Great George Street Developments Ltd

Phase 2 and 3 Great George Street, Liverpool

Air Quality Assessment

Issue | 5 October 2018

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 260088

Ove Arup & Partners Ltd The Arup Campus Blythe Gate Blythe Valley Park Solihull B90 8AE United Kingdom www.arup.com

ARUP

Contents

			Page
1	Intro	duction	1
2	Legisl	ation	3
	2.1	European Air Quality Management	3
	2.2	Air Quality Objectives and Limit Values	3
	2.3	Environment Act 1995	4
	2.4	Dust Nuisance	4
3	Plann	ing Policy and Guidance	5
	3.1	National Planning Policy Framework	5
	3.2	Local Planning Policies	5
	3.3	Local Air Quality Management Policy Guidance (2016)	7
	3.4	IAQM Guidance on the Assessment of Dust from Demolit and Construction (2014)	ion 7
	3.5	EPUK/IAQM Land-Use Planning & Development Control (2017)	l 8
4	Metho	odology	9
	4.1	Methodology for Establishing Baseline Conditions	9
	4.2	Methodology for Assessment of Effects from Construction	n 9
	4.3	Methodology for Assessment of Effects from Operation	13
5	Baseli	ine Conditions	25
	5.1	Sources of Air Pollution	25
	5.2	Local Air Quality	25
	5.3	Background Concentrations	34
6	Assess	sment	35
	6.1	Assessment of Effects from Construction	35
	6.2	Sensitive Receptors and Area Sensitivity	35
	6.3	Assessment of Effects from Operation	38
7	Mitiga	ation Measures	44
	7.1	Construction	44
	7.2	Operation	47
8	Concl	usion	48

Tables

Table 1: Air quality standards Table 2: Assessed receptors for operational traffic emissions Table 3: NO₂ verification sites Table 4: Impact descriptors Table 5: LCC automatic monitoring sites Table 6: Results of automatic monitoring Table 7: LCC monitoring sites within 2km Table 8: Results of LCC diffusion tube monitoring within 2km Table 9: Defra background pollutant concentrations for 2017 ($\mu g/m^3$) Table 10: Sensitivity of the area Table 11: Dust emission magnitude for dust generating activities Table 12: Summary dust risk table prior to mitigation Table 13: Comparison of modelled and monitored annual mean NO₂ for 2017 Table 14: Comparison of adjusted modelled and monitored annual mean for 2017 Table 15: Predicted annual mean NO₂ concentrations ($\mu g/m^3$) Table 16: Predicted annual mean PM₁₀ concentrations Table 17: Predicted annual mean PM2.5 concentrations Table 18: Sensitivity test – predicted annual mean NO₂ concentrations ($\mu g/m^3$) Table 19: Sensitivity test – predicted annual mean PM₁₀ concentrations Table 20: Sensitivity test – predicted annual mean PM_{2.5} concentrations

Figures

Figure 1: Site location

Figure 2: IAQM dust assessment methodology

Figure 3: Modelled road network and receptors

Figure 4: Wind rose for Liverpool Airport (2017)

Figure 5: Verification sites and Leece Street

Figure 6: Liverpool AQMA and automatic monitors

Figure 7: LCC diffusion tube monitoring sites within 2km

Figure 8: Construction dust buffer

Appendices

Appendix A

Consultation with Liverpool City Council

Appendix B

Construction Dust Methodology

Appendix C

Traffic Data

Appendix D Sensitivity Test

| ISsue | 5 October 2018 \u00edleuropellverpoollobs\2800001260088-00 - GREAT GEORGE STREET14 INTERNAL PROJECT DATA\4-05 REPORTS\4-05-10 ENVIRONMENTALIAIR QUALITVISSUEDICT_GEORGEST_AQ_DRAFT_201801003_ISSUE2.DOCX

1 Introduction

Ove Arup and Partners (Arup) has been commissioned to undertake an air quality assessment of Phase 2 and 3 of the proposed Great George Street development in Liverpool.

Air quality studies are concerned with the presence of airborne pollutants in the atmosphere. This report assesses the potential impact of the proposed phase masterplan development on air quality in the vicinity of the development. This report outlines relevant air quality management policy and legislation and describes the existing air quality conditions in the vicinity of the site, before assessing the impact of the proposed development, its significance and any mitigation required.

The proposed development is located west of Great George Street. Residential areas are located to the west of the site and to the east, across Great George Street. There are commercial and retail areas to the north and south of the site.

2 Legislation

2.1 European Air Quality Management

In May 2008 the Directive $2008/50/EC^1$ on ambient air quality and cleaner air for Europe came into force. This Directive consolidates earlier directives (except the 4th Daughter Directive, which will be brought into the new Directive at a later date), providing EU limit values for specified pollutants and provides a new regulatory framework for fine particulate matter (PM_{2.5}). The European Directive has been transposed into national legislation in England in the Air Quality Standards 2010^2 . The Secretary of State for the Environment has the duty of ensuring compliance with the air quality limit values.

2.2 Air Quality Objectives and Limit Values

Air quality limit values and objectives are quality standards for clean air. Some pollutants have standards expressed as annual average (long-term) concentrations due to the chronic way in which they affect health or the natural environment (i.e. effects occur after a prolonged period of exposure to elevated concentrations) and others have standards expressed as 24-hour, 1-hour or 15-minute average (short-term) concentrations due to the acute way in which they affect health or the natural environment (i.e. after a relatively short period of exposure). Some pollutants have standards expressed in terms of both long-term and short-term concentrations. Table 1 sets out these EU air quality limit values and national air quality objectives for the pollutants of greatest concern in the UK (NO₂ and particulate matter).

Pollutant	Averaging period	Limit value / Objective
Nitrogen Dioxide (NO2)	Annual mean	$40\mu g/m^3$
	1-hour mean	200μg/m ³ not to be exceeded more than 18 times a year (99.8th percentile)
Fine Particulate Matter (PM ₁₀)	Annual mean	$40\mu g/m^3$
	24-hour mean	$50\mu g/m^3$ not to be exceeded more than 35 times a year (90.41 st percentile)
Very Fine Particulate Matter (PM _{2.5})	Annual mean	25µg/m ³

Table 1: Air quality standards

\GLOBALARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_AQ_ISSUE_290318.DOCX

¹ Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe

² HMSO, Air Quality Standards Regulations 2010 SI No. 1001

2.3 Environment Act 1995

Part IV of the Environment Act 1995³ places a duty on the Secretary of State for the Environment to develop, implement and maintain an Air Quality Strategy with the aim of reducing atmospheric emissions and improving air quality. The Air Quality Strategy⁴ for England, Scotland, Wales and Northern Ireland provides the national air quality objectives and a framework for ensuring compliance with these values based on a combination of international, national and local measures to reduce emissions and improve air quality. This includes the statutory duty, also under Part IV of the Environment Act 1995, for local authorities to undergo a process of local air quality management and declare Air Quality Management Areas (AQMA) where pollutant concentrations exceed the national air quality objectives. Where an AQMA is declared the local authority would also need to produce an Air Quality Action Plan (AQAP) which outlines the strategy for improving air quality in these areas.

2.4 Dust Nuisance

Dust is the generic term used in the British Standard document BS 6069 (Part Two) to describe particulate matter in the size range $1-75\mu m$ in diameter. Dust nuisance is the result of the perception of the soiling of surfaces by excessive rates of dust deposition. Under provisions in the Environmental Protection Act 1990⁵, dust nuisance is defined as a statutory nuisance.

There are currently no standards or guidelines for dust nuisance in the UK, nor are formal dust deposition standards specified. This reflects the uncertainties in dust monitoring technology and the highly subjective relationship between deposition events, surface soiling and the perception of such events as a nuisance. In law, complaints about excessive dust deposition would have to be investigated by the local authority and any complaint upheld for a statutory nuisance to occur. However, dust deposition is generally managed by suitable on-site practices and mitigation rather than by the determination of statutory nuisance and/or prosecution or enforcement notice(s).

³ Environment Act 1995, Chapter 25, Part IV Air Quality

⁴ Defra (2007) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, Volume 1, July 2007

⁵Environmental Protection Act 1990, Chapter 43, Part III Statutory Nuisances and Clean Air

^{\\}GLOBAL.ARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_AQ_ISSUE_290318.DOCX

3 Planning Policy and Guidance

3.1 National Planning Policy Framework

The National Planning Policy Framework⁶ (NPPF) was published in July 2018 with the purpose of planning to achieve sustainable development. Paragraph 181 of the NPPF on air quality states that:

"Planning policies and decisions should sustain and contribute towards compliance with relevant limit values or national objectives for pollutants, taking into account the presence of Air Quality Management Areas and Clean Air Zones, and the cumulative impacts from individual sites in local areas. Opportunities to improve air quality or mitigate impacts should be identified, such as through traffic and travel management, and green infrastructure provision and enhancement. So far as possible these opportunities should be considered at the plan-making stage, to ensure a strategic approach and limit the need for issues to be reconsidered when determining individual applications. Planning decisions should ensure that any new development in Air Quality Management Areas and Clean Air Zones is consistent with the local air quality action plan."

In addition, paragraph 103 states that:

"The planning system should actively manage patterns of growth in support of these objectives. Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions, and improve air quality and public health. However, opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both plan-making and decision-making."

Paragraph 170 discusses how planning policies and decisions should contribute to and enhance the natural and local environment. In relation to air quality, NPPF notes that this can be achieved by:

"e) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, taking into account relevant information such as river basin management plans"

\GLOBAL.ARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_ AQ_ISSUE_290318.DOCX

⁶ Department for Communities and Local Government (2018) National Planning Policy Framework

3.1.1 Planning Practice Guidance (2014)

Planning Practice Guidance⁷ (PPG) on various topics was published, including air quality, to supplement the NPPF. However, the PPG in relation to air quality has not yet been updated to reflect the changes in the latest NPPF published in July 2018 as outlined above. The current version of the guidance refers to the significance of air quality assessments to determine the impacts of proposed developments in the area and describes the role of local and neighbourhood plans with regard to air quality. It also provides a flowchart method to assist local authorities to determine how considerations of air quality fit into the development management process.

3.2 Local Planning Policies

Liverpool City Council (LCC) is in the process of producing a Local Plan for Liverpool which was published for consultation in January 2018. In the presubmission draft of the local plan⁸, policy STP2 (Sustainable Growth Principles and Managing Environmental Impacts) refers to air quality:

"1. New development should seek to avoid negative impacts on the environment through adoption of best practice. Where a negative effect is identified this should be mitigated by appropriate measures. Specifically, to ensure the sustainable growth of the City, new development should:

•••

m. Minimise adverse impacts on, and include measures to improve air quality within the City;"

Policy R1 (Air, Light and Noise Pollution) also states:

"1. Development proposals which are likely to have a pollution impact should demonstrate that:

a. Appropriate measures are incorporated to avoid pollution to air, water and soil;

•••

c. The proposal will not undermine the achievement of Air Quality Management Area (AQMA) objectives; and

d. It will not lead to a significant decline in air quality"

LCC was preparing the Core Strategy before the Local plan. The Draft Core Strategy⁹ includes Strategic Policy 33: Environmental Impacts which states that:

\\GLOBAL.ARUP.COM\EUROPE\MIDLANDS\JOBS\115000\\15438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_ AQ_ISSUE_290318.DOCX

⁷ Department for Communities and Local Government (2014) Planning Practice Guidance: Air Quality

 ⁸ Liverpool City Council, Liverpool Local Plan 2013-2033, Pre-submission draft, January 2018
 ⁹ Liverpool City Council, Submission Draft, Liverpool Core Strategy, 2012

"1. New development should seek to avoid negative impacts on the environment through adoption of best practice. Where a negative effect is identified this should be mitigated by appropriate measures. Specifically, development proposals should:

a. Minimise adverse impacts on, and include measures to improve, air quality within the city.

•••

While this policy seeks to ensure that development contributes to improving air quality in Liverpool, the Core Strategy more generally seeks to achieve this by reducing the need to travel, and encouraging increased use of sustainable transport modes, including walking and cycling."

3.3 Local Air Quality Management Policy Guidance (2016)

The 2016 policy guidance note from Defra, LAQM (PG16)¹⁰, provides additional guidance on the links between transport and air quality. LAQM (PG16) describes how road transport contributes to local air pollution and how transport measures may bring improvements in air quality. Key transport-related Government initiatives are set out, including regulatory measures and standards to reduce vehicle emissions and improve fuels, tax-based measures and the development of an integrated transport strategy.

LAQM (PG16) also provides guidance on the links between air quality and the land-use planning system. The guidance advises that air quality considerations should be integrated into the planning process at the earliest stage and is intended to aid local authorities in developing action plans to deal with specific air quality problems and create strategies to improve air quality. It summarises the main ways in which the land use planning system can help deliver compliance with the air quality objectives.

Technical Guidance (TG16)¹¹ is designed to support local authorities in carrying out their duties to review and assess air quality in their area.

3.4 IAQM Guidance on the Assessment of Dust from Demolition and Construction (2014)

The 2014 Institute of Air Quality Management (IAQM) guidance¹² provides guidance to development consultants and environmental health officers on how to assess air quality impacts from construction. The IAQM guidance provides a method for classifying the significance of effect from construction activities based on the 'dust magnitude' (high, medium or low) and proximity of the site to the closest receptors. The guidance recommends that once the significance of effect from construction is identified, the appropriate mitigation measures are

\\GLOBAL.ARUP.COM/EUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_ AQ_ISSUE_290318.DOCX

¹⁰ Defra (2016) Local Air Quality Management Policy Guidance, PG16

¹¹ Defra (2016) Local Air Quality Management Technical Guidance, TG16

¹² IAQM (2014) Guidance on the Assessment of Dust from Demolition and Construction

implemented. Experience has shown that once the appropriate mitigation measures are applied in most cases the resulting dust impacts can be reduced to negligible levels.

3.5 EPUK/IAQM Land-Use Planning & Development Control (2017)

The 2017 Land-Use Planning & Development Control guidance document¹³ provides a framework for professionals operating in the planning system to provide a means of reaching sound decisions, having regard to the air quality implications of development proposals.

The document provides guidance on when air quality assessments are required by providing screening criteria regarding the size of a development, changes to traffic flows/composition energy facilities or combustion processes associated with the development.

\GLOBAL.ARUP.COM/EUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_ AQ_ISSUE_290318.DOCX

¹³ Environmental Protection UK (EPUK), Institute of Air Quality Management (IAQM) (2017) Land-Use Planning & Development Control: Planning For Air Quality

4 Methodology

The overall approach to the air quality assessment comprises:

- A review of the existing air quality conditions at and in the vicinity of the proposed development sites;
- An assessment of the potential changes in air quality, and their significance, arising from the construction and operation of the proposed development;
- Formulation of mitigation measures, where necessary, to ensure any adverse effects on air quality are minimised.

The methodology for this assessment was discussed and agreed with the Environmental Health Officer at Liverpool City Council (CCC).

4.1 Methodology for Establishing Baseline Conditions

The baseline ambient air quality in this assessment refers to the concentration of relevant substances that are already present in the environment. These are present from various sources, such as industrial processes, commercial and domestic activities, traffic and natural sources.

The following data sources have been used to determine the baseline and future conditions of air quality in the study area:

- The LCC review and assessment report and local air quality monitoring data;
- The Defra Local Air Quality Management website¹⁴;
- The Environment Agency website¹⁵.

Sensitive receptors are defined as those properties/schools/hospitals that are likely to experience a change in pollutant concentrations and/or dust nuisance due to the construction of the proposed development.

4.2 Methodology for Assessment of Effects from Construction

The effects from demolition and construction have been assessed using the qualitative approach described in the latest guidance⁹ by the Institute of Air Quality Management (IAQM).

An 'impact' is described as a change in pollutant concentrations or dust deposition, while an 'effect' is described as the consequence of an impact. The

\\GLOBAL.ARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_AQ_ISSUE_290318.DOCX

¹⁴ Defra Local Air Quality Management website; <u>http://laqm.defra.gov.uk/</u>; [Accessed: September 2018]

¹⁵ Environment Agency website; <u>https://environment.data.gov.uk/public-register/view/search-industrial-installations;</u> [Accessed: September 2018]

main impacts that may arise during demolition and construction of the proposed development are:

- Dust deposition, resulting in the soiling of surfaces;
- Visible dust plumes;
- Elevated PM₁₀ concentrations as a result of dust generating activities on site; and
- An increase in NO₂ and PM₁₀ concentrations due to exhaust emissions from non-road mobile machinery and vehicles accessing the site.

The IAQM guidance considers the potential for dust emissions from activities such as demolition of existing structures, earthworks, construction of new structures and trackout. Earthworks refer to the processes of soil stripping, ground levelling, excavation and land capping, while trackout is the transport of dust and dirt from the site onto the public road network where it may be deposited and then re-suspended by vehicles using the network. This arises when vehicles leave the site with dust materials, which may then spill onto the road, or when they travel over muddy ground on site and then transfer dust and dirt onto the road network.

For each of these dust-generating activities, the guidance considers three separate effects: annoyance due to dust soiling; harm to ecological receptors; and the risk of health effects due to a significant increase in PM_{10} exposure. The receptors can be human or ecological and are chosen based on their sensitivity to dust soiling and PM_{10} exposure.

The methodology takes into account the scale to which the above effects are likely to be generated (classed as small, medium or large), along with the levels of background PM_{10} concentrations and the distance to the closest receptor, in order to determine the sensitivity of the area. This is then taken into consideration when deriving the overall risk for the site. Suitable mitigation measures are also proposed to reduce the risk of the site.

There are five steps in the assessment process described in the IAQM guidance. These are summarised in Figure 2 and a further description is provided in the following paragraphs.

Step 1: Need for assessment

The first step is the initial screening for the need for a detailed assessment. According to the IAQM guidance, an assessment is required where there are sensitive receptors within 350m of the site boundary (for ecological receptors that is 50m) and/or within 50m of the route(s) used by the construction vehicles on the public highway and up to 500m from the site entrance(s).

Step 2: Assess the risk of dust impacts

This step is split into three sections as follows:

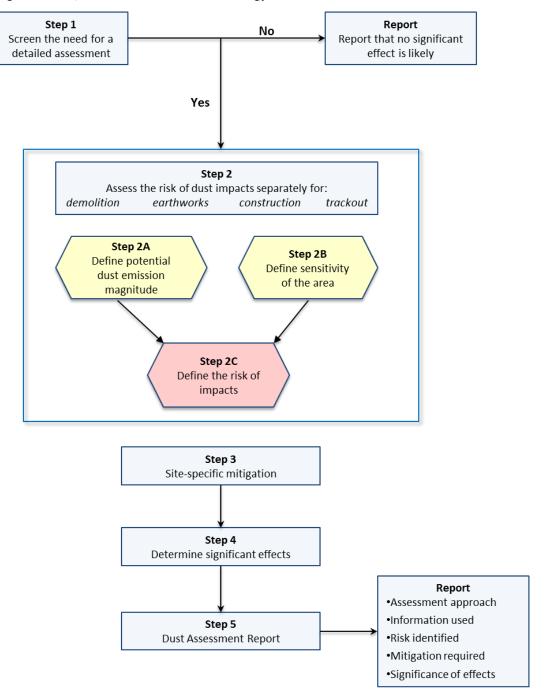
- 2A. Define the potential dust emission magnitude;
- 2B. Define the sensitivity of the area; and
- 2C. Define the risk of impacts.

Each of the dust-generating activities is given a dust emission magnitude depending on the scale and nature of the works (step 2A) based on the criteria shown in Table B.1 (Appendix B).

The sensitivity of the surrounding area is then determined (step 2B) for each dust effect from the above dust-generating activities, based on the proximity and number of receptors, their sensitivity to dust, the local PM_{10} background concentrations and any other site-specific factors. Tables B.2 to B.4 (Appendix B) show the criteria for defining the sensitivity of the area to different dust effects.

The overall risk of the impacts for each activity is then determined (step 2C) prior to the application of any mitigation measures (Table B.5, Appendix B) and an overall risk for the site derived.

Step 3: Determine the site-specific mitigation


Once each of the activities is assigned a risk rating, appropriate mitigation measures are identified. Where the risk is negligible, no mitigation measures beyond those required by legislation are necessary.

Step 4: Determine any significant residual effects

Once the risk of dust impacts has been determined and the appropriate dust mitigation measures identified, the final step is to determine whether there are any residual significant effects. The IAQM guidance notes that it is anticipated that with the implementation of effective site-specific mitigation measures, the environmental effect will not be significant in most cases.

Step 5: Prepare a dust assessment report

The last step of the assessment is the preparation of a Dust Assessment Report, if required. Mitigation relating to construction dust is listed in section 7.1.

Figure 2: IAQM dust assessment methodology

4.2.1 Construction Traffic

At this early stage, no forecast of construction vehicle traffic is available. Consequently, the effects from construction traffic accessing the site have not been assessed. While effects associated with construction traffic would be temporary they should be screened against the EPUK criteria to confirm whether a detailed assessment is required. A detailed assessment would be required if there are more than 25 HGV AADT movements. With this said, the construction traffic is not expected to exceed the screening criteria.

4.3 Methodology for Assessment of Effects from Operation

4.3.1 Car park ventilation

There is expected to be mechanical ventilation serving the basement car park. However, the ventilation has not yet been designed. The design should consider locating the ventilation extract for the car park more than 20m from sensitive receptors. This is because EPUK/IAQM guidance¹³ indicates that if a ventilation extract for a car park that is underground, is located more than 20m from sensitive receptors, a detailed assessment is not required. Therefore, it is not considered to impact the air quality at sensitive receptors.

4.3.2 Road Traffic Emissions

The proposed development has the potential to impact existing air quality because of road traffic exhaust emissions, such as NO₂, PM_{10} and $PM_{2.5}$, associated with vehicles travelling to and from the site. A screening assessment was therefore undertaken using the criteria contained within the EPUK/IAQM land-use guidance document¹⁰ to determine potential local air quality effects associated with the significant potential trip generation because of the proposed development.

As the proposed development is located within the LCC AQMA, the EPUK/IAQM guidance document states the following criteria to help establish when an air quality assessment is likely to be considered necessary:

- A change of Light Duty Vehicle flows of more than 100 Annual Average Daily Traffic (AADT) movements; and
- A change of Heavy Duty Vehicle flows of more than 25 AADT movements.

In accordance with EPUK/IAQM¹⁶, as change in traffic flows would be in excess of 100 movements per day, an air quality assessment is required.

Effects of traffic generated by the Proposed Development have been assessed using the ADMS-Roads atmospheric dispersion model. The assessment follows

\GLOBALARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-0014 INTERNAL PROJECT DATA14-56 DEGREE APPRENTICE CENTRE\AQ\DAC_AQ_ISSUE_290318.DOCX

¹⁶ Environmental Protection UK (EPUK), Institute of Air Quality Management (IAQM) (2017) Land-Use Planning & Development Control: Planning For Air Quality

the methodology set out in Defra's LAQM Technical Guidance (LAQM TG16)¹¹, and the inputs and processes used are detailed in the following sections.

4.3.3 Traffic Data

Traffic data was obtained from the transport planners (Arup) for the Proposed Development for the major roads surrounding the site.

The assessment scenarios are summarised as follows:

- 2017 baseline scenario;
- 2023 opening year Do-Minimum (DM) scenario; and,
- 2023 opening year Do-Something (DS) scenario.

The latest full year of ratified monitoring data available at the time of writing was 2017. To enable validation with local monitoring data, 2017 was therefore modelled as the baseline year. Traffic data was provided for 2017 by Arup.

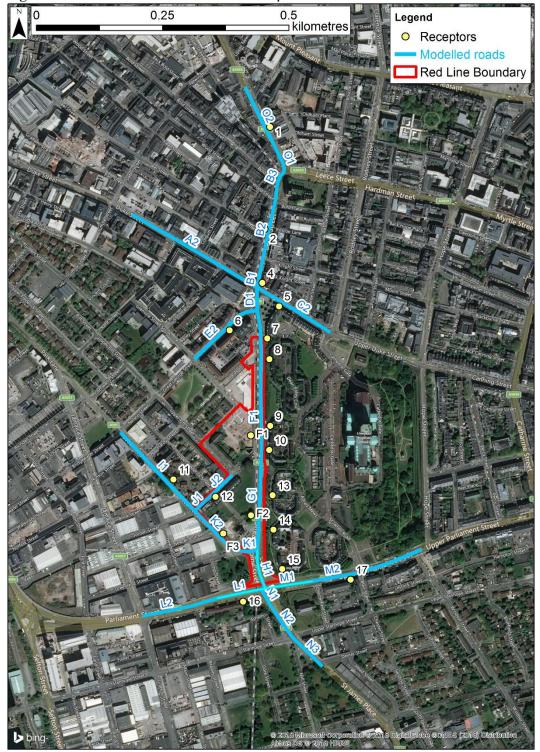
The 2023 DM scenario represents the opening year scenario without the proposed developments but includes traffic associated with Phase 1 of the Great George Street development, which is a committed development that will be operational by 2023. The 2023 DS scenario represents the opening year scenario with traffic associated with both the Phase 1 committed development and the proposed Phase 2 and 3 developments in full operation.

The data consists of 24-hour Annual Average Daily Traffic (AADT) flows, average speeds and percentages of heavy goods vehicles (HGVs) for each of the road links for the Do-something (DS) 2023 and Do-minimum (DM) 2023, i.e. with and without the scheme, respectively.

Data was screened in accordance with the relevant EPUK/IAQM criteria listed in section 4.3.1, which confirmed the need for a detailed modelling assessment. Traffic data for the model road network are given in Appendix C and the location of these roads shown in Figure 3.

Emission rates for all road sources were calculated using the UK Defra Emissions Factor Toolkit (EFT) v8.0.1¹⁷. A reduced speed of 20 kilometres per hour (kph) was applied to junction from a distance of 25m to 50m, following the LAQM TG16 guidance¹¹, with the exception of the A5038, A562 and A561 junction where the speed was applied to a length of up to 100m from the junction. This is because this junction is quite large and vehicles could be expected to start slowing down earlier.

Modelling has been carried out using 2023 background concentrations and 2023 vehicle emissions from the EFT. This is predicted to be the optimistic scenario in terms of air quality impact. Vehicle emissions and background air quality are predicted to improve over time due to the introduction of cleaner vehicles into the vehicle fleet. However, there is uncertainty as to how effective the introduction of new vehicle emissions limits will be. To account for this uncertainty, a sensitivity


NGLOBALARUP.COMEUROPE/MIDLANDS/JOBS/115000115438-00/4 INTERNAL PROJECT DATA/4-56 DEGREE APPRENTICE CENTRE/AQ/DAC_AQ_ISSUE_290318.DOCX

¹⁷ Defra, Emissions Factor Toolkit 2017, Available from: https://laqm.defra.gov.uk/review-and-assessment/tools/emissions-factors-toolkit.html [Accessed: June 2018]

test has been carried out assuming no improvement in vehicle emissions or background concentrations between 2017 and 2023.

4.3.3.1 Sensitivity Test

Vehicle emissions from the EFT and background concentrations for the 2017 baseline have been used in the future year scenarios for the sensitivity test. This represents a pessimistic scenario, as some reductions in vehicle emissions are likely by 2023. Modelling has therefore also been carried out using 2017 background concentrations and vehicle emissions.

Figure 3: Modelled road network and receptors

4.3.4 Sensitive Receptors

Pollutant concentrations have been forecast at existing and future sensitive receptors. Sensitive receptors, such as those close to junctions and closest to the road have been selected as representative receptors for this assessment.

Details of the assessed receptors are given in Table 2 and their locations are shown in Figures 3. A height of 1.5m corresponds to human exposure at ground level. It has been assumed that each floor is 3m, therefore first floor receptors are at 4.5m. The future receptors are located at the façade of the proposed buildings that face the surrounding road network. The residential receptors at these façades are only present at the 2nd floor, at an assumed height of 7.5m.

ID		National Gri		
ID	Receptor	X	Y	Height (m)
Existin	ng receptors			
1a	Renshaw Street (retail)	335205	390007	1.5
1b	Renshaw Street (residential)	335205	390007	4.5
2a	Berry Street (retail)	335194	389805	1.5
2b	Berry Street (residential)	335194	389805	4.5
3a	Duke Street (restaurant)	335170	389705	1.5
3b	Duke Street (residential)	335170	389705	4.5
4a	Upper Duke Street (restaurant)	335190	389698	1.5
4b	Upper Duke Street (residential)	335190	389698	4.5
5	Upper Duke Street (residential)	335223	389652	1.5
6a	Nelson Street (retail)	335125	389604	1.5
6b	Nelson Street (residential)	335125	389604	4.5
7	Great George Street (residential)	335199	389588	1.5
8	Great George Street (residential)	335204	389547	1.5
9	Great George Street (residential)	335205	389415	1.5
10	Great George Street (residential)	335204	389367	1.5
11	St James Street (residential)	335014	389309	1.5
12	Duncan Street (residential)	335097	389274	1.5
13	Great George Street (residential)	335210	389277	1.5
14	Great George Street (residential)	335212	389209	1.5
15	Upper Parliament Street (residential)	335229	389131	1.5
16	Parliament Street (residential)	335152	389067	1.5
17	Upper Parliament Street (residential)	335365	389110	1.5
Future	e receptors			

Table 2: Assessed receptors for operational traffic emissions

ID	Decenter	National Grie	Haiaht (m)	
ID	Receptor	X	Y	Height (m)
F1a	Great George Street (commercial)	335167	389396	1.5
F1b	Great George Street (residential)	335167	389396	7.5
F2a	Great George Street (commercial)	335167	389238	1.5
F2b	Great George Street (residential)	335167	389238	7.5
F3a	St James Street (commercial)	335113	389202	1.5
F3b	St James Street (residential)	335113	389202	7.5

4.3.5 Dispersion Model

Detailed dispersion modelling of NO_x , PM_{10} and $PM_{2.5}$ emissions was undertaken using ADMS-Roads (version 4.1) atmospheric dispersion model from Cambridge Environmental Research Consultants (CERC). Predicted NO_x concentrations have been processed to determine annual mean NO_2 concentrations for comparison with the annual mean NO_2 objectives.

The ADMS suite of models has been widely validated for road sources. It is regularly tested against other dispersion models by the EA's Air Quality Modelling and Assessment Unit (AQMAU) and is suitable for EIAs. The model incorporates the latest understanding of boundary layer meteorology and dispersion.

4.3.6 Meteorological Data

Meteorological data used in this assessment was measured at Liverpool John Lennon Airport meteorological station for 2017. Liverpool Airport is located approximately 11km to the south-east of Great George Street, and due to its location, is considered to be the most representative meteorological station. Figure 4 shows the data as wind roses for 2017. The predominant wind direction is north north-westerly.

In order for the modelling exercise to be representative of local conditions and to predict long-term averages, the dispersion model requires representative meteorological data. Most dispersion models for roads do not use meteorological data if they relate to calm winds conditions, as dispersion in calm conditions is difficult to calculate in Gaussian or advanced Gaussian models. ADMS-Roads treats calm wind conditions by setting the minimum wind speed to 0.75m/s. Defra's LAQM.TG16¹¹ guidance recommends that the meteorological data file is tested within a dispersion model and the relevant output log file checked to confirm the number of missing hours and calm hours that cannot be used by the dispersion model. This is important when considering predictions of high percentiles and the number of exceedances. The guidance recommends that meteorological data should only be used if the percentage of usable hours is greater than 75% and preferably 90%.

The datasets used includes 8,707 lines of usable hourly data (about 99% of the hours in a year), well above the 90% threshold; therefore, the data meets the requirements of the Defra guidance and is adequate for the dispersion modelling.

Figure 4: Wind rose for Liverpool Airport (2017)

4.3.7 Other Model Parameters

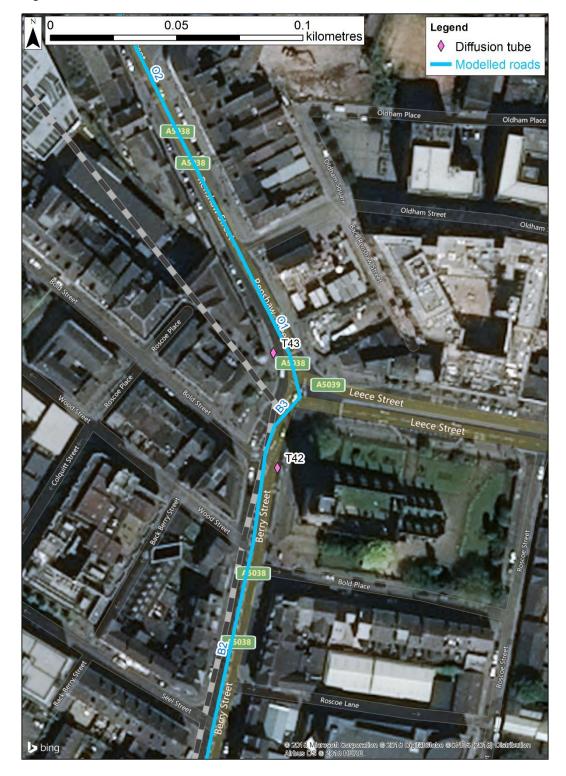
The extent of mechanical turbulence (and hence, mixing) in the atmosphere is affected by the roughness of the surface/ground over which the air is passing. Typical surface roughness values range from 1.5m (for cities, forests and industrial areas) to 0.0001m (for water or sandy deserts).

Due to the number of buildings, the land around the proposed development can be best described as 'cities, woodlands' with a corresponding surface roughness of 1m. Due to the location of Liverpool Airport met station outside of the city, the site can be best described as 'parklands, open surburbia' with a corresponding surface roughness of 0.5m.

The minimum Monin-Obukhov length is a model parameter which describes the extent to which the urban heat island effect limits stable atmospheric conditions. For this model, a length of 30m was used corresponding to "cities and large towns", to represent the city of Liverpool.

4.3.8 Model Verification

Model verification refers to the comparison of modelled and measured pollutant concentrations at the same points to determine the performance of the model. Should the model results for NO₂ be mostly within $\pm 25\%$ of the measured values and there is no systematic over or under-prediction of concentrations, then the LAQM.TG16¹¹ guidance advises that no adjustment is necessary. If this is not the case, modelled concentrations are adjusted based on the observed relationship between modelled and measured NO₂ concentrations to provide a better agreement.


The modelled road network was extended to be close to diffusion tube locations included in the monitoring undertaken by LCC. There are two diffusion tubes located on the model road network, the details of which are given in Table 3. Although the monitoring sites are located roadside to the modelled network, they are also near a junction with Leece Street (A5039) (see Figure 5). Traffic data was not available for Leece Street and there was no count point data from the Department for Transport (DfT) that could be appropriately used to calculate the traffic on the road.

Monitoring results for these locations were obtained from the latest Annual Status Reports from LCC, detailed in section 5.2. The modelled road contribution to the total NO_x concentration calculated was used in the verification process.

The results of the verification process are included in the assessment of air quality impacts during operation (section 6.3.1).

Monitoring Location	Comments
T42	This site is located beside a bus stop. It is also located near Leece Street, which was not modelled. The location is assumed to be on the lamp post at a height of 3m.
T43	This site is located near Leece Street, which was not modelled. The location is assumed to be on a sign post at a height of 3m.

Table 3: NO₂ verification sites

Figure 5: Verification sites and Leece Street

4.3.9 Results Processing

4.3.9.1 NO_x to NO₂ Conversion

The model predicts NOx concentrations which comprise nitric oxide (NO) and nitrogen dioxide (NO₂). NOx is emitted from combustion processes, i.e. combustion plant and vehicles, primarily as NO with a small percentage (usually <5%) of NO₂. The emitted NO reacts with oxidants in the air (mainly ozone) to form NO₂ and this oxidation occurs at a rate determined by a variety of factors including the concentration of oxidants in the air, wind speed and temperature. The concentration of NO₂ at any one point in the plume will depend on these factors as well as the time since the pollutants were emitted.

 NO_2 is associated with effects on human health and therefore the air quality standards for the protection of human health are based on NO_2 rather than total NOx or NO. A suitable $NOx:NO_2$ conversion has been derived and applied to the modelled NOx concentrations, in order to determine the impact of the NOx emissions on ambient concentrations of NO_2 .

LAQM.TG16¹¹ details an approach for calculating the roadside conversion of NO_x to NO₂, which takes into account the difference between ambient NO_x concentrations with and without the Proposed Development, the concentration of ozone and the different proportions of primary NO₂ emissions in different years. This approach is available as a spreadsheet calculator, with the most up to date version having been released in October 2017 (v6.1)¹⁸.

4.3.9.2 Short term NO₂ 1-hour mean objective

Research carried out on behalf of Defra identified that the exceedances of the NO_2 hourly objective is unlikely to occur where the annual mean is below 60μ g/m³. This assumption is referred to in the LAQM.TG16¹¹ and is used in the results.

4.3.9.3 Short term PM₁₀ daily mean objective

The PM_{10} daily mean objective of $50\mu g/m^3$ is not to be exceeded more than 35 times a year. This equates to the 90.41^{st} percentile. The 90.41^{st} percentile of 24-hour average results have been modelled to assess against this objective. In order to predict the total short-term PM_{10} concentration, the short-term background must also be added. Following LAQM.TG16¹¹, twice the PM_{10} annual mean background can be used to do this.

4.3.10 Significance Criteria

The 2017 EPUK/IAQM guidance note 'Land-Use Planning & Development Control¹⁶' provides an approach to determining the air quality impacts resulting

\GLOBALARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQIDAC_AQ_ISSUE_290318.DOCX

 $^{^{18}}$ Defra, 2017. NOx to NO₂ calculator. <u>http://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html#NOxNO2calc</u>

from a proposed development and the overall significance of local air quality effects arising from a proposed development.

Firstly, impact descriptors are determined based on the magnitude of incremental change as a proportion of the relevant assessment level, in this instance the annual mean NO_2 objectives. The change is then examined in relation to the predicted total pollutant concentrations in the assessment year and its relationship with the annual mean NO_2 objectives.

The assessment framework for determining impact descriptors at each of the assessed receptors is shown in Table 4. These annual mean descriptors are only relevant for receptor locations where the public could be expected to reside for a year (i.e. residential receptors).

Annual Average Concentrations at	% Change in Concentrations Relative to Annual Mean Objectives						
Receptor in the Assessment Year	1	2-5	6-10	>10			
75% or less of objective	Negligible	Negligible	Slight	Moderate			
76-94% of objective	Negligible	Slight	Moderate	Moderate			
95-102% of objective	Slight	Moderate	Moderate	Substantial			
103-109% of objective	Moderate	Moderate	Substantial	Substantial			
110% of more of objective	Moderate	Substantial	Substantial	Substantial			

Note: Changes in pollutant concentrations of 0% i.e. <0.5% would be described as negligible

The impact descriptors at each of the assessed receptors can be used as a starting point for making judgements on the effect of the proposed development. However, other considerations need to be accounted for, such as:

- The existing and future air quality in the absence of the development;
- The extent of current and future population exposure to the impacts; and
- The influence and validity of any assumptions adopted when undertaking the prediction of impacts.

Professional judgement should be used to determine the overall effect of the proposed development, however in circumstances where the proposed development can be judged in isolation, it is likely that a 'moderate' or 'substantial' impact will give rise to a significant effect and a 'negligible' or 'slight' impact will not result in a significant effect.

5 Baseline Conditions

5.1 Sources of Air Pollution

5.1.1 Industrial Processes

Industrial air pollution sources are regulated through a system of operating permits or authorisations, requiring stringent emission limits to be met and ensuring that any releases to the environment are minimised or rendered harmless. Regulated (or prescribed) industrial processes are classified as Part A or Part B processes, regulated through the Pollution Prevention and Control (PPC) system^{19,20}. The larger more polluting processes are regulated by the Environment Agency (EA) and the smaller less polluting ones by the local authorities.

There are no relevant processes, regulated for emissions to air, listed on the EA website within 2km of the proposed development.

Part B processes are regulated and reviewed by LCC and, given the nature of these processes, are unlikely to significantly affect ambient air quality in the vicinity of the proposed development.

The impact of Part A and Part B processes is assumed to be included in the background monitoring and Defra background concentrations.

5.2 Local Air Quality

The Environment Act 1995, as described in section 2.3, requires local authorities to review and assess air quality with respect to the objectives for seven pollutants specified in the National Air Quality Strategy. Local authorities have been required to carry out an Updating and Screening Assessment of their area every three years. If this assessment identifies potential hotspot areas likely to exceed air quality objectives, then a further Detailed Assessment of those areas is required. Where objectives are not predicted to be met, local authorities must declare the area as an AQMA. In addition, local authorities are required to produce an Air Quality Action Plan which includes measures to improve air quality within the AQMA.

To fulfil their Local Air Quality Management duties, LCC produced their latest Air Quality Annual Status Reports (ASR)²¹ in 2017. This document includes a summary of the previous rounds of review and assessment.

LCC declared a city-wide AQMA for Liverpool in 2009 due to exceedances of the annual mean objective for NO_2 at various locations across the city. The location of

\\GLOBALARUP.COMEUROPE\MIDLANDS\JOBS\115000\115438-00\4 INTERNAL PROJECT DATA\4-56 DEGREE APPRENTICE CENTRE\AQ\DAC_AQ_ISSUE_290318.DOCX

¹⁹ Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control)

²⁰ The Environmental Permitting (England and Wales) (Amendment) Regulations 2013, SI 2013/390

²¹ Liverpool City Council, 2017 Air Quality Annual Status Report (ASR), August 2017

the proposed development with respect to the Liverpool AQMA is shown in Figure 6.

The latest monitoring reports from LCC^{21} shows that there are no automatic monitoring sites within 2km. LCC operate two automatic monitoring sites, an urban background, approximately 10.5km to the south-east, and an urban roadside, approximately 5.5km to the north-east. The details of these monitoring sites are included in Table 5 and their location is shown on Figure 6.

LCC ID	Site	Location	Site type	Pollutants monitored	Distance (m) and direction from site (m)
AM1	Speke	343884, 383601	Urban background	NO ₂ , NO _x SO ₂ , PM _{2.5} PM ₁₀ ,PAH	10.5km to the south-east
AM2	Queens Drive, Walton	336164, 394906	Urban roadside	NO ₂ , NO _x	5.5km to the north-east

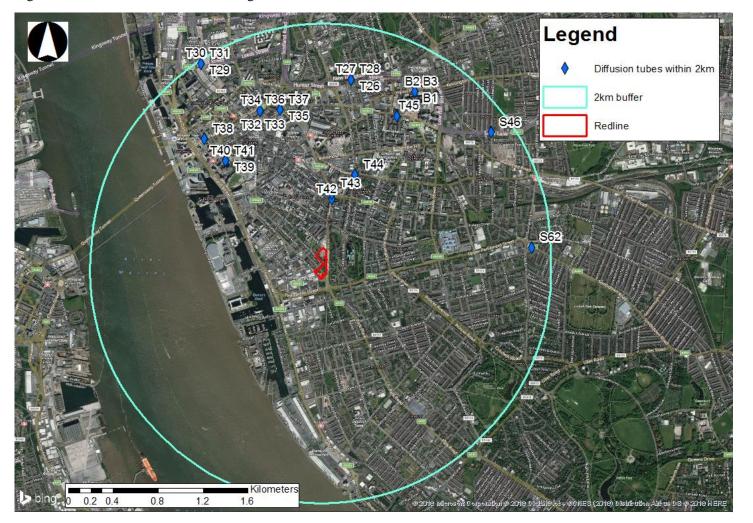
Table 5: LCC automatic monitoring sites

Figure 6: Liverpool AQMA and automatic monitors

Table 6: Results of automatic monitoring

Site		l mean N trations)	NO ₂	mean N	trations	rly	Valid data capture for 2015 - NO2		Number of hourly data capture for 2016Number of hourly mean PM10 concentrations >50µg/m3- PM10			data mean PM ₁₀ capture concentrations for 2016 >50µg/m ³		Annual mean PM _{2.5} concentrations (μg/m ³)			
	2014	2015	2016	2014	2015	2016		2014	2015	2016		2014	2015	2016	2014	2015	2016
AM1	25	22	23	0	0	0	97.2%	14	14	15	91.1	2	1	0	11	9	10
AM2	35	34	32	0	0	0	95.8%	-	-	-	-	-	-	-	-	-	-
Air quality objective	40 μg/n	n ³			m ³ , not to ed more t year			40 μg/m ³		40 μg/m ³			i ³ , not to l ed more t year		25 μg/n	n ³	

- no data, pollutant not monitored at that location


The latest monitoring reports from LCC^{21} shows that there are 24 monitoring sites located within 2km of the proposed development. These are all urban roadside diffusion tube sites. Details of these diffusion monitoring points within 2km of the proposed developments are included in Table 7 and the latest results are listed in Table 8.

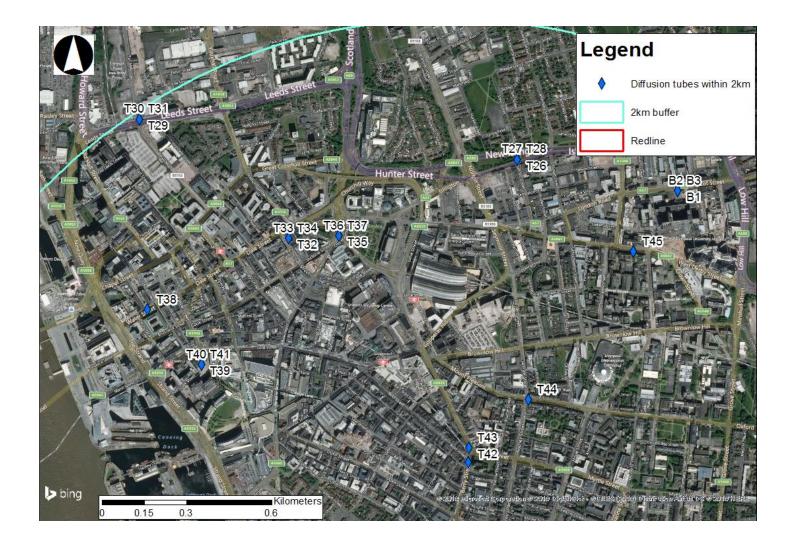

LCC ID	Site	X	Y	Туре
B1	Prescot St/ RLUH Taxi Rank Lamp L7	335961	390845	Urban Roadside
B2	Prescot St/ RLUH Taxi Rank Lamp L7	335961	390845	Urban Roadside
B3	Prescot St/ RLUH Taxi Rank Lamp L7	335961	390845	Urban Roadside
S46	Edge Lane/Jubilee Dr LHS Junct nr C2414	336642	390484	Urban Roadside
T26	Smithdown Road Info sign by Howard Jenkins funerals nr jct with lodge lane	337003	389459	Urban Roadside
T27	Islington AQ Station Traffic Lights	335394	390956	Urban Roadside
T28	Islington AQ Station Traffic Lights	335394	390956	Urban Roadside
T29	Islington AQ Station Traffic Lights	335394	390956	Urban Roadside
Т30	Leeds Street/Pall Mall Road Sign	334057	391098	Urban Roadside
T31	Leeds Street/Pall Mall Road Sign	334057	391098	Urban Roadside
T32	Leeds Street/Pall Mall Road Sign	334057	391098	Urban Roadside
Т33	Crosshall Street Downpipe 2nd Alng from Dale St.	334585	390677	Urban Roadside
T34	Crosshall Street Downpipe 2nd Alng from Dale St.	334585	390677	Urban Roadside
T35	Crosshall Street Downpipe 2nd Alng from Dale St.	334585	390677	Urban Roadside
T36	Lpool Centre Old Haymarket	334762	390686	Urban Roadside
T37	Lpool Centre Old Haymarket	334762	390686	Urban Roadside
T38	Lpool Centre Old Haymarket	334762	390686	Urban Roadside

Table 7: LCC monitoring sites within 2km

LCC ID	Site	X	Y	Туре
Т39	Covent Garden/Dale St Lamp Post RH side	334086	390425	Urban Roadside
T40	Strand Street/Water Street Jct-Roadsign L2	334277	390231	Urban Roadside
T41	Strand Street/Water Street Jct-Roadsign L2	334277	390231	Urban Roadside
T42	Strand Street/Water Street Jct-Roadsign L2	334277	390231	Urban Roadside
T43	Berry St o/s St Lukes Ch Pedestrian Lights	335221	389886	Urban Roadside
T44	Renshaw St/Bold St J cor Lamp Post Rapid	335222	389937	Urban Roadside
T45	Clarence St/Mount Pleasant J LP o/s JMU	335432	390107	Urban Roadside

Figure 7: LCC diffusion tube monitoring sites within 2km

LCC ID	Site type	2015	2016	2017	2017 data capture (%)
		Annual mean NO ₂ concentrations (µg/m ³)			
B1	Urban roadside	61	57	44	100
B2	Urban roadside	62	56	43	100
B3	Urban roadside	62	56	44	100
S46	Urban roadside	53	54	38	83
T26	Urban roadside	46	50	35	92
T27	Urban roadside	46	46	34	92
T28	Urban roadside	47	50	35	83
T29	Urban roadside	50	43	30	100
T30	Urban roadside	51	41	31	100
T31	Urban roadside	52	43	30	100
T32	Urban roadside	69	70	47	100
T33	Urban roadside	69	73	46	92
T34	Urban roadside	67	80	44	92
T35	Urban roadside	56	59	41	100
T36	Urban roadside	59	56	42	100
T37	Urban roadside	55	58	41	100
T38	Urban roadside	46	48	36	92
T39	Urban roadside	68	67	50	75
T40	Urban roadside	67	64	45	67
T41	Urban roadside	68	67	49	100
T42	Urban roadside	52	51	38	100
T43	Urban roadside	60	64	46	100
T44	Urban roadside	50	48	37	100
T45	Urban roadside	54	51	36	92
Air qualit	y objective		40 μg/m ³		

Table 8: Results of LCC diffusion tube monitoring within 2km

Data obtained from LCC; has been bias corrected, annualised (where necessary) and corrected to the nearest façade.

Exceedances of the annual mean objective $(40\mu g/m^3)$ are highlighted in bold

LCC diffusion tube monitoring of roadside sites within 2km of the proposed developments shows that the annual mean NO₂ objective $(40\mu g/m^3)$ was exceeded at all locations during 2015 and 2016. However, 2017 results show some significant reduction in concentrations at all locations, with the annual mean objective only exceeded at 12 of the 24 locations.

5.3 Background Concentrations

Background pollutant concentrations are available on the Defra air quality website²² for every 1km x 1km grid square across the UK. Background pollutant concentrations for the base year (2017) have been obtained for the grid squares in which the proposed development and the modelled receptors at located. These are shown in Table 9. Defra background pollutant concentrations for 2017 are well below the relevant air quality objectives.

In the absence of appropriate urban background monitoring near the proposed development, the Defra background concentrations have been used in the results processing.

OS Grid So	OS Grid Square (X, Y)		Annual Mean Concentration (µg/m ³)				
X	Y	NOx	NOx NO ₂		PM2.5		
	2017						
335500	389500	30.3	20.9	12.7	8.0		
335500	390500	43.2	28.1	14.1	8.8		
		20	23				
335500	389500	21.2	15.3	12.3	7.6		
335500	390500	30.1	20.7	13.6	8.3		

Table 9: Defra background pollutant concentrations for 2017 (µg/m³)

²² Background Pollutant Concentrations, Defra Air Quality Website, https://laam.defra.gov.uk/review_and_assessment/tools/background_mons.ht

https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html [Accessed June 2018]

6 Assessment

6.1 Assessment of Effects from Construction

As discussed above, the IAQM guidance takes into consideration four dustgenerating activities: demolition, earthworks, construction and trackout. The site of the proposed development covers an area of approximately 1.5 hectares.

6.2 Sensitive Receptors and Area Sensitivity

Sensitive receptors are defined as those properties/schools/hospitals that are likely to experience a change in pollutant concentrations and/or dust nuisance due to the construction of the proposed development.

The sensitivity of the area to dust soiling and human health effects during the construction phase has been determined by considering the number, location and sensitivity of the receptors.

There are no sensitive ecological receptors (designated either internationally or nationally and potentially affected by the proposed development) which are sensitive to dust within 50m of the site boundary.

There are approximately 50 sensitive receptors within 20m of the proposed development boundary, and more than 100 receptors within 50m of the proposed development, including student accommodation, primary school, places of worship (Liverpool Cathedral) and residential properties.

The sensitivity of nearby receptors to dust soiling has been classified as high, according to the IAQM guidance, and the sensitivity to human health has been classified as low according, because the annual mean concentration of PM_{10} in the area is considered to be below $24\mu g/m^3$.

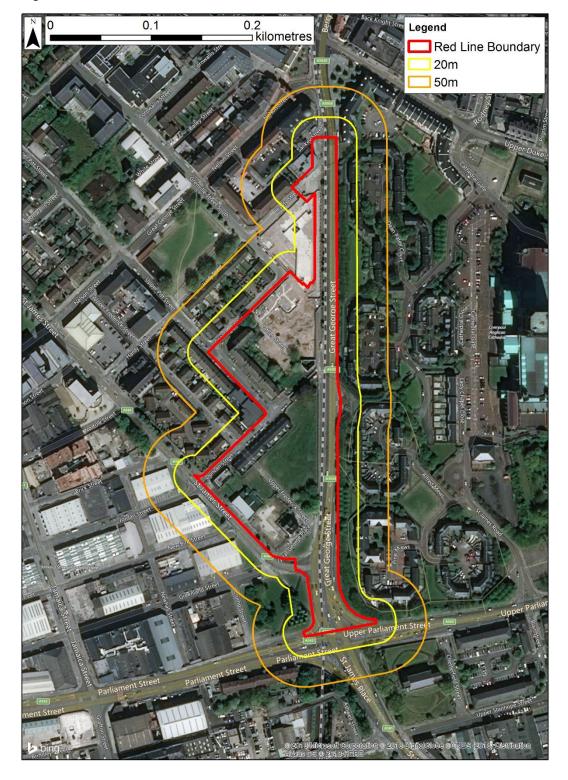
Activity	Sensitivity of the Surrounding Area
Dust Soiling	High
Human Health	Low

Table 10: Sensitivity of the area

6.2.1 Dust Emission Magnitude

Each dust generating activity has been assigned a dust emission magnitude as shown in Table 13.

Activity	Dust Emission Magnitude	Reasoning
Demolition	Small	Total building volume $<20,000m^3$ (Total building volume is estimated $< 20,000m^3$)
Earthworks	Large	Total site area is $>10,000m^2$ (Total site area is estimated to be $>10,000m^2$)
Construction	Large	Total building volume >100,000 m ³ (Volume of the proposed development is estimated to be >100,000m ³) Potentially dusty construction material (e.g. concrete)
Trackout	Large	Estimated to be >50 HDV (>3.5t) as earthworks and constructions are considered to be large


Table 11: Dust emission magnitude for dust generating activities

6.2.2 Risk of Impacts

Taking into consideration the dust emission magnitude and the sensitivity of the area, dust soiling impacts are classified as medium risk and the human health impacts are classified as low (see Table 12). Specific mitigation to minimise the risk of dust soiling and human health impacts is described in Section 7.1.

Table 12: Summary dust risk table prior to mitigation

Activity	Dust soiling	Human health
Demolition	Medium Risk	Negligible
Earthworks	High Risk	Low risk
Construction	High Risk	Low risk
Trackout	High Risk	Low risk

Figure 8: Construction dust buffer

6.3 Assessment of Effects from Operation

To assess the operational impact of road traffic emissions, dispersion modelling was undertaken following the methodology outlined in section 0.

6.3.1 Model Verification

Model verification can be undertaken for road sources as this requires comparison of modelled concentrations against monitored concentrations. A comparison of the monitored and modelled data is shown in Table 13Table 13.

Site name	Monitoring pollutant	Monitored concentration (µg/m ³)	Modelled concentration (µg/m ³)	Difference of modelled vs monitored (%)
T42	NO ₂	37.8	25.7	-32.0%
T43	NO_2	46.1	27.0	-41.4%

Table 13: Comparison of modelled and monitored annual mean NO2 for 2017

The verification process of the monitoring sites showed that the model was underpredicting NO₂ at T42 and T43 by 32% and 41% respectively. The difference between modelled and monitored was $\geq \pm 25\%$ at both sites. The monitored and modelled NO₂ road contribution concentrations, were plotted and the equation of the trend line based on linear regression through zero calculated. This showed that a verification factor of 4.26 could be applied to all modelled NOx results from road traffic. The use of the factor produced the results in Table 14

Table 14: Comparison of adjusted modelled and monitored annual mean for 2017

Site name	Monitoring pollutant	Monitored concentration (µg/m ³)	Adjusted modelled concentration (µg/m ³)	Difference of modelled vs monitored (%)
T42	NO_2	37.8	39.8	5.4%
T43	NO ₂	46.1	44.6	-3.2%

The under-predicting and high verification factor is attributed to Leece Street (where the monitoring takes place) not having been modelled (as traffic data are not available). Therefore, applying the derived factor across the road network will not accurately represent the baseline, however it will create a pessimistic scenario, because it will assume higher contributions of NO_2 from road emissions across the whole network.

No adjustment of PM_{10} or $PM_{2.5}$ concentrations has been undertaken as there is no monitoring data for PM_{10} or $PM_{2.5}$ close to the modelled road network to enable comparison.

6.3.2 **Predicted NO₂ Concentrations**

Pollutant concentrations have been predicted at each of the modelled receptors. Some receptors would not be present in the DM scenario (they are part of the proposed development) and therefore it is not relevant to assess the impact at these locations.

Table 15 presents the predicted concentrations of NO₂. The table shows that the maximum predicted change in annual mean NO₂ is 0.9μ g/m³ at receptor 12 (Duncan Street). All the predicted concentrations in the DS scenario are below the NO₂ annual mean objective (40μ g/m³).

The annual mean is not relevant to retail, restaurant and commercial uses, because these receptors are not expected to be present for a whole year. Therefore, the impact descriptors have not been defined at these receptors. However, the 1-hour NO_2 objective is relevant at the retail, restaurant and commercial uses. The predicted results show that they are unlikely to exceed the 1-hour NO_2 objective, because they are all below $60\mu g/m^3$. The impact descriptor for annual mean NO_2 concentrations is predicted to be negligible at all modelled sensitive receptors.

Rece	Receptor		DS 2023 (µg/m ³)	Change (µg/m ³)	Impact
1a	Renshaw Street (retail)	31.5	31.7	n/a	n/a
1b	Renshaw Street (residential)	27.1	27.2	0.1	Negligible
2a	Berry Street (retail)	23.5	23.7	n/a	n/a
2b	Berry Street (residential)	20.5	20.6	0.1	Negligible
3a	Duke Street (restaurant)	33.9	34.2	n/a	n/a
3b	Duke Street (residential)	26.4	26.6	0.3	Negligible
4a	Upper Duke Street (restaurant)	35.0	35.5	n/a	n/a
4b	Upper Duke Street (residential)	27.1	27.4	0.3	Negligible
5	Upper Duke Street (residential)	23.8	24.1	0.2	Negligible
6a	Nelson Street (retail)	19.6	19.7	n/a	n/a
6b	Nelson Street (residential)	19.3	19.5	0.1	Negligible
7	Great George Street (residential)	24.2	24.5	0.3	Negligible
8	Great George Street (residential)	22.3	22.6	0.3	Negligible
9	Great George Street (residential)	22.3	22.6	0.3	Negligible
10	Great George Street (residential)	22.9	23.1	0.3	Negligible
11	St James Street (residential)	22.4	22.7	0.2	Negligible
12	Duncan Street (residential)	20.5	21.4	0.9	Negligible
13	Great George Street (residential)	22.1	22.4	0.2	Negligible
14	Great George Street (residential)	23.9	24.1	0.3	Negligible
15	Upper Parliament Street (residential)	32.6	32.9	0.3	Negligible
16	Parliament Street (residential)	34.8	34.9	0.1	Negligible
17	Upper Parliament Street (residential)	30.6	30.8	0.2	Negligible

Table 15: Predicted annual mean NO₂ concentrations ($\mu g/m^3$)

Receptor		DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m ³)	Impact
F1a	Great George Street (commercial)	n/a	20.6	n/a	n/a
F1b	Great George Street (residential)	n/a	18.6	n/a	n/a
F2a	Great George Street (commercial)	n/a	24.4	n/a	n/a
F2b	Great George Street (residential)	n/a	21.0	n/a	n/a
F3a	St James Street (commercial)	n/a	28.2	n/a	n/a
F3b	St James Street (residential)	n/a	21.6	n/a	n/a

6.3.3 Predicted PM₁₀ Concentrations

Annual mean PM_{10} concentrations were predicted at the receptor locations for each scenario and the magnitude of change of annual mean PM_{10} concentrations from the DM to DS scenario and impact descriptor at each of the receptor locations were determined. The results are presented in Table 16.

Table 16 shows that PM_{10} concentrations were predicted to achieve the annual mean PM_{10} objective $(40\mu g/m^3)$ at all receptors in all scenarios. The table also shows that the 24-hour 9.41st percentile does not exceed the PM_{10} daily objective $(50\mu g/m^3)$. The impact descriptor for annual mean PM_{10} concentrations is predicted to be negligible at all modelled locations.

Receptor	DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m ³)	Impact	DS 2023 24hr 90.41 st percentile
1a	14.4	14.4	n/a	n/a	28.6
1b	14.0	14.0	<0.1	Negligible	28.0
2a	12.8	12.8	n/a	n/a	25.7
2b	12.6	12.6	<0.1	Negligible	25.2
3a	13.3	13.3	n/a	n/a	26.4
3b	12.9	12.9	< 0.1	Negligible	25.7
4a	13.3	13.4	n/a	n/a	26.4
4b	12.9	12.9	< 0.1	Negligible	25.7
5	12.8	12.8	< 0.1	Negligible	25.5
ба	12.6	12.6	n/a	n/a	25.1
6b	12.5	12.6	< 0.1	Negligible	25.1
7	12.9	12.9	< 0.1	Negligible	25.7
8	12.7	12.8	< 0.1	Negligible	25.5
9	12.7	12.8	< 0.1	Negligible	25.4
10	12.8	12.8	< 0.1	Negligible	25.5
11	12.8	12.8	<0.1	Negligible	25.4

Table 16: Predicted annual mean PM₁₀ concentrations

Receptor	DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m ³)	Impact	DS 2023 24hr 90.41 st percentile
12	12.6	12.6	< 0.1	Negligible	25.2
13	12.7	12.7	<0.1	Negligible	25.4
14	12.8	12.8	<0.1	Negligible	25.5
15	13.2	13.2	<0.1	Negligible	26.2
16	13.3	13.3	<0.1	Negligible	26.8
17	13.3	13.3	< 0.1	Negligible	26.6
F1a	n/a	12.6	n/a	n/a	25.3
F1b	n/a	12.5	n/a	n/a	25.0
F2a	n/a	12.8	n/a	n/a	25.7
F2b	n/a	12.6	n/a	n/a	25.2
F3a	n/a	13.1	n/a	n/a	25.9
F3b	n/a	12.6	n/a	n/a	25.2

6.3.4 **Predicted PM_{2.5} Concentrations**

Annual mean $PM_{2.5}$ concentrations were predicted at the receptor locations for each scenario and the magnitude of change of annual mean $PM_{2.5}$ concentrations from the DM to DS scenario and impact descriptor at each of the receptor locations were determined. The results are presented in Table 17.

Table 17 shows that $PM_{2.5}$ concentrations were predicted to achieve the annual mean $PM_{2.5}$ objective ($25\mu g/m^3$) at all receptors in all scenarios. The impact descriptor for annual mean $PM_{2.5}$ concentrations is predicted to be negligible at all modelled locations.

Receptor	DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m ³)	Impact
1a	8.7	8.7	n/a	n/a
1b	8.5	8.5	<0.1	Negligible
2a	7.9	7.9	n/a	n/a
2b	7.8	7.8	<0.1	Negligible
3a	8.1	8.1	n/a	n/a
3b	7.9	7.9	<0.1	Negligible
4a	8.2	8.2	n/a	n/a
4b	7.9	7.9	<0.1	Negligible
5	7.9	7.9	<0.1	Negligible
6a	7.7	7.7	n/a	n/a
6b	7.7	7.7	<0.1	Negligible

Table 17: Predicted annual mean PM_{2.5} concentrations

Receptor	DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m ³)	Impact
7	7.9	7.9	<0.1	Negligible
8	7.8	7.8	<0.1	Negligible
9	7.8	7.8	<0.1	Negligible
10	7.9	7.9	<0.1	Negligible
11	7.8	7.8	<0.1	Negligible
12	7.8	7.8	<0.1	Negligible
13	7.8	7.8	<0.1	Negligible
14	7.9	7.9	<0.1	Negligible
15	8.1	8.1	<0.1	Negligible
16	8.2	8.2	<0.1	Negligible
17	8.1	8.1	<0.1	Negligible
F1a	n/a	7.8	n/a	n/a
F1b	n/a	7.7	n/a	n/a
F2a	n/a	7.9	n/a	n/a
F2b	n/a	7.8	n/a	n/a
F3a	n/a	8.0	n/a	n/a
F3b	n/a	7.8	n/a	n/a

6.3.5 Sensitivity Test

The results of the sensitivity test are presented in Appendix D. The sensitivity test used 2017 EFTs in the future DM and DS scenarios for the road traffic emissions and 2017 background concentrations from Defra were used in the processing of results. This represents a pessimistic scenario because vehicle emissions and background concentrations are expected to improve in the future.

For PM₁₀ and PM_{2.5} the concentrations are below the relevant objectives and all of the impacts are described as negligible.

The verification factor has been applied to the NO₂ results in the sensitivity test. The results in Appendix D show that all the predicted results are below $60\mu g/m^3$ and therefore are unlikely to exceed the 1-hour NO₂ mean objective.

The NO₂ annual mean concentrations exceed that objective at nine receptors. However, the proposed development is not predicted to create a new exceedance. All of the exceedances are in both the DM and DS scenarios.

The NO₂ results also predict three moderate adverse impacts (receptors 15, 16 and 17) at receptors sensitive to the annual mean objective. However, the maximum annual mean is 53.6 μ g/m³ and therefore is unlikely to exceed the NO₂ short-term objective at any receptor.

6.3.6 Assessment of Significance

The predicted concentrations at existing receptors have been used to assess the significance of the impact of emissions from the road vehicle emissions, following the guidance outlined in the EPUK/IAQM land-use planning guidance. The impact descriptor for each existing receptor for annual mean concentrations is predicted to be negligible.

In the NO₂ sensitivity test, moderate adverse impacts were predicted. However, the true future scenario NO₂ concentrations are likely to lie somewhere between the assessed scenario (optimistic) and the sensitivity test scenario (pessimistic case). The use of the verification factor (4.26) also provides a pessimistic case to both scenarios as explained in section 6.3.1.

Following the guidance outlined in the EPUK/IAQM land-use planning guidance, and considering the mentioned factors, the impact of the proposed development is considered to be not significant on local air quality.

7 Mitigation Measures

7.1 Construction

The dust emitting activities assessed above can be greatly reduced or eliminated by applying the site-specific mitigation measures for medium risk sites according to IAQM guidance¹². The following measures from the guidance are relevant and should be included in the Construction Environmental Management Plan for the site.

General

- Develop and implement a stakeholder communications plan that includes community engagement before work commences on site.
- Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager.
- Display the Head or Regional office contact information.
- Develop and implement a Dust Management Plan, which will include measures to control other emissions, approved by the Local Authority.

Site management

- Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner and record the measures taken.
- Make the complaints log available to the local authority when asked.
- Record any exceptional incidents that cause dust and/or air emissions, either on- or off-site or the action taken to resolve the situation in the log book.
- Hold regular liaison meetings with other high-risk construction sites within 500m of the site boundary, to ensure plans are co-ordinated and dust and particulate matter emissions are minimised. It is important to understand the interactions of the off-site transport/deliveries which might be using the same strategic road network routes.

Monitoring

- Undertake daily on-site and off-site inspection, where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log available to the local authority when asked.
- Carry out regular site inspections to monitor compliance with the Dust Management Plan, record inspection results and make an inspection log available to the local authority, when asked.
- Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions.
- Agree dust deposition, dust flux, or real-time PM_{10} continuous monitoring locations with the Local Authority. Where possible commence baseline monitoring at least three months before work commences on site or, if it is a

large site, before work on a phase commences. Further guidance is provided by IAQM on monitoring during demolition, earthworks and construction.

Site maintenance

- Plan site layout so that machinery and dust causing activities are located away from receptors, as far as possible.
- Erect solid screens or barriers around dusty activities or the site boundary that are at least as high as any stockpiles on site.
- Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extensive period.
- Avoid site runoff of water or mud.
- Keep site fencing, barriers and scaffolding clean using wet methods.
- Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site.
- Cover, seed or fence stockpiles to prevent wind whipping.

Operating vehicle/machinery and sustainable travel

- Ensure all vehicles switch off engines when stationary no idling vehicles.
- Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.
- Impose and signpost a maximum speed limit of 15mph on surfaced and 10mph on un-surfaced haul roads and work areas.
- Implement a Travel Plan than supports and encourages sustainable travel (public transport, cycling, walking and car-sharing).
- Ensure vehicles entering and leaving the site are covered to prevent escape of materials during transport.
- Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.

Operations

- Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques, such as water sprays or local extraction.
- Ensure an adequate water supply on the site for effective dust/particulate matter suppression/mitigation, using non-potable water where possible and appropriate.
- Use enclosed chutes and conveyors and covered skips.
- Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use the fine water sprays on such equipment wherever appropriate.
- Ensure equipment is readily available on site to clean any dry spillages, and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.

Waste management

• Avoid bonfires and burning of waste materials.

Measures Specific to Demolition

- Soft strip inside buildings before demolition (retaining walls and windows in the rest of the building where possible, to provide a screen against dust).
- Ensure effective water suppression is used during demolition operations. Hand held sprays are more effective than hoses attached to equipment as the water can be directed to where it is needed. In addition high volume water suppression systems, manually controlled, can produce fine water droplets that effectively bring the dust particles to the ground.
- Avoid explosive blasting, using appropriate manual or mechanical alternatives.
- Bag and remove any biological debris or damp down such material before demolition.

Measures Specific to Earthworks

- Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable.
- Use Hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil as soon as practicable.
- Only remove the cover in small areas during work and not all at once.

Measures Specific to Construction

- Avoid scabbling (roughening of concrete surfaces) if possible.
- Ensure sand and other aggregates are stored in bundled areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place.
- Ensure bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.
- For smaller supplies of fine powder materials ensure bags are sealed after use and stored appropriately to prevent dust.

Measures Specific to Trackout

- Use water-assisted dust sweepers on the access and local roads to remove as necessary any material tracked out of the site. This may require the sweeper being continuously in use.
- Avoid dry sweeping of large areas.
- Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.
- Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable. Records inspections of haul routes.
- Install hard surfaced haul routes, which are regularly damped down with fixed or mobile sprinkler systems, or mobile water bowsers and regularly cleaned.
- Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).
- Ensure there is an adequate area of hard surfaced road between the wheel wash facility and the site exit, wherever site size and layout permits.

• Access gates to be located at least 10m from receptors where possible.

7.2 **Operation**

The assessment has predicted the impact from the proposed development will not be significant. Therefore, no additional mitigation is required.

However, the proposed development has included embedded mitigation within the design. The design does not locate residential units at ground level facing the road network. This locates sensitive receptors away from the road traffic emissions.

There is expected to be mechanical ventilation serving the basement car park. However, the ventilation has not yet been designed. The design should consider locating the ventilation extract for the car park more than 20m from sensitive receptors. This is following EPUK/IAQM guidance¹³ that indicates if the extract is located at this distance, a detailed assessment is not required, indicating that impacts would be negligible at this distance.

8 Conclusion

An air quality assessment has been prepared to accompany a planning application for the proposed development of a mix of residential, commercial and retail use on Great George Street in Liverpool. The proposed development has the potential to cause air quality impacts during the construction and operational phases, particularly from proposed traffic generated by the development.

The site of the proposed development is located within the city-side AQMA declared for exceedances of the annual mean NO_2 objective. The proposed development lies adjacent to Great George Street, a trafficked road and main A road in Liverpool. Roadside air quality monitoring undertaken by the local authority north of the proposed development shows that there have been exceedances of the annual mean NO_2 objective.

Construction effects have been assessed using the qualitative approach described in the latest IAQM guidance and it was concluded that with the appropriate best practice mitigation measures in place, there is likely to be a negligible effect from the dust-generating activities on site.

The assessment used an optimistic scenario, using the predicted 2023 vehicle emissions and background concentrations from Defra. A pessimistic case (sensitivity test) was also carried out with 2017 emissions and background concentrations used in the future scenarios.

The assessment of the optimistic scenario predicted that the impacts on the annual mean and NO₂, PM_{10} and $PM_{2.5}$ concentrations would be negligible at all receptors, and pollutant concentrations at existing receptors and at the façade of the proposed development are predicted to be below the respective air quality objectives.

The assessment of the pessimistic case scenario predicted negligible impacts at all receptors for PM_{10} and $PM_{2.5}$. With regards to NO_2 , moderate adverse impacts and one substantial adverse impact was predicted at a receptor. However, the annual mean objective is not considered to be relevant to the ground floor receptor (4a) receiving the substantial impact.

The verification factor of 4.26 was used in both the optimistic and pessimistic cases and therefore the modelling is likely to over-predict the NO_2 contributions from the road vehicle emissions. This is due to the modelled road network excluding Leece Street (traffic data were unavailable) which has resulted in a factor which is conservative to compensate for the exclusion of the NO_2 contribution from Leece Street.

The most likely future scenario for NO₂ concentrations is likely to lie somewhere between the optimistic and pessimistic cases. Considering this and the use of the conservative verification factor, the impact of the proposed development is considered to be not significant on local air quality.

Appendix A

Consultation with Liverpool City Council

From:	
Sent:	17 August 2018 12:06
To:	
Cc:	
Subject:	[External] RE: AQ enquiry
Attachments:	ASR Liverpool 2017v1.pdf; PDT Annual mean results 2017.xls
Follow Up Flag:	Follow up
Flag Status:	Flagged
Your proposed methodo	ogy looks fine. By all means come back to me re: modelling of moist sensitive receptors.
Attached are the 2017 A	SR containing the 2016 ratified data and I also attach the 2017 ratified data.
Many Thanks	
From	
Sent: 15 August 2018 17:	

Thank you for your email.

Subject: RE: AQ enquiry

To: Cc:

Our air quality assessment is to inform proposals for Stage 2 and 3 of redevelopment of a site on Great George Street. Approximate grid reference is 335160, 389315. I have attached a location plan.

Please can we make a request to receive the Defra Annual Status Report (ASR) for 2017 and the 2017 ratified data, as you mentioned. The P.O number is 260088

The scope of works for our air quality assessment will comprise:

- A review of legislation and planning policy relating to air quality would be undertaken, on a national and local level;
- A baseline assessment to determine existing air quality in the area using the latest report/monitoring data from Liverpool City Council (LCC) and data available from the Defra Local Air Quality Management Website;
- An assessment of dust and emissions during the construction phase of the development will be undertaken. The
 Institute of Air Quality Management (IAQM) guidance for the assessment of dust from demolition and construction
 will be followed;
- An assessment of operational traffic impacts resulting from the proposed development would be carried out via dispersion modelling. Pollutant concentrations at sensitive receptors will be calculated for a baseline scenario, to enable the model to be verified against monitored data. Existing and future sensitive receptors will be considered.

1

\GLOBAL/EUROPE\LIVERPOOL\UOBS\280000/280088-00 - GREAT GEORGE STREET\4 INTERNAL PROJECT DATA\4-05 REPORT S\4-05-10 ENVIRONMENTAL\AIR QUALITY\ISSUEDIGT_GEORGEST_AQ_DRAFT_201801003_ISSUE2.DOCX Pollutant concentrations will also be predicted for the first fully operational year, with and without the development, at sensitive receptors on and off-site, to enable the significance of the changes in local air quality to be determined;

- The quantitative assessment would be undertaken using dispersion modelling (ADMS-Roads). Meteorological data
 will be obtained for input to the ADMS-Roads model;
- An assessment of significance of the operational impacts of the proposed development will be undertaken following
 guidance set out by Environmental Protection UK (EPUK)/ IAQM in the Land-Use Planning and Development
 Control: Planning for Air Quality document; and
- Mitigation measures will be recommended for both the construction and operational phase should this be required, the residual effect of the proposed development with appropriate mitigation in place will also be assessed.

We have not yet determined which sensitive receptors we will be modelling. We can consult with you on this to confirm locations.

Please let us know if you have any comments regarding the methodology.

We look forward to hearing from you again.

Kind regards

Arup

The Arup Campus Blythe Valley Business Park Solihull West Midlands B90 8AE

www.arup.com

From:
Sent: 15 August 2018 16:34
To:
Subject: [External] AQ enquiry

In relation to your enquiry, please submit your proposed methodology by email in brief and I will review.

In addition we can provide you with the latest approved Defra Annual Status Report (ASR) for 2017 which includes 2016 AQ data. In addition I can provide you with 2017 ratified data, the ASR is still to be approved by Defra so that cannot be shared.

This information would be provided under 2015 ROPSI regulations and there is a fee to be paid of £160. If you decide to proceed then please provide a P.O. to invoice against and I will provide the information electronically.

You will ned to provide me with the site details as the data is to be sued only for the site in question.

Kind Regards

2

\\GLOBAL\EUROPE\LIVERPOOL\UOBS\260000/260088-00 - GREAT GEORGE STREET4 INTERNAL PROJECT DATA\4-05 REPORTS\4-05-10 ENVIRONMENTAL\AIR QUALITY\ISSUEDIGT_GEORGEST_AQ_DRAFT_201801003_ISSUE2.DOCX Environmental Protection & Public Protection Enforcement

Correspondence Address

Liverpool City Council Cunard Building Water Street Liverpool L3 1AH

DISCLAIMER:

The information in this email is confidential and may be read, copied or used only by the intended recipient(s). If you have received it in error please contact the sender immediately by replying to the email or by telephoning a number contained in the body of the email and please then delete the email without disclosing its contents elsewhere. No responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent. The views contained in this email are those of the author and not necessarily those of the author's employer.

This email has been automatically scanned for viruses and malicious content by Symantec Cloud Security for your protection, but this is no guarantee of safety.

Liverpool City Council's privacy notice can be found here: https://liverpool.gov.uk/privacy-notice/

Take care when opening email from unknown senders. This email has been automatically scanned for viruses and malicious content by Symantec Cloud Security. No email filtering system is 100% effective however and this is no guarantee of safety or validity. Always exercise caution when opening email, clicking on links, and opening attachments.

Liverpool City Council's privacy notice can be found here: https://liverpool.gov.uk/privacy-notice/

DISCLAIMER:

The information in this email is confidential and may be read, copied or used only by the intended recipient(s). If you have received it in error please contact the sender immediately by replying to the email or by telephoning a number contained in the body of the email and please then delete the email without disclosing its contents elsewhere. No responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent. The views contained in this email are those of the author and not necessarily those of the author's employer.

This email has been automatically scanned for viruses and malicious content by Symantec Cloud Security for your protection, but this is no guarantee of safety.

Liverpool City Council's privacy notice can be found here: https://liverpool.gov.uk/privacy-notice/

3

\\GLOBAL\EUROPE\LIVERPOOL\UOBS\260000/260088-00 - GREAT GEORGE STREET\4 INTERNAL PROJECT DATA\4-05 REPORTS\4-05-10 ENVIRONMENTAL\AIR QUALITY\ISSUEDIGT_GEORGEST_AQ_DRAFT_201801003_ISSUE2.DOCX

Appendix B

Construction Dust Methodology

Table B.1: Dust emission magnitud	le
-----------------------------------	----

Dust Emission Magnitude							
Small	Medium	Large					
Demolition							
 total building volume <20,000m³ construction material with low potential for dust release (e.g. metal cladding or timber) demolition activities <10m above ground demolition during wetter months 	 total building volume 20,000 - 50,000m³ potentially dusty construction material demolition activities 10 - 20m above ground level 	 total building volume >50,000m³ potentially dusty construction material (e.g. concrete) on-site crushing and screening demolition activities >20m above ground level 					
	Earthworks						
 total site area <2,500m² soil type with large grain size (e.g. sand) <5 heavy earth moving vehicles active at any one time formation of bunds <4m in height total material moved <10,000 tonnes earthworks during wetter months 	 total site area 2,500m² - 10,000m² moderately dusty soil type (e.g. silt) 5 - 10 heavy earth moving vehicles active at any one time formation of bunds 4 - 8m in height total material moved 20,000 - 100,000 tonnes 	 total site area >10,000m² potentially dusty soil type (e.g. clay, which will be prone to suspension when dry due to small particle size) >10 heavy earth moving vehicles active at any one time formation of bunds >8m in height total material moved >100,000 tonnes 					
	Construction						
 total building volume <25,000 m³ construction material with low potential for dust release (e.g. metal cladding or timber) 	 total building volume 25,000 - 100,000m³ potentially dusty construction material (e.g. concrete) on-site concrete batching 	 total building volume >100,000m³ on-site concrete batching sandblasting 					
	Trackout						
 <10 HDV (>3.5t) outward movements in any one day surface material with low potential for dust release unpaved road length <50m 	 10 - 50 HDV (>3.5t) outward movements in any one day moderately dusty surface material (e.g. high clay content) unpaved road length 50 - 100m; 	 >50 HDV (>3.5t) outward movements in any one day potentially dusty surface material (e.g. high clay content) unpaved road length >100m 					

Tab	le B.2: Sen	sitivity of the a	rea to dust soiling effects

Receptor	Number of	Distance from the source (m)					
sensitivity	receptors	< 20	< 50	< 100	< 350		
	> 100	High	High	Medium	Low		
High	10 - 100	High	Medium	Low	Low		
	< 10	Medium	Low	Low	Low		
Medium	> 1	Medium	Low	Low	Low		
Low	> 1	Low	Low	Low	Low		

Background PM ₁₀	Number of	f Distance from the source (m)					
concentrations (annual mean)	receptors	< 20	< 50	< 100	< 200	< 350	
High receptor sensit	ivity						
	> 100		High	High	Medium		
$> 32 \mu g/m^3$	10 - 100	High		Medium	Low	Low	
	< 10		Medium	Low	Low		
	> 100		High	Medium			
$28-32\mu g/m^3$	10 - 100	High	Medium	Low	Low	Low	
	< 10		Medium	LOW			
	> 100	High	Madium				
$24-28\mu g/m^3$	10 - 100	High Medium		Low	Low	Low	
	< 10	Medium	Low				
	> 100	Medium	Low	Low	Low	Low	
$< 24 \mu g/m^3$	10 - 100	Low					
	< 10	Low					
Medium receptor set	nsitivity						
$> 32 \mu g/m^3$	> 10	High	Medium	Low	Low	Low	
> 52µg/m	< 10	Medium	Low	LOW	LOW		
$28 - 32 \mu g/m^3$	> 10	Medium	Low	Low	Low	Low	
$26 - 32 \mu g/m^2$	< 10	Low	Low	Low	Low	Low	
$24-28\mu g/m^3$	> 10	Low	Low	Low	Low	Low	
$24 - 26\mu g/m^2$	< 10	Low	Low	Low	Low	Low	
$< 24 \mu g/m^3$	> 10	Low	Low	Low	Low	Low	
< 24µg/III ⁻	< 10	Low	Low	Low	Low	Low	
Low receptor sensiti	vity						
	>1	Low	Low	Low	Low	Low	

Table B.3: Sensitivity of the area to human health impacts

Table B.4: Sensitivity of the area for ecological impacts

Descritor consistinity	Distance from the source (m)			
Receptor sensitivity	< 20	< 50		
High	High	Medium		
Medium	Medium	Low		
Low	Low	Low		

Constitution of our of	Dust emission magnitude					
Sensitivity of area	Large	Medium	Small			
Demolition		·				
High	High risk site	Medium risk site	Medium risk site			
Medium	High risk site	Medium risk site	Low risk site			
Low	Medium risk site	Low risk site	Negligible			
Earthworks		·				
High	High risk site	Medium risk site	Low risk site			
Medium	Medium risk site	Medium risk site	Low risk site			
Low	Low risk site	Low risk site	Negligible			
Construction	·	·				
High	High risk site	Medium risk site	Low risk site			
Medium	Medium risk site	Medium risk site	Low risk site			
Low	Low risk site	Low risk site	Negligible			
Trackout		·				
High	High risk site	Medium risk site	Low risk site			
Medium	Medium risk site	Low risk site	Negligible			
Low	Low risk site	Low risk site	Negligible			

Table B.5: Risk of dust impacts

Appendix C

Traffic Data

Table C1: Traffic data

ID	Road Name	Snood (km/h)	Base		DM 2023		DS 2023	
ID	Road Name	Speed (km/h)	24hr AADT	%HGV	24hr AADT	%HGV	24hr AADT	%HGV
A1	Duke Street	20.0	10,248	2.2	11,274	2.2	11,397	2.2
A2	Duke Street	48.3	10,248	2.2	11,274	2.2	11,397	2.2
B1	Berry Street	20.0	11,015	5.6	12,121	5.6	12,416	5.6
B2	Berry Street	48.3	11,015	5.6	12,121	5.6	12,416	5.6
B3	Berry Street	20.0	11,015	5.6	12,121	5.6	12,416	5.6
C1	Upper Duke Street	20.0	11,030	1.1	12,141	1.1	12,368	1.1
C2	Upper Duke Street	48.3	11,030	1.1	12,141	1.1	12,368	1.1
D1	Nelson Street	20.0	13,119	4.4	14,481	4.4	15,131	4.4
E1	Nelson Street	20.0	1,256	3.2	1,416	3.2	1,485	3.0
E2	Nelson Street	48.3	1,256	3.2	1,416	3.2	1,485	3.0
F1	Great George Street	48.3	12,860	4.5	14,160	4.5	14,742	4.5
G1	Great George Street	48.3	12,860	4.5	14,160	4.5	14,650	4.5
H1	Great George Street	20.0	20,144	5.3	22,237	5.3	23,270	5.1
I1	St James Street	48.3	8,332	6.3	9,184	6.3	9,400	6.1
J1	Duncan Street	20.0	887	0.7	1,161	0.5	2,565	0.2

ID	Road Name	Speed (km/h)	Base		DM 2023		DS 2023	
	Koad Name		24hr AADT	%HGV	24hr AADT	%HGV	24hr AADT	%HGV
J2	Duncan Street	32.2	887	0.7	1,161	0.5	2,565	0.2
K1	St James Street	20.0	9,309	5.7	10,376	5.6	11,606	5.0
K2	St James Street	48.3	9,309	5.7	10,376	5.6	11,606	5.0
L1	Parliament Street	20.0	38,494	2.5	42,304	2.5	42,543	2.4
L2	Parliament Street	48.3	38,494	2.5	42,304	2.5	42,543	2.4
M1	Upper Parliament Street	20.0	30,749	1.7	33,834	1.7	34,333	1.7
M2	Upper Parliament Street	48.3	30,749	1.7	33,834	1.7	34,333	1.7
N1	St James Place	20.0	26,540	5.1	29,165	5.1	29,469	5.1
N2	St James Place	48.3	26,540	5.1	29,165	5.1	29,469	5.1
N3	St James Place	48.3	26,540	5.1	29,165	5.1	29,469	5.1
01	Renshaw St	20.0	10,798	17.0	11,883	17.0	12,178	16.7
02	Renshaw St	48.3	10,798	17.0	11,883	17.0	12,178	16.7

Appendix D

Sensitivity Test

Г

Receptor		DM 2023 (µg/m ³)	DM 2023 (µg/m ³)	Change (µg/m³)	Impact	
1a	Renshaw Street (retail)	49.4	49.8	n/a	n/a	
1b	Renshaw Street (residential)	40.8	41.0	0.2	Slight adverse	
2a	Berry Street (retail)	35.0	35.3	n/a	n/a	
2b	Berry Street (residential)	29.8	30.0	0.2	Negligible	
3a	Duke Street (restaurant)	50.8	51.4	n/a	n/a	
3b	Duke Street (residential)	39.1	39.5	0.4	Slight adverse	
4a	Upper Duke Street (restaurant)	52.9	53.6	n/a	n/a	
4b	Upper Duke Street (residential)	40.3	40.8	0.5	Slight adverse	
5	Upper Duke Street (residential)	34.8	35.1	0.4	Negligible	
6a	Nelson Street (retail)	28.1	28.4	n/a	n/a	
6b	Nelson Street (residential)	27.7	28.0	0.3	Negligible	
7	Great George Street (residential)	35.8	36.3	0.5	Negligible	
8	Great George Street (residential)	32.8	33.2	0.5	Negligible	
9	Great George Street (residential)	32.8	33.3	0.4	Negligible	
10	Great George Street (residential)	33.7	34.1	0.4	Negligible	
11	St James Street (residential)	33.3	33.6	0.3	Negligible	
12	Duncan Street (residential)	29.8	31.1	1.4	Slight adverse	
13	Great George Street (residential)	32.5	32.9	0.4	Negligible	
14	Great George Street (residential)	35.4	35.8	0.4	Negligible	
15	Upper Parliament Street (residential)	48.9	49.3	0.5	Moderate adverse	
16	Parliament Street (residential)	52.0	52.2	0.2	Moderate adverse	
17	Upper Parliament Street (residential)	44.7	45.0	0.3	Moderate adverse	
F1a	Great George Street (commercial)	n/a	29.9	n/a	n/a	
F1b	Great George Street (residential)	n/a	26.5	n/a	n/a	
F2a	Great George Street (commercial)	n/a	36.2	n/a	n/a	
F2b	Great George Street (residential)	n/a	30.6	n/a	n/a	
F3a	St James Street (commercial)	n/a	42.3	n/a	n/a	
F3b	St James Street (residential)	n/a	31.7	n/a	n/a	

Table 18: Sensitivity test – predicted annual mean NO₂ concentrations ($\mu g/m^3$)

Т

Receptor	DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m³)	Impact	DS 2023 24hr 90.41 st percentile
1a	14.9	15.0	n/a	n/a	29.7
1b	14.6	14.6	<0.1	Negligible	29.1
2a	13.3	13.3	n/a	n/a	26.6
2b	13.1	13.1	<0.1	Negligible	26.1
3a	13.8	13.8	n/a	n/a	27.4
3b	13.3	13.4	<0.1	Negligible	26.6
4a	13.9	13.9	n/a	n/a	27.5
4b	13.4	13.4	<0.1	Negligible	26.6
5	13.3	13.3	<0.1	Negligible	26.4
6a	13.0	13.0	n/a	n/a	26.0
6b	13.0	13.0	<0.1	Negligible	25.9
7	13.3	13.3	<0.1	Negligible	26.6
8	13.2	13.2	<0.1	Negligible	26.3
9	13.2	13.2	<0.1	Negligible	26.3
10	13.2	13.2	<0.1	Negligible	26.4
11	13.2	13.2	<0.1	Negligible	26.2
12	13.0	13.1	<0.1	Negligible	26.0
13	13.2	13.2	<0.1	Negligible	26.3
14	13.2	13.3	< 0.1	Negligible	26.4
15	13.7	13.7	<0.1	Negligible	27.2
16	13.8	13.9	<0.1	Negligible	27.8
17	13.8	13.8	<0.1	Negligible	27.6
F1a	n/a	13.1	n/a	n/a	26.2
F1b	n/a	12.9	n/a	n/a	25.8
F2a	n/a	13.3	n/a	n/a	26.6
F2b	n/a	13.1	n/a	n/a	26.1
F3a	n/a	13.6	n/a	n/a	26.8
F3b	n/a	13.1	n/a	n/a	26.1

Table 19: Sensitivity test – predicted annual mean PM_{10} concentrations

Receptor	DM 2023 (µg/m ³)	DS 2023 (µg/m ³)	Change (µg/m ³)	Impact
1a	9.3	9.3	n/a	n/a
1b	9.1	9.1	<0.1	Negligible
2a	8.4	8.4	n/a	n/a
2b	8.2	8.3	<0.1	Negligible
3a	8.7	8.7	n/a	n/a
3b	8.4	8.4	<0.1	Negligible
4a	8.7	8.8	n/a	n/a
4b	8.4	8.5	<0.1	Negligible
5	8.4	8.4	<0.1	Negligible
ба	8.2	8.2	n/a	n/a
6b	8.2	8.2	<0.1	Negligible
7	8.4	8.4	<0.1	Negligible
8	8.3	8.3	<0.1	Negligible
9	8.3	8.3	<0.1	Negligible
10	8.3	8.4	<0.1	Negligible
11	8.3	8.3	<0.1	Negligible
12	8.2	8.3	<0.1	Negligible
13	8.3	8.3	<0.1	Negligible
14	8.4	8.4	<0.1	Negligible
15	8.6	8.7	<0.1	Negligible
16	8.7	8.7	<0.1	Negligible
17	8.7	8.7	<0.1	Negligible
F1a	n/a	8.3	n/a	n/a
F1b	n/a	8.2	n/a	n/a
F2a	n/a	8.4	n/a	n/a
F2b	n/a	8.3	n/a	n/a
F3a	n/a	8.5	n/a	n/a
F3b	n/a	8.3	n/a	n/a

Table 20: Sensitivity test - predicted annual mean PM_{2.5} concentrations