	М	2450	mg/kg	1	17	82	20			
Copper	М	2450	mg/kg	1	25	27	51			
Mercury	М	2450	mg/kg	0.1	< 0.10	0.22	0.49			
Nickel	М	2450	mg/kg	1	17	15	21			
Lead	М	2450	mg/kg	1	77	100	260			
Selenium	М	2450	mg/kg	0.2	< 0.20	< 0.20	< 0.20			
Vanadium	U	2450	mg/kg	5	15	24	15			
Zinc	М	2450	mg/kg	1	73	64	95			
Chromium (Hexavalent)	N	2490	mg/kg	0.5	< 0.50	< 0.50	< 0.50			
Organic Matter	М	2625	%	0.4	2.4	2.8	5.0			
Fuel Type	Ν	2670			Lube Oil		N/A			
Aliphatic TPH >C5-C6	Ν	2675	mg/kg	0.1	< 0.10		< 0.10			
Aliphatic TPH >C6-C8	Ν	2675	mg/kg	0.1	< 0.10		< 0.10			
Aliphatic TPH >C8-C10	М	2675	mg/kg	0.1	< 0.10		< 0.10			
Aliphatic TPH >C10-C12	М	2675	mg/kg	1	< 1.0		< 1.0			
Aliphatic TPH >C12-C16	М	2675	mg/kg	1	< 1.0		< 1.0			
Aliphatic TPH >C16-C21	М	2675	mg/kg	1	2.2		< 1.0			
Aliphatic TPH >C21-C35	М	2675	mg/kg	1	270		< 1.0			
Aliphatic TPH >C35-C44	М	2675	mg/kg	1	22		< 1.0			

Client: Leyden Kirby		Che	mtest J	ob No.:	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449
Quotation No.:	(Chemte	est Sam	ple ID.:	60614	60615	60616	60617	60618	60619
Order No.: 731030		Clie	nt Samp	le Ref.:						
		Clie	ent Sam	ple ID.:	WS208	WS209	WS209	WS203	WS204	WS208
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	0.2	0.3	0.6	0.5	0.5	0.6
		Bo	ttom De	epth(m):	0.4	0.5	0.8	0.6	0.7	0.8
			Date Sa	ampled:	16-Oct-14	16-Oct-14	16-Oct-14	15-Oct-14	15-Oct-14	16-Oct-14
Determinand	Accred.	SOP	Units	LOD						
Total Aliphatic Hydrocarbons	М	2675	mg/kg	5	300		< 5.0			
Aromatic TPH >C5-C7	N	2675	mg/kg	0.1	< 0.10		< 0.10			
Aromatic TPH >C7-C8	N	2675	mg/kg	0.1	< 0.10		< 0.10			
Aromatic TPH >C8-C10	М	2675	mg/kg	0.1	< 0.10		< 0.10			
Aromatic TPH >C10-C12	М	2675	mg/kg	1	< 1.0		< 1.0			
Aromatic TPH >C12-C16	М	2675	mg/kg	1	< 1.0		< 1.0			
Aromatic TPH >C16-C21	М	2675	mg/kg	1	< 1.0		3.7			
Aromatic TPH >C21-C35	М	2675	mg/kg	1	160		3.4			
Aromatic TPH >C35-C44	N	2675	mg/kg	1	< 1.0		< 1.0			
Total Aromatic Hydrocarbons	М	2675	mg/kg	5	160		7.1			
Total Petroleum Hydrocarbons	М	2675	mg/kg	10	460		< 10			
Naphthalene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10			
Acenaphthylene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10			
Acenaphthene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10			
Fluorene	М	2700	mg/kg	0.1	< 0.10	< 0.10	< 0.10			
Phenanthrene	М	2700	mg/kg	0.1	1.1	< 0.10	0.53			
Anthracene	М	2700	mg/kg	0.1	0.33	< 0.10	0.18			
Fluoranthene	М	2700	mg/kg	0.1	2.5	0.95	1.3			
Pyrene	М	2700	mg/kg	0.1	2.5	1.0	1.2			
Benzo[a]anthracene	М	2700	mg/kg	0.1	1.4	0.56	0.24			
Chrysene	М	2700	mg/kg	0.1	1.1	0.85	0.21			
Benzo[b]fluoranthene	М	2700	mg/kg	0.1	1.5	0.58	0.63			
Benzo[k]fluoranthene	М	2700	mg/kg	0.1	0.80	0.10	< 0.10			
Benzo[a]pyrene	М	2700	mg/kg	0.1	1.5	0.88	0.55			
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.1	0.57	0.44	0.41			
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.1	0.24	< 0.10	< 0.10			
Benzo[g,h,i]perylene	М	2700	mg/kg	0.1	0.52	0.50	0.59			
Total Of 16 PAH's	М	2700	mg/kg	2	14	5.9	5.8			
Benzene	М	2760	µg/kg	1	< 1.0		< 1.0			
Toluene	М	2760	µg/kg	1	< 1.0		< 1.0			
Ethylbenzene	Μ	2760	µg/kg	1	< 1.0		< 1.0			
m & p-Xylene	Μ	2760	µg/kg	1	< 1.0		< 1.0			
o-Xylene	М	2760	µg/kg	1	< 1.0		< 1.0			

Client: Leyden Kirby		Che	mtest Jo	ob No.:	14-12449	14-12449	14-12449	14-12449	14-12449	14-12449
Quotation No.:	(Chemte	st Sam	ple ID.:	60614	60615	60616	60617	60618	60619
Order No.: 731030		Clie	nt Samp	le Ref.:						
		Clie	nt Sam	ple ID.:	WS208	WS209	WS209	WS203	WS204	WS208
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.2	0.3	0.6	0.5	0.5	0.6
		Bo	ttom De	pth(m):	0.4	0.5	0.8	0.6	0.7	0.8
			Date Sa	ampled:	16-Oct-14	16-Oct-14	16-Oct-14	15-Oct-14	15-Oct-14	16-Oct-14
Determinand	Accred.	SOP	Units	LOD						
Methyl Tert-Butyl Ether	М	2760	µg/kg	1	< 1.0		< 1.0			
Demeton-O	Ν	2820	mg/kg	0.2		< 0.20				
Phorate	Ν	2820	mg/kg	0.2		< 0.20				
Demeton-S	Ν	2820	mg/kg	0.2		< 0.20				
Disulphoton	Ν	2820	mg/kg	0.2		< 0.20				
Fenthion	Ν	2820	mg/kg	0.2		< 0.20				
Trichloronate	Ν	2820	mg/kg	0.2		< 0.20				
Prothiophos	Ν	2820	mg/kg	0.2		< 0.20				
Fensulphothion	Ν	2820	mg/kg	0.2		< 0.20				
Sulprofos	Ν	2820	mg/kg	0.2		< 0.20				
Azinphos-Methyl	Ν	2820	mg/kg	0.2		< 0.20				
Coumaphos	Ν	2820	mg/kg	0.2		< 0.20				
Alpha-Lindane	Ν	2840	mg/kg	0.2		< 0.20				
Gamma-Lindane	Ν	2840	mg/kg	0.2		< 0.20				
Beta-Lindane	Ν	2840	mg/kg	0.2		< 0.20				
Delta-Lindane	Ν	2840	mg/kg	0.2		< 0.20				
Heptachlor	Ν	2840	mg/kg	0.2		< 0.20				
Aldrin	Ν	2840	mg/kg	0.2		< 0.20				
Heptachlor Epoxide	Ν	2840	mg/kg	0.2		< 0.20				
Gamma-Chlordane	Ν	2840	mg/kg	0.2		< 0.20				
Alpha-Chlordane	Ν	2840	mg/kg	0.2		< 0.20				
Endosulphan I	Ν	2840	mg/kg	0.2		< 0.20				
4,4-DDE	Ν	2840	mg/kg	0.2		< 0.20				
Dieldrin	Ν	2840	mg/kg	0.2		< 0.20				
Endrin	Ν	2840	mg/kg	0.2		< 0.20				
4,4-DDD	Ν	2840	mg/kg	0.2		< 0.20				
Endosulphan II	Ν	2840	mg/kg	0.2		< 0.20				
Endrin Aldehyde	Ν	2840	mg/kg	0.2		< 0.20				
4,4-DDT	Ν	2840	mg/kg	0.2		< 0.20				
Endosulphan Sulphate	Ν	2840	mg/kg	0.2		< 0.20				
Methoxychlor	Ν	2840	mg/kg	0.2		< 0.20				
Endrin Ketone	Ν	2840	mg/kg	0.2		< 0.20				
Total Phenols	М	2920	mg/kg	0.3	< 0.30		< 0.30			

Client: Leyden Kirby		Cherr	ntest Jo	b No.:	14-12449	14-12449	14-12449
Quotation No.:	C	hemtes	st Samp	le ID.:	60606	60608	60616
Order No.: 731030		Clien	t Sampl	e Ref.:			
		Clier	nt Samp	le ID.:	WS202	WS204	WS209
			Sample	Type:	SOIL	SOIL	SOIL
		Т	op Dep	th (m):	0.4	0.2	0.6
		Bot	tom Dep	oth(m):	0.6	0.4	0.8
		[Date Sa	mpled:	15-Oct-14	15-Oct-14	16-Oct-14
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010			8.7	8.6	8.5
Sulphate	U	1220	mg/l	1	< 1.0	< 1.0	24
Cyanide (Total)	U	1300	mg/l	0.05	< 0.050		< 0.050
Cyanide (Free)	U	1300	mg/l	0.05	< 0.050		< 0.050
Hardness	U	1415	mg/l	15	550	600	620
Arsenic (Dissolved)	U	1450	µg/l	1	7.0	5.3	7.9
Boron (Dissolved)	U	1450	µg/l	20	< 20		< 20
Cadmium (Dissolved)	U	1450	µg/l	0.08	0.13	0.10	0.080
Chromium (Dissolved)	U	1450	µg/l	1	< 1.0	< 1.0	< 1.0
Copper (Dissolved)	U	1450	µg/l	1	14	4.6	7.5
Mercury (Dissolved)	U	1450	µg/l	0.5	< 0.50	< 0.50	< 0.50
Nickel (Dissolved)	U	1450	µg/l	1	< 1.0	< 1.0	< 1.0
Lead (Dissolved)	U	1450	µg/l	1	36	26	28
Selenium (Dissolved)	U	1450	µg/l	1	< 1.0	< 1.0	< 1.0
Vanadium (Dissolved)	U	1450	µg/l	1	8.0	< 1.0	1.3
Zinc (Dissolved)	U	1450	µg/l	1	3.2	7.5	1.6
Chromium (Hexavalent)	U	1490	µg/l	20	< 20	< 20	< 20
Total Organic Carbon	N	1610	mg/l	1	220	240	340
Fuel Type	N	1670			N/A		N/A
Aliphatic TPH >C5-C6	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C6-C8	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C8-C10	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C10-C12	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C12-C16	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C16-C21	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C21-C35	N	1675	µg/l	0.1	< 0.10		< 0.10
Aliphatic TPH >C35-C44	N	1675	µg/l	0.1	< 0.10		< 0.10
Total Aliphatic Hydrocarbons	N	1675	µg/l	5	< 5.0		< 5.0
Aromatic TPH >C5-C7	N	1675	µg/l	0.1	< 0.10		< 0.10
Aromatic TPH >C7-C8	N	1675	µg/l	0.1	< 0.10		< 0.10
Aromatic TPH >C8-C10	N	1675	µg/l	0.1	< 0.10		< 0.10
Aromatic TPH >C10-C12	N	1675	µg/l	0.1	< 0.10		< 0.10
Aromatic TPH >C12-C16	N	1675	µg/l	0.1	< 0.10		< 0.10

Client: Leyden Kirby		Cherr	ntest Jo	b No.:	14-12449	14-12449	14-12449
Quotation No.:	С	hemtes	st Samp	le ID.:	60606	60608	60616
Order No.: 731030		Clien	t Sampl	e Ref.:			
		Clier	nt Samp	le ID.:	WS202	WS204	WS209
			Sample	Type:	SOIL	SOIL	SOIL
		Г	op Dep	th (m):	0.4	0.2	0.6
		Bot	tom Dep	oth(m):	0.6	0.4	0.8
		[Date Sa	mpled:	15-Oct-14	15-Oct-14	16-Oct-14
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	Ν	1675	µg/l	0.1	< 0.10		< 0.10
Aromatic TPH >C21-C35	Ν	1675	µg/l	0.1	< 0.10		< 0.10
Aromatic TPH >C35-C44	Ν	1675	µg/l	0.1	< 0.10		< 0.10
Total Aromatic Hydrocarbons	Ν	1675	µg/l	5	< 5.0		< 5.0
Total Petroleum Hydrocarbons	U	1675	µg/l	10	< 10		< 10
Naphthalene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Acenaphthylene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Acenaphthene	Ν	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Fluorene	Ν	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Phenanthrene	Ν	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Anthracene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Fluoranthene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Pyrene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Benzo[a]anthracene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Chrysene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Benzo[b]fluoranthene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Benzo[k]fluoranthene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Benzo[a]pyrene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Indeno(1,2,3-c,d)Pyrene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Dibenz(a,h)Anthracene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Benzo[g,h,i]perylene	N	1700	µg/l	0.01	< 0.010	< 0.010	< 0.010
Total Of 16 PAH's	N	1700	µg/l	0.2	< 0.20	< 0.20	< 0.20
Benzene	U	1760	µg/l	1	< 1.0		< 1.0
Toluene	U	1760	µg/l	1	< 1.0		< 1.0
Ethylbenzene	U	1760	µg/l	1	< 1.0		< 1.0
m & p-Xylene	U	1760	µg/l	1	< 1.0		< 1.0
o-Xylene	U	1760	µg/l	1	< 1.0		< 1.0
Methyl Tert-Butyl Ether	N	1760	µg/l	1	< 1.0		< 1.0
Total Phenols	U	1920	mg/l	0.03	< 0.030		< 0.030

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVCOs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at our Coventry laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers

Sample Retention and Disposal

All soil samples will be retained for a period of 1 month following the date of the test report All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>

APPENDIX D

CERTIFICATES OF ANALYSIS - GEOTECHNICAL

Client

LK Consult Ltd

MURRAYRI

Address

Kay Street Bury BL96BU

Contract Gateacre, Liverpool

Job Number MRN 2347/58 Date of Issue 11 April 2014 Page 1 of 5

Approved Signatory

S J Hutchings, A W Hutchings, A Richardson

Notes

- All remaining samples and remnants from this contract will be disposed 28 days 1 from the date of this report unless you notify us to the contrary.
- 2 Result certificates, in this report, not bearing a UKAS mark, are not included in our UKAS accreditation schedule.
- 3 Opinions and interpretations expressed herein are outside the scope of our UKAS accreditation
- Certified that the samples have been examined and tested in accordance with the 4 terms of the contract/order and unless otherwise stated conform to the standards/specifications quoted. This does not, however, guarantee the balance of the materials from which the tested samples have been taken to be of equal quality.

33C, Vauxhall Industrial Estate, Greg Street, Reddish, Stockport SK5 7BR Tel: 0161 475 0870 Fax: 0161 475 0871 Email: steve@mtt-uk.com Website: www.murrayrix.com Also at: London: 020 8523 1999

Murray Rix is the trading name of Murray Rix (Northern) Limited. Registered in England 2878361

33C Vauxhall Ind. Estate, Greg Street Reddish, Stockport SK5 7BR TEL 0161 475 0870 FAX 0161 475 0871

TEST CERTIFICATE

PARTICLE SIZE DISTRIBUTION

BS 1377: PART 2: Clause 9.2: 1990

Determination of Moisture Content in accordance with BS 1377: PART 2: Clause 3: 1990 (Oven Dry)

CLIENT	LK Consult Ltd
SITE	Gateacre, Liverpool
JOB NUMBER	MRN 2347/58

SAMPLE LABEL	WS103/1.1m	DATE SAMPLED	N/A
LAB SAMPLE No	58316	DATE RECEIVED	01-Apr-14
DATE TESTED	02-Apr-14	SAMPLED BY	Client

MATERIAL Red brown sandy Clay with trace gravel
ADVISED SOURCE Site Won

Sieve Size (mm)	% Passing (%)	Specification (%)	Sieve Size (mm)	% Passing (%)	Specification (%)
125	100		10	98	
90	100		5	95	
75	100		2	93	
50	100		0.6	89	
37.5	100	A	0.3	74	
20	100		0.15	52	
14	99		0.063	43	

REMARKS

As received moisture content = 18%

NAME A Richardson DATE 11-Apr-14 (Deputy Laboratory Manager)

Page 2 of 5

33C Vauxhall Ind. Estate, Greg Street Reddish, Stockport SK5 7BR TEL 0161 475 0870 FAX 0161 475 0871

TEST CERTIFICATE

LIQUID AND PLASTIC LIMIT BS 1377: PART 2: 1990 Clause 4.4 ONE POINT METHOD & Clause 5.3 MOISTURE CONTENT METHOD BS 1377: PART 2: 1990 Clause 3.2

CLIENT	LK Consult Lyd
SITE	Gateacre, Liverpool
JOB NUMBER	MRN 2347/58

SAMPLE LABEL	WS104/1.0-1.5m	DATE SAMPLED	N/A
SAMPLE No.	58317	DATE RECEIVED	01-Apr-14
DATE TESTED	02-Apr-14	SAMPLED BY	Client

MATERIAL	Firm brown silty Clay with trace gravel
ADVISED SOURCE	Site Won

Moisture Content (Natural) (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 425 micron (%)
11	31	13	18	98

REMARKS

Sample was tested in natural condition

IAN SIGNED

NAME Page ♂ of ∽ A Richardson DATE (Deputy Laboratory Manager)

11-Apr-14

33C Vauxhall Ind. Estate, Greg Street Reddish, Stockport SK5 7BR TEL 0161 475 0870 FAX 0161 475 0871

TEST CERTIFICATE

LIQUID AND PLASTIC LIMIT

BS 1377: PART 2: 1990 Clause 4.4 ONE POINT METHOD & Clause 5.3

	MOISTURE	CONTENT	METHOD B	S 1377: P	ART 2: 1	990 Clause 3.2	
-	the second se	the second day of the second d		the second s			

CLIENT	LK Consult Lyd	
SITE	Gateacre, Liverpool	
JOB NUMBER	MRN 2347/58	

SAMPLE LABEL	WS107/0.7-0.9m	DATE SAMPLED	N/A
SAMPLE No.	58318	DATE RECEIVED	01-Apr-14
DATE TESTED	02-Apr-14	SAMPLED BY	Client

MATERIAL	Red / brown silty Clay with trace gravel
ADVISED SOURCE	Site Won

Moisture Content (Natural) (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 425 micron (%)
17	33	14	19	90

REMARKS

Sample was tested in natural condition

IAS SIGNED

NAME Page (4 of A Richardson DATE (Deputy Laboratory Manager)

11-Apr-14

33C Vauxhall Ind. Estate, Greg Street Reddish, Stockport SK5 7BR TEL 0161 475 0870 FAX 0161 475 0871

TEST CERTIFICATE

PARTICLE SIZE DISTRIBUTION

BS 1377: PART 2: Clause 9.2: 1990

Determination of Moisture Content in accordance with BS 1377: PART 2: Clause 3: 1990 (Oven Dry)

CLIENT	LK Consult Ltd
SITE	Gateacre, Liverpool
JOB NUMBER	MRN 2347/58

SAMPLE LABEL	WS109/0.3-0.8m	DATE SAMPLED	N/A
LAB SAMPLE No	58319	DATE RECEIVED	01-Apr-14
DATE TESTED	02-Apr-14	SAMPLED BY	Client

MATERIALRed brown sandy Clay with much gravelADVISED SOURCESite Won

Sieve Size (mm)	% Passing (%)	Specification (%)	Sieve Size (mm)	% Passing (%)	Specification (%)
125	100		10	64	()
90	100		5	60	
75	100		2	57	
50	87		0.6	52	-
37.5	87		0.3	43	
20	68		0.15	30	
14	66		0.063	25	

REMARKS

As received moisture content = 14% SIGNED 14%

NAME

A Richardson (Deputy Laboratory Manager)

DATE

11-Apr-14

Page $\int of \subseteq$

APPENDIX E

GENERIC SOIL ASSESSMENT CRITERIA
Residential with the consumption of homegrown produce

Author Revision	Atkins 3
Date	31/03/2011
Title	SSVs derived using CLEA for 1% SOM, sand soil type, Residential with the consumption of homegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
1,1,1-Trichloroethane	2.23	
1,1,1,2-Tetrachloroethane	0.353	
1,1,2,2-Tetrachloroethane	0.695	
1,1,2-Trichloroethane	0.258	
1,1-Dichloroethane	0.827	
1.1-Dichloroethene	0.0857	
1.2-Dichloroethane	0.00190	
1 2 4-Trimethylbenzene	0.906	
1 2-Dichloropropane	0.00784	
2 4-Dichloro-o-cresol	31.1	
	51.1	The dermal approach published by EIC bas been followed. In the phanol SCV/ report
2,4-Dimethylphenol	17.2	additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered.
2,4-Dinitrotoluene	1.41	
2,6-bis(1,1-dimethyl)-4-(1-methylpropyl)-phenol	21.7	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.7 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
2,6-Dinitrotoluene	0.751	
2-Chloronaphthalene	1.42	
2-Methylphenol	78.1	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered. Users must consider total exposure from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to the total exposure from each published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to
3-Methylphenol	77.4	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered. Users must consider total exposure from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to the total methylphenol concentration.
4-Methylphenol	76.8	The dermal approach published by EIC has been followed. In the phenol SGV report, additional consideration was given to localised dermal effects. This may be applicable to phenol derivatives but has not been considered. Users must consider total exposure from all methylphenol isomers and not consider them in isolation. In line with the approach published by EIC when assessing total cresols, the lowest SSV of each methylphenol isomer may be chosen to compare to the total methylphenol concentration.
Acenaphthene	588	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 157 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Anthracene	8270	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 3.48 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.

Residential with the consumption of homegrown produce

Author Revision	Atkins 3
Date	31/03/2011
T :41-	SSVs derived using CLEA for 1% SOM, sand soil type, Residential with the consumption of
litie	nomegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
Antimony	113	
Arsenic	32.0	Value presented is the Environment Agency Arsenic SGV published in May 2009. As plant concentration factors are used in deriving the SGV, assessment criteria do not change with soil type and SOM.
Barium	43.4	
Benzene	0.0493	Based on information within Environment Agency benzene SGVs published in March 2009.
Benzo(a)anthracene	4.52	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 1.71 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(a)pyrene	0.818	
Benzo(b)fluoranthene	7.72	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 1.22 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(g,h,i)perylene	96.2	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.0187 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(k)fluoranthene	84.4	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.686 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Beryllium	60.3	
Biphenyl	82.8	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 34.1 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Bis (2-ethylhexyl) phthalate	282	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 8.66 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Bromobenzene	0.319	

Author	Atkins
Revision	3
Date	31/03/2011

SSVs derived using CLEA for 1% SOM, sand soil type, Residential with the consumption of homegrown produce land use

PLEASE NOTE

Title

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
Bromodichloromethane	0.00598	
Bromoform	1.40	
Butyl benzyl phthalate	1410	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 26.1 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Cadmium	10.0	Value presented is the Environment Agency Cadmium SGV published in July 2009. As plant concentration factors are used in deriving the SGV, assessment criteria do not change with soil type and SOM.
Carbon disulphide	0.0739	
Carbon tetrachloride	0.00656	
Chlorobenzene	3.49	
Chloroethane	3.05	
Chloroform / Trichloromethane	0.307	
Chloromethane	0.00301	
Chromium III	12800	
Chromium VI	14.2	
Chrysene	585	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.440 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Cis-1,2-dichloroethene	0.0393	
Copper	3970	
Cyanide	34.0	Based on acute exposure for a 0-6 year old child, using 5th percentile bodyweight from CLR10. Information is not available in SR3 and supporting documents regarding the 5th percentile bodyweight of SR3 bodyweight data. It is not considered likely that new data would significantly affect the SSV.
DDD	26.3	
Dibenz(a,h)anthracene	0.838	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.00393 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Dibromochloromethane	0.0623	
Dichloromethane	0.382	

Residential with the consumption of homegrown produce

Author Revision	Atkins 3
Date	31/03/2011
Title	SSVs derived using CLEA for 1% SOM, sand soil type, Residential with the consumption of homegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Dishbulk The lower of the acquotics or vapour based situation limits has been exceeded in the calculation. The SSY proceeding is the ornhomic dessessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour participation of the SSV. Users may wish to consider the fatter that the lower of the aqueous or vapour based saturation limits is 12.3 m/sg and should contin that free phase product is not deserved where measured concentrations when using the Stepace product is not deserved where measured considered by assessors when using the Stepace product is not deserved where measured considered by assessors when using the Stepace product is not deserved where measured constrained by setting the Environment Agency for England and Wales SR2 document. Dish-buryi phthalate 12.9	Compound	SSV mg/kg	Notes
bin-octyl phthalate In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance and additivity approximant Agency for England and Wales SR2 document. Di-n-butyl phthalate Image: State Stat	Diethyl phthalate	108	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 12.8 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Din-buly phthalate 12.9 The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that the calculate posure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 14 can get the lower of the aqueous or vapour based saturation limits is 13 can be seenceded in the calculation. The SSV presented is the combined assessment criterion calculated by vapour pathway contributes less than 10% of the aqueous or vapour based saturation limits is 32 can get the aqueous or vapour based saturation limits is 32 can get the lower of the aqueous or vapour based saturation limits is 32 can get the lower of the aqueous or vapour based saturation limits is 32 can get the cardination acceled in the calculation. The SSV presented is the combined assessment criterion calculated by vapour pathway contributes less than 10% of the lace posure which is unlikely to significantly affect the SSV. Users may wish to consider the lower of the aqueous or vapour based saturation limits is 32 can get the cardination acceled in the calculation. The SSV presented is the combined assessment criterion calculated by vapour pathway contributes less than 10% of the lace posure dower of the aqueo			In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Agency for England and Wales SR2 document. Di-n-octyl phthalate The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 32.6 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. Di-n-octyl phthalate 2250 Binoseb 0.0477 Ethylbenzene 38.2 Based on information within Environment Agency ethylbenzene SGVs published in March 2009. Fluoranthene 822 Fluoranthene 822 Fluoranthene 822 Fluoranthene 821 Fluoranthene 615 Fluoranthene 615	Di-n-butyl phthalate	12.9	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 4.62 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. In line with the approach published by the EIC, the lower of the oral and inhalation assessment criteria has been selected. In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment
Di-n-octyl phthalate 2250 Di-n-octyl phthalate 2250 Di-n-octyl phthalate 2250 Pin-octyl phthalate 2250			Agency for England and Wales SR2 document.
In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document. Dinoseb 0.0477 Ethylbenzene 38.2 Based on information within Environment Agency ethylbenzene SGVs published in March 2009. Fluoranthene 822 Fluoranthene 822 Fluoranthene 822 Fluoranthene 822 Fluoranthene 821 The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of t	Di-n-octyl phthalate	2250	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 32.6 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Dinoseb 0.0477 Ethylbenzene 38.2 Based on information within Environment Agency ethylbenzene SGVs published in March 2009. Fluoranthene Rescuession of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. Fluorene 615 The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 125 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. Formaldehyde 1.89			In line with the EIC report section 3.7, where the toxicity effects are the same, the potential additivity of phthalates should be considered by assessors when using the SSV for these substances. Guidance on additivity is provided in the Environment Agency for England and Wales SR2 document.
Ethylbenzene 38.2 Based on information within Environment Agency ethylbenzene SGVs published in March 2009. Fluoranthene Research as a suming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. Fluorene 615 Fluorene 615 Formaldehyde 1.89	Dinoseb	0.0477	
Fluoranthene822The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.Fluorene615The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 125 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.Formaldehyde1.89	Ethylbenzene	38.2	Based on information within Environment Agency ethylbenzene SGVs published in March 2009.
Fluorene 615 The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 125 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value. Formaldehyde 1.89	Fluoranthene	822	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 18.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Formaldehyde 1.89	Fluorene	615	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 125 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
	Formaldehyde	1.89	

Residential with the consumption of homegrown produce

Author	Atkins
Revision	3
Date	31/03/2011

Title

SSVs derived using CLEA for 1% SOM, sand soil type, Residential with the consumption of homegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
Hexachloroethane	0.0735	
Indeno(1,2,3-c,d)pyrene	7.31	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.0614 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Iso-propylbenzene	34.4	
Lead	276	T
Mercury (elemental)	0.0607	Based on information in the Environment Agency Mercury SGV report published in March 2009.
Mercury (inorganic)	170	Value presented is the Environment Agency inorganic mercury SGV published in March 2009. As plant concentration factors are used in deriving the SGV, assessment criteria do not change with soil type and SOM.
Mercury (methyl)	6.28	Based on information within the Environment Agency Mercury SGV report published in March 2009.
Methyl tert-butyl ether	20.0	
Molybdenum	74.6	
m-Xylene	17.9	The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration. Based on information within Environment Agency xylene SGVs published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
Naphthalene	0.585	
Nickel	130	Value presented is the Environment Agency Nickel SGV published in May 2009. As plant concentration factors are used in deriving the SGV, assessment criteria do not change with soil type and SOM.
Nicotine	0.0916	
o-Xylene	18.9	The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration. Based on information within Environment Agency xylene SGVs published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
Phenol	162	Based on information within the Environment Agency Phenol SGV report published in July 2009. Derived by comparing oral exposure to the oral HCV and inhalation and dermal exposure to the inhalation HCV.
Prochloraz	8.49	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.116 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Propylbenzene	85.6	
p-Xylene	17.2	The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration. Based on information within Environment Agency xylene SGVs published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
Pyrene	563	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 2.20 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.

Author	Atkins
Revision	3
Date	31/03/2011

SSVs derived using CLEA for 1% SOM, sand soil type, Residential with the consumption of homegrown produce land use

PLEASE NOTE

Title

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
Selenium	350	Value presented is the Environment Agency selenium SGV published in March 2009. As plant concentration factors are used in deriving the SGV, assessment criteria do not change with soil type and SOM.
Styrene	9.42	
Sum of PCDDs, PCDFs and dioxin-like PCBs	No SSV. Due to please see the F	publication of the Dioxins, Furans and Dioxin-like PCB SGVs in September 2009, Frequently Asked Questions for more information.
Tetrachloroethene	0.455	
Toluene	86.9	Based on information within Environment Agency toluene SGVs published in March 2009.
TPH aliphatic C10-C12	1390	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 49.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C12-C16	5100	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 21.0 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C16-C35	145000	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aliphatic C5-C6	30.1	
TPH aliphatic C6-C8	69.8	
TPH aliphatic C8-C10	9.79	
TPH aromatic C10-C12	57.3	
TPH aromatic C12-C16	142	
TPH aromatic C16-C21	272	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aromatic C21-C35	888	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aromatic C5-C7	0.0493	Benzene is the only consituent of this fraction (TPHCWG 1997). Based on information within the Environment Agency benzene SGVs published in March 2009.
TPH aromatic C7-C8	86.9	Toluene is the only consituent of this fraction (TPHCWG 1997). Based on information within the Environment Agency toluene SGVs published in March 2009.
TPH aromatic C8-C10	14.8	
Trans-1,2-dichloroethene	0.0671	
Tributyl tin oxide	0.248	
Trichloroethene	0.0382	
Trichloromethylbenzene	0.000157	
Vanadium	113	
Vinyl chloride	0.000202	
Zinc	16900	

Note:

All values provided are rounded to 3 significant figures. It is noted for some compounds that the SSV is sufficiently high that free product is likely to be encountered. Please see the Frequently Asked Questions for more advice.

In some instances the risk based value may be lower than the laboratory detection limit. Please see the Frequently Asked Questions for more advice.

Residential with the consumption of homegrown produce

Author Revision	Atkins 5
Date	31/03/2011
Title	SSVs derived using

SSVs derived using CLEA for 6% SOM and sandy loam soil type, Residential with homegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
1,1,1,2-Tetrachloroethane	4.82	
1,1,1-Trichloroethane	27.9	
1,1,2,2-Tetrachloroethane	6.34	
1,1,2-Trichloroethane		Please see the EIC GAC report.
1,1-Dichloroethane		Please see the EIC GAC report.
1,1-Dichloroethene		Please see the EIC GAC report.
1,2,4-Trimethylbenzene	8.28	
1,2-Dichloroethane	0.0139	
1,2-Dichloropropane		Please see the EIC GAC report.
2,4-Dichloro-o-cresol	167	
2,4-Dimethylphenol		Please see the EIC GAC report.
2,4-Dinitrotoluene		Please see the EIC GAC report.
2,6-bis(1,1-dimethyl)-4-(1-methylpropyl)-phenol	53.5	
2,6-Dinitrotoluene		Please see the EIC GAC report.
2-Chloronaphthalene		Please see the EIC GAC report.
2-Methylphenol		Please see the EIC GAC report.
3-Methylphenol		Please see the EIC GAC report.
4-Methylphenol		Please see the EIC GAC report.
Acenaphthene	2130	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 937 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Anthracene	18300	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 20.9 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Antimony	180	
Arsenic	32.0	Value presented is Environment Agency SGV published in May 2009.
Barium		Please see the EIC GAC report.
Benzene	0.330	Value presented is Environment Agency SGV published in March 2009.
Benzo(a)anthracene	8.54	
Benzo(a)pyrene	0.998	
Benzo(b)fluoranthene	9.86	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 7.29 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(g,h,i)perylene	103	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.112 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Benzo(k)fluoranthene	100	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 4.12 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Beryllium	60.9	

Author	Atkins
Revision	5
Date	31/03/2011

SSVs derived using CLEA for 6% SOM and sandy loam soil type, Residential with homegrown produce land use

PLEASE NOTE

Title

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
Biphenyl	462	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 201 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Bis (2-ethylhexyl) phthalate		Please see the EIC GAC report.
Bromobenzene		Please see the EIC GAC report.
Bromodichloromethane		Please see the EIC GAC report.
Bromoform		Please see the EIC GAC report.
Butyl benzyl phthalate		Please see the EIC GAC report.
Cadmium	10.0	Value presented is Environment Agency SGV published in July 2009.
Carbon disulphide	0.839	
Carbon tetrachloride	0.0892	
Chlorobenzene (mono)	45.7	
Chloroethane		Please see the EIC GAC report.
Chloroform / Trichloromethane	2.87	
Chloromethane		Please see the EIC GAC report.
Chromium III	12900	
Chromium VI	14.5	
Chrysene	927	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 2.64 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Cis-1,2-dichloroethene		Please see the EIC GAC report.
Copper	4020	
Cyanide	34.0	Based on acute exposure for a 0-6 year old child, using 5th percentile bodyweight from CLR10. Information is not available in SR3 and supporting documents regarding the 5th percentile bodyweight of SR3 bodyweight data. It is not considered likely that new data would significantly affect the SSV.
DDD	39.7	
Dibenzo(a,h)anthracene	1.00	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.0236 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Dibromochloromethane	0.757	
Dichloromethane		Please see the EIC GAC report.
Diethyl phthalate		Please see the EIC GAC report.
Di-n-butyl phthalate		Please see the EIC GAC report.
Di-n-octyl phthalate		Please see the EIC GAC report.
Dinoseb	0.527	
Ethylbenzene	350	Value presented is Environment Agency SGV published in March 2009.
Fluoranthene	2160	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 113 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.

Author Revision Date Atkins 5 31/03/2011

Title

SSVs derived using CLEA for 6% SOM and sandy loam soil type, Residential with homegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Compound	SSV mg/kg	Notes
Fluorene	1930	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 746 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Formaldehyde	7.16	
Hexachloroethane		Please see the EIC GAC report.
Indeno(1,2,3-c,d)pyrene	9.75	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.368 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Iso-propylbenzene	418	
Lead	342	
Mercury (elemental)	1.00	Value presented is Environment Agency SGV published in March 2009. Based on inhalation exposure only.
Mercury (inorganic)	170	Value presented is Environment Agency SGV published in March 2009.
Mercury (methyl)	11.0	Value presented is Environment Agency SGV published in March 2009.
Methyl tert-butyl ether		Please see the EIC GAC report.
Molybdenum		Please see the EIC GAC report.
m-Xylene	240	Value presented is Environment Agency SGV published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
Naphthalene	8.71	
Nickel	130	Value presented is Environment Agency SGV published in May 2009.
Nicotine	0.332	
o-Xylene	250	Value presented is Environment Agency SGV published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
Phenol	420	Value presented is Environment Agency SGV published in July 2009.
Prochloraz	44.0	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 0.682 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Propvipenzene	/69	

Author	Atkins
Revision	5
Date	31/03/2011
Title	SSVs derived u

SSVs derived using CLEA for 6% SOM and sandy loam soil type, Residential with homegrown produce land use

PLEASE NOTE

These values are provided exclusively for the use of subscribers to www.atrisksoil.co.uk. In accordance with the terms and conditions of the atrisksoil website the information is for the sole use of the user and by receiving or obtaining any information contained herein the user agrees that at all times they will keep secret and confidential and shall procure and safeguard that their directors and employees keep secret and confidential all business and trade secrets and any information of a confidential nature relating to the processes, affairs, methods, and data belonging to Atkins Limited which they may have received or obtained in the performance of or otherwise as a direct or indirect result of entering into any agreement with Atkins Limited.

Any information contained herein is protected by copyright and other intellectual property laws. Any unauthorised copying, distribution, public display, public performance [and preparation of derivative works] from any information contained herein are prohibited by copyright law. By using the atrisksoil service the user represents and warrants that they will not use the services in any manner that would violate any copyright, intellectual property, or any other rights.

Compound	SSV mg/kg	Notes
p-Xylene	230	Value presented is Environment Agency SGV published in March 2009. Users must consider total exposure from all xylene isomers and not consider them in isolation. The lowest SSV of each xylene isomer may be chosen to compare to the total xylene concentration.
Pyrene	1550	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the combined assessment criterion calculated by the CLEA software, assuming that free phase product is not present. The inhalation of vapour pathway contributes less than 10% of total exposure which is unlikely to significantly affect the SSV. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 13.2 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
Selenium	350	Value presented is Environment Agency SGV published in March 2009.
Styrene	53.7	
Sum of PCDDs, PCDFs and dioxin-like PCBs		No SSV. Due to publication of the Dioxins, Furans and Dioxin-like PCB SGVs in September 2009, please see the Frequently Asked Questions for more information.
Tetrachloroethene	6.15	
Toluene	610	Value presented is Environment Agency SGV published in March 2009.
TPH aliphatic C10-C12	4140	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 297 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C12-C16	5260	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 126 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C16-C35	145000	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aliphatic C5-C6	259	
TPH aliphatic C6-C8	14700	The lower of the aqueous or vapour based saturation limits has been exceeded in the calculation. The SSV presented is the assessment criterion calculated using the approach outlined within SR4, assuming that free product is not present. Users may wish to consider the fact that the lower of the aqueous or vapour based saturation limits is 769 mg/kg and should confirm that free phase product is not observed where measured concentrations exceed this value.
TPH aliphatic C8-C10	144	
TPH aromatic C10-C12	389	
TPH aromatic C12-C16	687	
TPH aromatic C16-C21	804	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aromatic C21-C35	1220	This fraction is not considered volatile and the inhalation of vapour pathways have not been considered (TPHCWG, 1997).
TPH aromatic C5-C7 (benzene)	0.330	Benzene is the only constituent of this fraction (TPHCWG 1997). Value presented is Environment Agency SGV published in March 2009.
TPH aromatic C7-C8 (toluene)	610	Toluene is the only constituent of this fraction (TPHCWG 1997). Value presented is Environment Agency SGV published in March 2009.
TPH aromatic C8-C10	177	
Trans-1,2-dichloroethene		Please see the EIC GAC report.
Tributyl tin oxide		Please see the EIC GAC report.
Trichloroethene	0.493	
	0.00165	
Vanauum Vinyl chloride	0.00086	
Zinc	17200	

Note:

All values provided are rounded to 3 significant figures.

It is noted for some compounds that the SSV is sufficiently high that free product is likely to be encountered. Please see the Frequently Asked Questions for more advice.

In some instances the risk based value may be lower than the laboratory detection limit. Please see the Frequently Asked Questions for more advice.

Category 4 Screening Levels (C4SL)

Substance	Residential (with home- grown	Residential (without home- grown	Allotments	Commercia I	Public Open Space 1	Public Open Space 2
Arsenic	37 mg/kg	40 mg/kg	49 mg/kg	640 mg/kg	79 mg/kg	168 mg/kg
Benzene	0.87 mg/kg	3.3 mg/kg	0.18 mg/kg	98 mg/kg	140 mg/kg	230 mg/kg
Benzo(a)py rene	5 mg/kg	5.3 mg/kg	5.7 mg/kg	76 mg/kg	10 mg/kg	21 mg/kg
Cadmium	26 mg/kg	149 mg/kg	4.9 mg/kg	410 mg/kg	220 mg/kg	880 mg/kg
Chromium VI	21 mg/kg	21 mg/kg	170 mg/kg	49 mg/kg	23 mg/kg	250 mg/kg
Lead	200 mg/kg	310 mg/kg	80 mg/kg	2330 mg/kg	630 mg/kg	1300 mg/kg

APPENDIX F

STATISTICAL ANALYSIS OUTPUT SHEETS

APPENDIX G

UU RISK ASSESSMENT

Supplementary guidance for the selection of water pipes in land potentially affected by contamination

Introduction

In January 2011, UK Water Industry Research (UKWIR) published "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites" (Ref 10/WM/03/21; the 'UKWIR Guidance'). Its aim is to ensure that the correct materials are selected for water pipes and components to be used below ground in brownfield sites to protect the quality of drinking water whilst taking into account the service life of the water distribution system. It supersedes the Water Regulations Advisory Scheme (WRAS) Information and Guidance Note 9-04-03 "Laying Pipes in Contaminated Land" which has been withdrawn.

The UKWIR Guidance is for use by developers, self-lay organisations, water companies and consultants when planning, designing and constructing water mains and/or services in brownfield sites. It defines brownfield sites as "land or premises that have previously been used or developed. They may also be vacant or derelict. However, they are not necessarily contaminated." The UKWIR Guidance states that it does not apply to greenfield sites; however, we consider this supplementary guidance and the relevant sections of the UKWIR guidance as being equally suitable for application to those greenfield sites considered to be potentially affected by contamination. Where greenfield sites are not affected by contamination a preliminary risk assessment (see below) will suffice.

The UKWIR Guidance also states that there should be no departure from its provisions "except where formally approved by the Water Company, such departure being technically justifiable or representing advances in knowledge or product development".

We have adopted the UKWIR Guidance in principle and produced this company specific supplementary guidance (the 'UUW Guidance') which includes the Risk Assessment for Water Pipes (the 'RA').

This guidance does not cover operative safety, health exposure modelling or accidental pipe damage.

Risk Assessment for Water Pipes in Land Potentially Affected by Contamination

Any application for new water supplies to a development (construction of new properties, or renovation or conversion of existing buildings) in land potentially affected by contamination shall include a completed RA.

As a minimum a desk study (preliminary risk assessment) shall be provided with the RA in accordance with the framework in Environment Agency publication "Model Procedures for the Management of Land Contamination" (ref: CLR11) that sets out whether the land through which the pipes are to be laid may be affected by contamination. The application of the source, pathway, receptor concept will be an integral part of any pipeline risk assessment. For each potential source (the contamination) and each potential receptor (the water pipe), consideration shall be given to whether a potential pathway between source and receptor exists, or may exist in the future, linking the two. There are normally only three pathways by which contamination may come into contact with water pipes. These are direct contact with the soil or backfill, an excessive vapour phase or a contaminated groundwater regime. If none of these conditions exist on site (adopting the source, pathway, receptor concept) then it is likely that extended and/or targeted soil testing will not be required and a simple risk assessment will suffice. For those sites where land may be affected by contamination appropriate testing shall be undertaken on the materials within which the pipes are to be laid, whether that be existing ground materials, remediated materials or imported capping materials. The testing requirements are as described in the following section.

The signatories of the Water Supply Application Form and the RA must ensure that all assessments of land condition have been carried out in accordance with applicable current standards and guidelines by or under the direction of a suitably qualified competent person.

We require the competent person to be a) a chartered member of an appropriate professional body (such as the Institution of Civil Engineers, the Geological Society of London or the Royal Institution of Chartered Surveyors) with relevant experience of investigating contaminated sites or b) a Specialist in Land Condition (SiLC) with appropriate geo-environmental experience.

Testing Requirements

The soil, rock and if appropriate groundwater tests that are required on all sites where the potential for organic contamination has been identified in the desk study and where water pipes are proposed to be laid must be accredited by United Kingdom Accreditation Service (UKAS) as a minimum and where commercially available the Environment Agency's Monitoring Certification Service (MCERTS). These accredited tests should be undertaken for:

Banded hydrocarbons EC5-EC10, EC10-EC16, EC16-EC40 (Total aliphatic and aromatic hydrocarbons for each banding may be summed). Aliphatic/aromatic fractionation and subsequent banding may be required should a more detailed site specific risk assessment be undertaken. The bandings have been amended to take into account readily available laboratory tests. The equivalent carbon number (EC) is used to assess petroleum hydrocarbon mixtures rather than the actual number of carbon atoms in the molecule in line with guidance issued by the Environment Agency (2005).

Volatile organic compounds (VOCs) (method by head space or purge & trap GCMS) with tentative identification of compounds greater than 20µg/kg. The method used should be capable of detecting a wide range of compounds listed in US EPA Method 8260C or similar. The method should include analysis of naphthalene.

BTEX (Benzene, toluene, ethyl benzene and xylenes) plus MTBE (Methyl-tertiary butyl ether) (by head space GCMS)

Semi-Volatile Organic Compounds (SVOCs) (method by GCMS) with tentative identification of compounds greater than 20µg/kg The method used should be capable of detecting the compounds listed in US EPA Method 8270D or similar. The total concentration of SVOCs excludes polycyclic aromatic hydrocarbons, ethers, nitrobenzene, ketones, aldehydes, phenols, cresols and chlorinated phenols. Phenols, cresols and chlorinated phenols which are detected by the SVOC analysis are given their own assessment criteria.

We do not consider Table G1 and Table 3.1 of the UKWIR Guidance to be a definitive guide for assessing total concentrations. Table 1 in the RA below replaces Table 3.1 of the UKWIR Guidance.

Where previous site uses include the use, storage, treatment, disposal or manufacture of any of the following, appropriate testing for these substances will be required:

Ethers, nitrobenzene, ketones, aldehydes and amines. Note that the presence of amines on any site at the proposed pipe depth +/- 1.0m precludes the use of polyethylene. The methods of analysis and method of calculation of total concentrations of these compounds will need to be agreed with UUW.

To comply with the testing requirements, the suites of tests that are required on all brownfield sites where wrapped steel, wrapped ductile iron or copper pipes are to be laid as minimum must include:

pH, Conductivity and redox potential

Sufficiency of Testing

Water pipes are normally laid at between 0.75 and 1.35m from finished ground level to crown of pipe. Samples taken and tested must represent both a) the soil in which the water pipes are to be laid and b) the soil down to at least 500mm below the underside of the proposed pipe. Where the proposed depth of the pipes is unknown at the time of application, soil samples representative of the ground condition between surface level and 1.5m below finished ground level shall be taken as a minimum. Where appropriate (see UKWIR Guidance) groundwater sampling and groundwater monitoring will also be

necessary. Photo-ionisation detection (PID) monitoring along the proposed route of the pipeline may be employed, though this does not provide a definitive guide to the suitability of water pipe materials.

Where required a sufficient number of test results should be obtained from the material in which the pipes are to be laid. CLAIRE/CIEH 2008 "Guidance on comparing soil contamination data with a critical concentration" may be used, where appropriate, to justify the number of soil samples tested; however, this statistical model should not be used on heterogeneous materials or used to average test results from different types of materials.

Further guidance on representative sampling is contained within BS10175:2011 Code of Practice for the Investigation of Potentially Contaminated Sites, the Department of the Environment's Contaminated Land Research Report "Sampling strategies for contaminated land" prepared by The Centre for Research into the Built Environment, Nottingham Trent University (Ref: CLR 4; 1994) and the Environment Agency's "Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination" (ref: R&D Technical Report P5-066/TR; 2000).

Where remediation has been carried out on the site, the test results obtained from validation samples will be used in the assessment. Where a horizontal capping system has been or will be employed using materials spread across a site, sufficient samples will need to be taken to characterise the capping material used and the results presented to UUW. However, the sufficiency of sampling on the horizontal capping system, in which the pipeline will be placed, may be assessed on the basis of the source, quantity and type of materials used.

Detection Limits

Only positive concentrations, ie those above the limit of detection should be used in summation of VOC and SVOC (or other test groups of compounds ie phenols, cresols and chlorinated phenols). Laboratory methods shall provide a minimum limit of detection of 10µg/kg for each individual VOC or SVOC (or other test groups of compounds) quantitatively detected in accordance with the methods described above. For tentatively identified compounds (TICs), only those compounds with a concentration of 20µg/kg or greater shall be used in the summation of VOC and SVOC (or other test groups of compounds).

Protective Measures

Where polyethylene, ductile iron, steel or copper pipes are to be laid on a brownfield site or other land potentially affected by contamination (whether or not it has been remediated) and where the concentrations exceed the generic guideline values set out in Table 1 of the RA, the developer shall provide either:

- a) a robust risk assessment to show how any contaminants will not significantly impact on proposed water supplies or buried assets over the lifetime of the assets; or
- b) more suitable pipe materials; or
- c) an engineering solution to protect the pipe work backed up by an adequate assessment of the risk.

Liquid free phase product (e.g. oil or free solvent layers) shall not remain in the ground or groundwater in the vicinity of water pipes, whether barrier pipe or any other pipe materials are used.

When designing pipe routes on land potentially affected by contamination, new preferential contamination pathways along the route of new water pipes shall not be created. Particular measures may be required to prevent the possible migration of contamination through pipe bedding and into controlled waters.

References

BS10175:2011 "Investigation of Potentially Contaminated Sites Code of Practice"

CLAIRE/CIEH "Guidance on comparing soil contamination data with a critical concentration" 2008

Department of the Environment Contaminated Land Research Report "Sampling strategies for contaminated land" prepared by The Centre for Research into the Built Environment, Nottingham Trent University (Ref: CLR 4) 1994

Environment Agency "Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination" (ref: R&D Technical Report P5-066/TR) 2000

Environment Agency "Model Procedures for the Management of Land Contamination" (ref: CLR11), 2004

Environment Agency P5-080/TR3 "The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils", 2005

UK Water Industry Research (UKWIR) "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites" (Ref 10/WM/03/21)" January 2011

Water Regulations Advisory Scheme (WRAS) Information and Guidance Note 9-04-03 "Laying Pipes in Contaminated Land" 2002

About us

United Utilities is the North West's water company. We keep the taps flowing and toilets flushing for seven million customers every day. From Crewe to Carlisle, we work hard behind the scenes to help your life flow smoothly.

United Utilities Water PLC, Haweswater House, Lingley Mere Business Park, Lingley Green Avenue, Warrington WA5 3LP. Registered in England and Wales. Registered Number 2366678.

The risk assessment for water pipes will help you choose appropriate materials for your development. We are happy to deal with a risk assessment for water pipes in advance of any formal application for a new water supply.

If you need any help completing the form please call us on 0845 026 4296.

When completing this form electronically, the larger text boxes will expand in height if required.

Section 1: Development Details	
Development Name (if it has one)	
Development Address	Former Gateacre Garden Centre, Acrefield Road, Liverpool, L25
OS Grid Reference (mid point)	342520, 387560
Developers Name	Macbryde Homes Ltd
UUW reference number (for UU use only)	

Please provide details below of the current and historical use of the site and adjacent sites.

If your supporting information has details of the current and historical site use, please reference below the relevant sections of your report.

Please see Section 2.2 of LK Consult Ltd report ref: CL-602-LKC 14 1086-03 [R0] dated October 2014.

Historical onsite features include garden centre/nursery from 1927-2014 mapping.

Section 2: Preliminary Risk Assessment

Has your desk study and site walkover identified any land potentially affected by contamination?

🛛 Yes 🗌 No

If the site is potentially affected by contamination but you have not completed any intrusive site investigation please provide details below of the rationale behind the intended pipe selection.

If your supporting information has details of the rationale behind the intended pipe selection, please reference below the relevant sections of your report.

N/A

Section 3: Intrusive Site Investigation			
Have you completed any intrusive site investigation?	🖾 Yes 🗌 No		
Date(s) when the site investigation(s) undertaken	March 2014 and October 2014		
At what level has groundwater been encountered?	metres below ground level or Not encountered		

Table 1 (Pipeline Selection Risk Assessment Summary (PSRAS)) below classifies testing required where the preliminary risk assessment has identified land potentially affected by contamination. Please provide details below of any test groups which have not been tested and the rationale for not testing.

If your supporting information has details of the rationale behind not testing any particular test groups, please reference below the relevant sections of your report.

Please see Section 3.3.3 (Table 3.2) of LK Consult Ltd report ref: CL-602-LKC 14 1086-02 [R0].

Ketones/amides etc. not anticipated from the PRA.

If the intrusive site investigation has identified concentrations above the PE threshold (see PSRAS) and your intended pipe selection is PE please provide details below of the rationale behind the intended pipe selection.

If your supporting information has details of the rationale behind the intended pipe selection, please reference below the relevant sections of your report.

N/A

Section 4: Site Remediation

Please provide details below of any site remediation (which may include a change in site levels) already completed.

If your supporting information has details of the site remediation already completed, please reference below the relevant sections of your report.

N/A

Has the PSRAS (Table 1) been completed using appropriate data after remediation?	🗌 Yes 🖾 No 🗌 N/A
--	------------------

Please provide details below of any proposed site remediation and an analysis of whether this will affect your intended pipe selection.

If your supporting information has details of any proposed site remediation and whether this will affect your intended pipe selection, please reference below the relevant sections of your report.

Remediation to include either removal of made ground in the impacted Plots or 600mm clean capping layer in gardens in affected plots.

JUW Supplementary Guidance to UKWIR Guidance JUENG/RL/V4/Sept2012	

Section 5: Final Use of Site

Please provide details below of any chemicals (including fuel) to be stored on site and any other future contamination risks which may affect your intended pipe selection.

If your supporting information has details of potential contamination risks which may affect your intended pipe selection, please reference below the relevant sections of your report.

N/A

What water pipe materials are	PE DE Barrier Pipe Type A D PE Barrier Pipe Type B
intended to be used on site?	Other (please specify):

Section 6: Additional Information

Please use the section below to provide any additional details to support your intended pipe selection.

If your supporting information has additional information to support your intended pipe selection, please reference below the relevant sections of your report.

Majority of the made ground onsite is <0.6mbgl. Some areas of deeper made ground but contamination levels do not exceed the PE threshold values.

Section 7: Risk Assessor	
Name and relevant qualifications of person directing the risk assessment for water pipes	
Name and address of risk assessor's company	LK Consult Ltd, Bury Business Centre, Kay Street, Bury, BL9 6BU
Date risk assessment performed	30 th January 2015

Section 8: Declaration

I confirm I have completed this form and provided supporting information in accordance with 'UKWIR Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites' and UUW's Supplementary Guidance. I also confirm that if any further site investigation is needed and carried out, I will be required to submit an additional Risk Assessment for Water Pipes with the relevant supporting information. I understand that failure to supply any of the required information may delay my application being processed.

Name		Company	LK Consult Ltd
Phone Number	0161 763 7200	Date	30 th January 2015

Please e-mail the completed form and supporting information to <u>water.connections@uuplc.co.uk</u>. Alternatively you can fax a paper version to 01925 678926 or post to us at United Utilities Water, Metering and Connections, Ullswater House, Lingley Mere, Warrington, WA5 3LP.

About us

United Utilities is the North West's water company. We keep the taps flowing and toilets flushing for seven million customers every day. From Crewe to Carlisle, we work hard behind the scenes to help your life flow smoothly.

United Utilities Water PLC, Haweswater House, Lingley Mere Business Park, Lingley Green Avenue, Warrington WA5 3LP. Registered in England and Wales. Registered Number 2366678.

Table 1 - Pipe Selection Risk Assessment Summary (PSRAS)

1) Testing must be undertaken on the materials within which the pipes are to be laid, whether that be existing ground materials, remediated materials or imported capping materials. Please use the appropriate testing data to complete Table 1 below.

2) If more than one pipe selection is being made, for example, for pipes in different areas of a large site, a completed PSRAS is required for each selection.

What materials have been tested to populate Table 1 below?

🛛 Existing ground materials 🗌 Remediated materials 🗌 Imported capping materials

All concentrations in mg/kg								
Test Group	Testing Required?	PE threshold	Metal Pipes/ Barrier Pipe	Laboratory Detection Limit	Testing UKAS accredited Y/N	Maximum concentration at proposed pipeline depth See Note [2]	Maximum site concentration See Note [3]	Locations and depths where concentrations exceed proposed pipeline threshold
Total VOCs	ient ally	0.5	Pass	0.1	MCERTS	0.32mg/kg WS101 0.0-1.2m	0.51mg/kg WS203 0.0-0.3m	N/A
Total BTEX & MTBE	enti	0.1	Pass	0.001	MCERTS	<lod< td=""><td><lod< td=""><td>N/A</td></lod<></td></lod<>	<lod< td=""><td>N/A</td></lod<>	N/A
Total SVOCs (excluding PAHs and those substances marked with an *)	Asse Id pot ninatio	2	Pass	N/A	N/A	N/A	N/A	N/A
EC5-EC10 aliphatic and aromatic hydrocarbons	 Risk ed lar ontan 	2	Pass	0.1	No	<lod< td=""><td><lod< td=""><td>N/A</td></lod<></td></lod<>	<lod< td=""><td>N/A</td></lod<>	N/A
EC10-EC16 aliphatic and aromatic hydrocarbons	ninary lentific	10	Pass	1.0	MCERTS	<lod< td=""><td>65.5mg/kg WS104 0.0-0.6m</td><td>N/A</td></lod<>	65.5mg/kg WS104 0.0-0.6m	N/A
EC16-EC40 aliphatic and aromatic hydrocarbons	Prelim nas id fected	500	Pass	1.0	MCERTS	7.6mg/kg WS202 0.0-0.9m	356mg/kg WS203 0.0-0.3m	N/A
Phenols* (from SVOC analysis)	ere (A) I af	2	Pass	0.3	MCERTS	<lod< td=""><td><lod< td=""><td>N/A</td></lod<></td></lod<>	<lod< td=""><td>N/A</td></lod<>	N/A
Cresols and chlorinated phenols* (from SVOC analysis)	Who PF	2	Pass	N/A	N/A	N/A	N/A	N/A
Ethers*		0.5	Pass	N/A	N/A	N/A	N/A	N/A
Nitrobenzene*	ed	0.5	Pass	N/A	N/A	N/A	N/A	N/A
Ketones*	y wh intifi	0.5	Pass	N/A	N/A	N/A	N/A	N/A
Aldehydes*	ide	0.5	Pass	N/A	N/A	N/A	N/A	N/A
Amines		Fail	Pass	N/A	N/A	N/A	N/A	N/A
Corrosive	Conductivity, Redox and pH	Pass	See Note [1]	0.1	MCERTS	9.3 TH201 0.0-0.7m	10.7 ws108 0.0-0.6m	N/A

Note [1] Threshold: For wrapped steel, corrosive if pH<7 and conductivity > 400µS/cm. For wrapped ductile iron corrosive if pH<5, Eh not neutral and conductivity > 400µS/cm. For copper, corrosive if pH<5 or >8 and Eh positive.

Note [2] Water pipes are normally laid at 0.75-1.35m below finished ground level.

Note [3] Also state if liquid free product is present in soil or groundwater.

APPENDIX H

CATWASTE ASSESSMENT

Classification Assessment Tool of Soil Wastes - Hazard Summary Sheet

CAT-WASTE^{SOIL}

Site Name	Gateacre Garden Centre			
Location	Liverpool			
Site ID	LKC 14 1086			
Job Number	LKC 14 1086			
Date	1/26/2015 2:44:32 PM			
User Name	r.peart@thelkgroup.com			
Company Name	LK Consult Ltd			

Hole ID	Sample Depth	Hazardous Waste Y/N	H1	H2	H3A	H3B	H4	H5	H6	H7	H8
WS101	0.40m	Ν	No	No	No	No	No	No	No	No	No
WS102	0-0.60m	Ν	No	No	No	No	No	No	No	No	No
WS103	0.50m	Ν	No	No	No	No	No	No	No	No	No
WS104	0-0.60m	Ν	No	No	No	No	No	No	No	No	No
WS105	0.40m	Ν	No	No	No	No	No	No	No	No	No
WS106	0-0.30m	Ν	No	No	No	No	No	No	No	No	No
WS107	0.20m	Ν	No	No	No	No	No	No	No	No	No
WS107	0.70-0.90m	Ν	No	No	No	No	No	No	No	No	No
WS108	0-0.30m	Ν	No	No	No	No	No	No	No	No	No
WS109	0m	Ν	No	No	No	No	No	No	No	No	No
WS109	0.30-0.80m	Ν	No	No	No	No	No	No	No	No	No
WS110	0.3m	Ν	No	No	No	No	No	No	No	No	No
WS111	0.10-0.50m	Ν	No	No	No	No	No	No	No	No	No
WS112	0-0.20m	Ν	No	No	No	No	No	No	No	No	No
WS201	0-0.30m	Ν	No	No	No	No	No	No	No	No	No
WS202	0.40-0.60m	Ν	No	No	No	No	No	No	No	No	No
WS203	0.10-0.30m	Ν	No	No	No	No	No	No	No	No	No
WS204	0.20-0.40m	Ν	No	No	No	No	No	No	No	No	No
WS205	0.30-0.50m	Ν	No	No	No	No	No	No	No	No	No
WS206	0.20-0.40m	Ν	No	No	No	No	No	No	No	No	No
WS207	0.10-0.20m	Ν	No	No	No	No	No	No	No	No	No
WS207	0.30-0.50m	Ν	No	No	No	No	No	No	No	No	No
TH201	0.20-0.50m	Ν	No	No	No	No	No	No	No	No	No
WS208	0.20-0.40m	Ν	No	No	No	No	No	No	No	No	No
WS209	0.30-0.50m	Ν	No	No	No	No	No	No	No	No	No
WS209	0.60-0.80m	Ν	No	No	No	No	No	No	No	No	No

This output data has been generated by the CAT-Waste Soil waste classification tool provided by Atkins Consultants Ltd and J.McArdle Contracts and should be read in conjuntion with the standard Terms and Conditions 15:09 2/2/2015

CAT-WASTE^{SOIL}

Site Name	Gateacre Garden Centre
Location	Liverpool
Site ID	LKC 14 1086
Job Number	LKC 14 1086
Date	1/26/2015 2:44:32 PM
User Name	r.peart@thelkgroup.com
Company Name	LK Consult Ltd

Hole ID	Sample Depth	Hazardous Waste Y/N	H9	H10	H11	H12	H13	H14	H15
WS101	0.40m	N	No	No	No	No	No	No	No
WS102	0-0.60m	N	No	No	No	No	No	No	No
WS103	0.50m	N	No	No	No	No	No	No	No
WS104	0-0.60m	N	No	No	No	No	No	No	No
WS105	0.40m	N	No	No	No	No	No	No	No
WS106	0-0.30m	N	No	No	No	No	No	No	No
WS107	0.20m	N	No	No	No	No	No	No	No
WS107	0.70-0.90m	N	No	No	No	No	No	No	No
WS108	0-0.30m	N	No	No	No	No	No	No	No
WS109	0m	N	No	No	No	No	No	No	No
WS109	0.30-0.80m	N	No	No	No	No	No	No	No
WS110	0.3m	N	No	No	No	No	No	No	No
WS111	0.10-0.50m	N	No	No	No	No	No	No	No
WS112	0-0.20m	N	No	No	No	No	No	No	No
WS201	0-0.30m	N	No	No	No	No	No	No	No
WS202	0.40-0.60m	N	No	No	No	No	No	No	No
WS203	0.10-0.30m	N	No	No	No	No	No	No	No
WS204	0.20-0.40m	N	No	No	No	No	No	No	No
WS205	0.30-0.50m	N	No	No	No	No	No	No	No
WS206	0.20-0.40m	N	No	No	No	No	No	No	No
WS207	0.10-0.20m	N	No	No	No	No	No	No	No
WS207	0.30-0.50m	N	No	No	No	No	No	No	No
TH201	0.20-0.50m	N	No	No	No	No	No	No	No
WS208	0.20-0.40m	N	No	No	No	No	No	No	No
WS209	0.30-0.50m	N	No	No	No	No	No	No	No
WS209	0.60-0.80m	N	No	No	No	No	No	No	No

This output data has been generated by the CAT-Waste Soil waste classification tool provided by Atkins Consultants Ltd and J.McArdle Contracts and should be read in conjuntion with the standard Terms and Conditions 15:09 2/2/2015

CAT-WASTE^{SOIL}

Classification

Site Name	Gateacre Garden Centre			
Location	Liverpool			
Site ID	LKC 14 1086			
Job Number	LKC 14 1086			
Date	1/26/2015 2:44:32 PM			
User Name	r.peart@thelkgroup.com			
Company Name	LK Consult Ltd			

Hole ID	Sample Depth	Hazardous Waste Y/N
WS101	0.40m	Ν
WS102	0-0.60m	Ν
WS103	0.50m	Ν
WS104	0-0.60m	Ν
WS105	0.40m	Ν
WS106	0-0.30m	Ν
WS107	0.20m	Ν
WS107	0.70-0.90m	N
WS108	0-0.30m	N
WS109	0m	Ν
WS109	0.30-0.80m	Ν
WS110	0.3m	Ν
WS111	0.10-0.50m	N
WS112	0-0.20m	Ν
WS201	0-0.30m	Ν
WS202	0.40-0.60m	Ν
WS203	0.10-0.30m	N
WS204	0.20-0.40m	N
WS205	0.30-0.50m	Ν
WS206	0.20-0.40m	Ν
WS207	0.10-0.20m	N
WS207	0.30-0.50m	N
TH201	0.20-0.50m	Ν
WS208	0.20-0.40m	Ν
WS209	0.30-0.50m	Ν
WS209	0.60-0.80m	N

This output data has been generated by the CAT-Waste Soil waste classification tool provided by Atkins Consultants Ltd and J.McArdle Contracts and should be read in conjuntion with the standard Terms and Conditions 15:09 2/2/2015

Bury Business Centre, Kay Street, Bury BL9 6BU

Tel: 0161 763 7200

The Corn Exchange, Fenwick Street, Liverpool L2 7QL

Tel: 0151 235 8716

Unit 121, Wright Business Centre, 1 Lonmay Road, Glasgow G33 4EL

Tel: 0141 773 6269

www.thelkgroup.com