

PROPOSED SPECIALIST CARE UNIT, BROAD GREEN ROAD, LIVERPOOL SEDDON CONSTRUCTION LTD GRS0112-1458 11/05/12

GROUND ENGINEERING INTERPRETATIVE REPORT

This report has been prepared for the sole benefit, use and information of Seddon Construction Ltd represented by Booth King Partnership Ltd and the liability of Geoenvironmental Risk Solutions Ltd, its Directors and Employees in respect of the information contained in the report will not extend to any third party unless prior written permission is granted.

Author:	Dominic David
Signed:	
Date:	
Authorised:	Dr Hamid Rowshanaei

Signed:

Date:

Managing Director – Hamid Rowshanaei BSc MSc PhD CGeol CEng FICE Geoenvironmental Risk Solutions Ltd Evans Business Centre Durham Way South Newton Aycliffe DL5 6XP Tel: 0870 224 0643 Fax: 0870 224 0644 Email: <u>enquiries@grsconsulting.co.uk</u>

CONTENTS

EXECU	UTIVE SUMMARY	1
1		2
2	THE SITE	3
2.1	SITE LOCATION AND DESCRIPTION	3
2.2	SITE HISTORY	3
2.3	Published Site Geology	3
3	GROUND INVESTIGATION	4
3.1	GENERAL	4
3.2	PREVIOUS INVESTIGATION	4
3.3	CURRENT INVESTIGATION	4
	3.3.1 HAND EXCAVATED TRIAL PITS	4
	3.3.2 MINI-PERCUSSIVE BOREHOLES	4
	3.3.3 GROUNDWATER/GROUND GAS MONITORING INSTALLATIONS	4
4	GROUND CONDITIONS	5
4.1	GENERAL	5
4.2	STRATIGRAPHY	5
4.3	MADE GROUND	6
4.4	NATURAL GRANULAR DEPOSITS (LOWER PLATEAU ONLY)	6
4.5	NATURAL COHESIVE DEPOSITS	6
4.6	WEATHERED BEDROCK	6
4.7	GROUNDWATER	6
5	TESTING	7
5.1	INSITU TESTING	7
5.2	LABORATORY TESTING	7
	5.2.1 GENERAL	7
	5.2.2 GEOENVIRONMENTAL TESTING	7
	5.2.3 GEOTECHNICAL TESTING	7
6	CONTAMINATION	9
6.1	GENERAL	9
	6.1.1 BACKGROUND ON GUIDANCE	9
	6.1.2 ASSESSMENT CRITERIA AND SOIL GUIDANCE VALUES	9
	6.1.3 ANALYSIS OF CONTAMINATION DATA	10
6.2	COMPARISON WITH GUIDANCE LEVELS	10
	6.2.1 SOILS	10
	6.2.2 GROUNDWATER	11
6.3	GROUND GAS	

	6.3.1	GENERAL	11
	6.3.2	GROUND GAS MONITORING RESULTS	11
7	RISK A	SSESSMENT	12
7.1	GENERA	۱۲	12
7.2	SOILS		12
	7.2.1	END USERS AS A TARGET	12
	7.2.2	GROUNDWATER AS A TARGET	12
	7.2.3	CONSTRUCTION AND WORKERS AS A TARGET	12
	7.2.4	FUTURE MAINTENANCE WORKERS AS A TARGET	13
7.3	GROUN	D GAS	13
8	PROPC	SED DEVELOPMENT	14
8.1	INTROD	UCTION	14
8.2	CONSTR	AINTS	14
	8.2.1	BURIED OBSTRUCTIONS	14
	8.2.2	CONTAMINATION	14
	8.2.3	GROUND GAS	14
	8.2.4	EXISTING SERVICES	14
•	DISCUS		15
9	DISCUS	SSION AND RECOMMENDATIONS	
9.1	GENERA	AI	
9.2	FOUNDA	ATIONS	
9.3	FLOOR	SI ABS	
9.4	BURIED	CONCRETE	
9.5	PAVEMI		
9.6	FXCAVA	TION AND FARTHWORKS	
9.7	Сонтан	MINATION	
9.8	GROUN	D GAS PROTECTION	
5.0	Choon		
10	DESIG	N ASSUMPTIONS - RISK MATRIX	19
REFEF	RENCES		20
APPE	NDIX A - I	FIGURES	21
APPEI	NDIX B - E	EXPLORATORY HOLE LOG SHEETS	22
	י אוחוע		22
APPE	NDIA C - L		23
APPEI	NDIX D - (GROUNDWATER AND GROUND GAS MONITORING	24
			· = •

EXECUTIVE SUMMARY

Seddon Construction Ltd (Seddon) proposes to develop a site at the former Gardeners Arms Pub, Broad Green Road, Liverpool, L13 5SF.

The development involves the construction of a specialist care unit with associated access roads, car parking and landscaped areas.

The ground investigation was designed based on information and recommendations of the Phase I Desk Study report and in liaison with BKP. All ground investigations were carried out with reference to and in line with current British Standards. The main ground investigation comprised the formation of nine mini-percussive boreholes and four hand excavated trial pits.

The general geology underlying the site is best described by discussing the upper and lower plateaus of the site independently.

The geology of the upper plateau is characterised by the presence of tarmac over subgrade at the surface which is in turn underlain by granular made ground. The made ground extends the deepest in WS5 (2.1m) where cohesive made ground was encountered. Directly underlying the made ground are natural cohesive deposits interspersed with small bands of granular material and pockets of sand. Weathered bedrock is inferred to underlie the natural cohesive deposits.

The geology of the lower plateau (approximately 2.5m below upper plateau) is similar to that of the upper plateau with the exception of natural granular deposits directly underlying the made ground which are in turn underlain by natural cohesive deposits followed by bedrock.

In terms of contamination the risk is considered to be low and does not pose a constraint to the proposed development. Ground gas is considered to be a low risk to the end users of the site and has been preliminarily classified as 'Characteristic Situation 2' for which special ground gas protection measures are required. Once the ground gas monitoring period has been fully completed, an addendum report will be issued with the final ground gas assessment and recommendations.

The proposed new building will be constructed mainly over the upper plateau. This area is covered by around 1.0m thickness of made ground which is underlain by firm natural cohesive deposits. These firm natural clays can offer a safe bearing capacity of around 90KPa which is adequate for supporting the proposed one storey buildings over traditional spread footings.

However, nearer to the lower plateau (as seen in WS5) the made ground attains a thickness of around 2.1m with the top of more competent firm natural clays laying at depth of around 2.4m below existing ground level. It is understood that the building spans into the lower plateau where it is proposed to comprise two storey building. At this stage it appears that the southern section of the proposed building may require deep trench filling or the use of stone columns to support the two storey building. Also, due to lack of access the present investigation could not provide any information on the soil quality at the northern part of the lower plateau.

A supplementary investigation has been recommended once the pub is demolished, to further investigate the quality of near surface soils and depth to the firm natural clays within the northern part of the lower plateau.

1 INTRODUCTION

Seddon Construction Ltd (Seddon) proposes to develop a site at the former Gardeners Arms Pub, Broad Green Road, Liverpool, L13 5SF.

The development involves the construction of a specialist care unit with associated access roads, car parking and landscaped areas.

Geoenvironmental Risk Solutions Ltd (GRS) has been appointed as geotechnical and geoenvironmental consultants for the project by Booth King Partnership (BKP) on behalf of the client.

This report forms the Phase II Ground Engineering Interpretative Report and has been carried out with reference to and in line with current relevant British and European Standards (see list of references in this report).

Although every effort has been made to provide a comprehensive review of the site, GRS cannot accept any liability for any difference in ground conditions beneath the site between exploratory holes, or the accuracy and reliability of any third party information.

2.1 SITE LOCATION AND DESCRIPTION

The site is located at the former Gardeners Arms Pub, Broad Green Road, Liverpool, L13 5SF at approximate national grid reference NGR: 340010, 390590. A site location plan is presented as Figure 1 in Appendix A.

The site is an irregularly shaped parcel of land measuring approximately 0.4 Hectares in area. It is split topographically with the now disused pub located on the lower plateau to the south and west of the site and a car park servicing both the pub and a bowling club on the upper plateau to the north and east of the site. The difference in height between the two plateaus is approximately 2.5m. The lower plateau currently contains the former Gardeners Arms pub which at the time of writing of this report was disused and boarded up. To the south and east of the pub are areas of hardstanding including a ramped access road to the upper plateau. To the immediate rear of the pub are retaining structures between the upper and lower plateaus. The car park on the upper plateau is of tarmac formation surrounded by grass and vegetation including several mature trees. It was noted that some minor fly tipping and rubbish was present in vegetated areas.

Immediately surrounding the site is a bowling green and club to the northwest which is accessed through the site, residential houses to the northeast, a road named The Green followed by residential housing to the southeast, Broad Green Road to the south and to the west are further residential houses. To the east, the site is approximately 2.0m above The Green.

The main access to the site is via Broad Green Road. Access to the upper plateau car park is prevented by a locked bollard. There is also limited access to the areas to the rear of the existing pub.

2.2 SITE HISTORY

A comprehensive review of the history of the site can be found in the Phase I Desk Study Report (GRS, March 2012) and is summarised below:

The site has changed very little since the earliest record in 1851 with Oak Vale Cottage in same place as the present pub. This pub is then marked from 1894 and is likely to have undergone modernisation over time. It is not known when the current car park was developed. Recent anecdotal evidence suggests that there was a bowling green at the site of the current car park.

2.3 PUBLISHED SITE GEOLOGY

The published geology studied in the Phase I Desk Study Report shows the site to be underlain directly by bedrock comprising the Chester Pebble Beds Formation described as pebbly (gravelly) Sandstone. However the data may not include made ground deposits which are likely to be present directly below the surface as the result of previous site developments. The nearest drift deposits are shown adjacent to the northwestern boundary of the site and are described as Devensian Till which comprises Diamicton and sandy gravelly cobbly clay. Given the scale of mapping of the published data it is possible that thin deposits of this drift material may be present underlying the site.

3 GROUND INVESTIGATION

3.1 GENERAL

The ground investigation was designed based on information and recommendations of the Phase I Desk Study report and in liaison with BKP. All ground investigations were carried out with reference to and in line with current British Standards. The main ground investigation comprised the formation of nine mini-percussive boreholes and four hand excavated trial pits. An approximate exploratory hole location plan is presented as Figure 2 in Appendix A and all exploratory hole log sheets are presented in Appendix B.

3.2 PREVIOUS INVESTIGATION

No details of any previous investigations were available to GRS at the time of writing of this report.

3.3 CURRENT INVESTIGATION

3.3.1 HAND EXCAVATED TRIAL PITS

Four hand excavated trial pits were formed across the proposed paved car parking areas using a hydraulic breaker and traditional hand digging tools to a maximum depth of 1.2mbgl. For each location, the relevant service drawings were checked and the ground CAT scanned prior to excavation. The trial pits were logged by the GRS Engineer on site. Representative samples were taken from each trial pit and scheduled for appropriate laboratory testing. The trial pits were then backfilled and compacted in layers.

3.3.2 MINI-PERCUSSIVE BOREHOLES

A total of nine mini-percussive boreholes were formed across the site to a maximum depth of 4.25m. For each borehole position service drawings were checked and the ground CAT scanned to ensure no underground services were present. As a further precaution a hand dug inspection pit was formed to a depth of 1.2m at each position and the base of the pit scanned and cleared before boring commenced. Standard Penetration Tests were carried out at various depths in each borehole and representative samples were taken and scheduled for appropriate laboratory testing. WS 2, 3, 4 & 5 were continued by Dynamic Probe to a maximum depth of 6.6m. WS 8 was terminated within the inspection pit due to a flat solid obstruction at 0.67m bgl.

3.3.3 GROUNDWATER/GROUND GAS MONITORING INSTALLATIONS

A 50mm diameter standpipe was installed in three of the mini-percussive boreholes to allow the future monitoring of groundwater and ground gas in the subsurface. The installations were formed using arisings from the base of the hole to the required depth. A bentonite seal was then formed above the arisings. The response zone was formed using slotted pipe with a surrounding gravel filter. A further bentonite seal was then formed at the top of the response zone with solid pipe continuing to the surface and sealed with a gas tap bung. Further details of these installations can be found on the relevant borehole log sheets in Appendix B.

4 GROUND CONDITIONS

4.1 GENERAL

The general geology underlying the site is best described by discussing the upper and lower plateaus of the site independently.

The geology of the upper plateau is characterised by the presence of tarmac over subgrade at the surface which is in turn underlain by granular made ground. The made ground extends the deepest in WS5 (2.1m) where cohesive made ground was encountered. Directly underlying the made ground are natural cohesive deposits interspersed with small bands of granular material and pockets of sand. Weathered bedrock is inferred to underlie the natural cohesive deposits.

The geology of the lower plateau (approximately 2.5m below upper plateau) is similar to that of the upper plateau with the exception of natural granular deposits directly underlying the made ground which are in turn underlain by natural cohesive deposits followed by bedrock.

The geology suggests that at some point in the past, the site comprised sloping ground and that a cut and fill exercise has been carried out in order to form the flat upper and lower plateaus. Further evidence for this is the small retaining wall between the upper and lower plateaus and deeper made ground in WS5. This is further evidenced by similar cohesive deposits found on both plateaus and the level of presumed rockhead found at approximately the same level. A generalised schematic cross section is presented as Figure 5 Appendix A further illustrating the geology underlying the site.

4.2 STRATIGRAPHY

Detailed descriptions of the ground conditions encountered can be found on the exploratory hole log sheets in Appendix B. Below is a table summarising the prevailing stratigraphy of the ground below the site and the depths at which differing strata were encountered.

Strata		Depths to start of	Depths to base of	Thickness (m)		
		strata (mbgl)	strata (mbgl)	Maximum	Mean	
Made Ground		0	0.8 – 2.1	2.1	1.16	
Natural Cohesive Deposits [*]		0.8 – 2.1	6 – 6.3	5.4	4.9	
Presumed	Weathered	6 – 6.3	N/E	N/A	N/A	
Bedrock						

Table 4.2a Summary of Stratigraphy of Upper Plateau (WS1 – 5)

^{*}The base of these deposits has been inferred from dynamic probe results. N/E - not encountered N/A- not applicable

Table 4.2b Summary of Stratigraphy of Lower Plateau (WS6 – 9 & HP 1 – 4)

Strata		Depths to start of	Depths to base of	Thickness (m)		
		strata (mbgl)	strata (mbgl)	Maximum	Mean	
Made Ground		0	0.2 – 0.6	0.6	0.38	
Natural Granular Deposits		0.2 – 0.6	0.8 - 1.6	1	0.8	
Natural Cohesive	Deposits	0.8 - 1.6	2.8 – 3.9	2	1.7	
Presumed V	Veathered	2.8 – 3.9	N/E	N/A	N/A	
Bedrock						

N/E – not encountered N/A- not applicable

4.3 MADE GROUND

Underlying the surface material of either tarmac or concrete, made ground is encountered to a relatively shallow depth with the exception of WS 5. The made ground is predominantly granular and can generally be described as slightly clayey sand and gravel with medium to high cobble content. The gravel and cobbles comprise various lithologies, notably brick, hardcore, concrete, tarmac and occasional clinker. Underlying the granular made ground in WS5 the made ground is described firm light brown sandy slightly gravelly clay becoming soft dark brown very sandy slightly gravelly clay with ash and clinker present.

4.4 NATURAL GRANULAR DEPOSITS (LOWER PLATEAU ONLY)

The natural granular deposits were encountered directly underlying the made ground on the lower plateau of the site only. These deposits can be generally described as loose slightly clayey to clayey slightly gravelly SAND.

4.5 NATURAL COHESIVE DEPOSITS

Natural cohesive deposits were encountered in all of the mini-percussive boreholes directly underlying the made ground on the upper plateau and the natural granular deposits on the lower plateau. These deposits are described as Firm sandy slightly gravelly CLAY on the upper plateau and soft to firm on the lower plateau. Gravel comprises subangular sandstone. The reduced strength/cohesion on the lower plateau could be attributable a higher moisture content and/or disturbance from activities such as trenches for utilities to the previous pub as well as the original construction of the pub.

4.6 WEATHERED BEDROCK

Very dense gravelly SAND and sandy GRAVEL were encountered at the base of WS6, 7 & 9 on the lower plateau underlying the natural CLAYs yielding very high 'N' values and refusal. This layer has been inferred to represent the weathered rockhead although no rotary coring has been carried out to positively identify these deposits as the bedrock. Others holes were continued by dynamic probe which indicate refusals (possible rockhead) at around 6mbgl corresponding to the same horizon on the upper plateau.

4.7 GROUNDWATER

All exploratory holes were reported dry to base during the intrusive investigation with the exception of WS1 at 0.5m where perched water trapped within the made ground was noted trickling into the inspection pit. During the post siteworks monitoring visit small quantities of groundwater were recorded. This is considered to be perched water contained within the made ground and pockets of granular material and not in hydraulic connectivity with the deeper bedrock aquifer given the thickness of cohesive deposits underlying the site.

5 TESTING

5.1 INSITU TESTING

Standard Penetration Tests in the mini-percussive boreholes were undertaken to give an approximate indication of the strength/cohesion of the cohesive soil deposits and the relative density of granular deposits. In addition to this, the results from the Dynamic Probes were converted to give equivalent N values. The SPT 'N' values are shown alongside the relevant depth on the borehole log sheets presented in Appendix B. The results have also been plotted on a SPT 'N' value vs Depth (m) graph which is presented as Figure 4 in Appendix A. The graph shows the SPT 'N' values generally increase with depth prior to refusal at c.3.0m on the lower plateau and c.6.0m on the upper plateau which highlights top of the presumed weathered bedrock.

5.2 LABORATORY TESTING

5.2.1 GENERAL

Representative samples were selected and scheduled for laboratory testing based on recommendations of the Phase I Desk Study Report (March, 2012) and field observations. All testing was carried out in accordance with current British Standards at suitably accredited laboratories.

5.2.2 GEOENVIRONMENTAL TESTING

The chemical analysis of the selected samples was carried out by Chemtech Environmental Ltd and comprised of the following suite of analysis on soils:

Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc, water soluble boron, total cyanide, free cyanide, free sulphur, sulphide, sulphate aqueous extract as SO4, pH, phenol (total), Extractable Petrol Hydrocarbons (EPH), Speciated PAH.

Following initial review of the results of the above testing, three samples exhibited raised concentrations of some potential contaminants. Further leachate testing was therefore carried out on these samples comprising the following:

> Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc and Speciated PAH.

5.2.3 GEOTECHNICAL TESTING

Geotechnical testing was carried out by Professional Soils Laboratory and comprised the following:

- Moisture Content (MC).
- > Atterberg Limits (Liquid and Plastic Limits, LL & PL, and Plasticity Index, PI).
- ➢ pH.
- Water Soluble Sulphate.
- California Bearing Ration Test (CBR).

The results of the Geotechnical testing are presented in Appendix C.

A total of six moisture content and Atterberg Limit tests were carried out, five within the natural cohesive soils and one in the cohesive made ground (WS5). With the exception of WS4 at 1.2m which indicates clay of intermediate plasticity, all the samples tested are clay of low plasticity. The moisture contents of these samples are all slightly wet of their respective plastic limit which confirms the visual description of firm. The exception to this is the made ground samples from WS5 at 1.5m which is closer to its liquid limit than plastic limit which confirms the visual description of soft.

CBR tests were carried out on samples from shallow depths in the area of the proposed car park, two from the made ground and one from the natural granular strata. The results are variable ranging from 2.9% in the natural granular deposits to 44.5% in the made ground.

The pH and water soluble sulphate results show the pH to be in the range of 7.4 to 10.1 with a mean of 8.3 and the water soluble sulphate to be in the range of 10 to 184 mg/l with a mean of 46 mg/l.

6.1 GENERAL

6.1.1 BACKGROUND ON GUIDANCE

The current UK framework (Contaminated Land Exposure Assessment (CLEA)) for the assessment of potentially contaminated land as set out by the Department of the Environment, Farming and Rural Affairs (DEFRA) is based on the pollutant linkage or Source-Pathways-Receptor scenario.

In order for land to be legally classified as contaminated under Part IIa of the Environmental Protection Act (EPA) 1990 all three of the elements pollutant linkage must be present.

Generic land uses have been published under the CLEA guidance and are divided into the following categories.

- Residential
- > Allotments
- Commercial / Industrial

Each of these generic land uses has a prescribed set of pathways and assumptions associated with them which effectively characterise the land in terms of the way it is used. Further to this a set of Soil Guideline Values (SGV's) for a limited number of contaminants have been developed and published by DEFRA. It should be noted that CLEA is concerned with *human health only*.

A preliminary qualitative risk assessment including preliminary conceptual ground model in the Desk Study Report (GRS 05/03/12) classed the proposed development to fall under the generic land use of **Residential without Plant Uptake** in the absence of generic land use criteria specific to the proposed development of a specialist care unit.

6.1.2 ASSESSMENT CRITERIA AND SOIL GUIDANCE VALUES

Initial screening of the results was undertaken by comparison with the assessment criteria. For the purpose of this report, the assessment criteria pertaining to the land use of **Residential without Plant Uptake** (Atkins AtRisk derived SSV).

The CLEA model has been used by DEFRA and the Environment Agency (EA) to derive SGV's for the land use varieties detailed in section 6.1.1. The SGV's are indicators to an assessor that soil contamination above this level may represent an unacceptable risk to the health of site users and that further investigation/remediation may be required. To date, SGV's have only been issued for a limited range of contaminants. In the absence of a DEFRA/EA published SGV, the Atkins AtRisk Soil guidance values (SSV) have been used.

6.1.3 ANALYSIS OF CONTAMINATION DATA

A two tier semi-quantitative risk assessment of the contaminants posing a risk to human health is generally carried out. The first tier involves the screening of contaminants that exhibit concentrations above the SGV's. If concentrations exceeding the SGV's are encountered then the second more detailed tier is carried out using the following statistical analyses:

- Mean Value Test: a sample mean for a small number of samples may be significantly less than the true (population) mean. Therefore a no remedial action decision based on a small number of samples may not be sufficiently health protective. The approach used is to identify the 95% confidence limits of the measure mean and to compare the upper 95th percentile with the SGV's. Where non-detects i.e. the laboratory results is less than the detectable limit the conservative figure of the laboratory detection limit will be used.
- Maximum Value Test: is used to determine whether the maximum value for a set of results is considered to be an 'outlier' or part of the anticipated range for the site as a whole.

6.2 COMPARISON WITH GUIDANCE LEVELS

6.2.1 SOILS

The initial screening of the results shows that the guidance limits have been exceeded for the two heavy metals and several PAH compounds. The following table shows the contaminant, guidance limit, no of samples exceeding guidance limit, maximum concentration and location.

Contaminant	SSV (mg/kg)	No. Samples	Maximum	Location of
		exceeding SSV/No. Samples tested	Concentration(mg/kg)	Sample
Arsenic	35	1/10	37	WS5 1.3m
Lead	383	2/10	3307	HP2 0.2m
				WS5 1.3m
Fluorene	3.8	2/10	9.2	WS5 1.3m
				WS9 0.3m
Benzo(a)anthracene	5.42	3/10	30.4	WS5 1.3m
				WS9 0.3m
				HP2 0.2m
Benzo(b)fluoranthene	9.68	3/10	32.3	WS5 1.3m
				WS9 0.3m
				HP2 0.2m
Benzo(a)pyrene	0.989	5/10	32.3	WS5 1.3m
				WS9 0.3m
				HP2 0.2m
				HP1 0.3m
				WS1 0.2m
Indeno(123cd)pyrene	9.53	3/10	16.7	WS5 1.3m
				WS9 0.3m
				HP2 0.2m
Dibenzo(ah)anthracene	0.949	3/10	3.7	WS5 1.3m
				WS9 0.3m
				HP2 0.2m

Table 6.2.1 – Summary of contaminants exceeding guidance limits

The samples impacted by raised PAHs which also exhibited slightly raised total EPH. However no visual or olfactory evidence of hydrocarbon free product was encountered during the intrusive investigation. The gravel in these samples included tarmac, clinker and ash, all of which can be attributable to PAH compounds and hydrocarbons being present in the soil.

6.2.2 GROUNDWATER

No ground water strikes were encountered during the intrusive investigation and subsequent monitoring visits showed only a limited amount of water in the monitoring wells inferred to be perched water percolating through the made ground. However given that the bedrock below the site is designated as a major aquifer, leachate testing was carried out on those samples showing elevated concentrations of contaminants. In the absence of specific leachate generic screening criteria, UK Drinking Water Standards have been used as Tier 1 Screening criteria. It should be noted that these are considered to be overly conservative.

The results show that there are leachable concentrations of arsenic and lead in samples from WS5 at 1.30m and HP2 at 0.2m exceeding the initial screening criteria.

6.3 GROUND GAS

6.3.1 GENERAL

A total of three ground gas monitoring visits have been carried out to date with a further three visits remaining. The results obtained so far are summarised in the table below and an initial assessment of the ground gas risk will be made using this data. A supplementary letter report will be submitted once all the ground gas monitoring is complete with a final ground gas risk assessment.

6.3.2 GROUND GAS MONITORING RESULTS

Exploratory Hole No.	No. of Monitoring Visits	Range of Peak Methane (%)	Range of Peak Carbon Dioxide (%)	Range of Min. Oxygen (%)	Range of Peak Flow (I/hr)	Range of Carbon Monoxide (ppm)	Range of Atmospheric Pressure (mb)
WS3	5	0-0.1	0-1.4	13.8 – 20.9	0.1	0	987 - 1009
WS1	5	0	0 – 2.5	16.5 - 21.5	0 – 5.6	0	987 – 1009
WS7	5	0	0.6 -0.8	18.7 – 21.1	0-0.1	0	987-1009

Table 6.3.2 – Summary of Ground Gas Monitoring Data

7 RISK ASSESSMENT

7.1 GENERAL

As discussed in section 6 of this report the soils underlying the site are impacted by several potential contaminants that are above the threshold levels for the nearest generic land use (residential without plant uptake) for the proposed development of a specialist care unit.

7.2 SOILS

7.2.1 END USERS AS A TARGET

The encountered potential contaminants present a risk to end users of the site only through direct exposure pathways i.e. ingestion or dermal contact. The proposed development will comprise of a main building, hardstanding for car parking and access and managed landscaped areas, the soils underlying the site will be effectively covered thus removing any direct contact pathways. The source-pathway-receptor pollutant linkage is therefore broken and the risk to end users is removed.

7.2.2 GROUNDWATER AS A TARGET

The results from the leachate tests show that there are leachable concentrations of both arsenic and lead in HP2 at 0.2m and WS5 at 1.3m. The concentration of arsenic has been recorded as 16µg in both samples compared with a guidance limit of 10µg. As the concentrations of arsenic are only slightly raised and the guidance standards used are drinking water standards which are conservative, the risk to groundwater from arsenic is considered to be low.

The leachate results from lead are 358µg in HP2 at 0.3m and 55µg in WS5 at 1.30m which have been compared in an initial screen against the guidance limit of 25µg. Again the screening criteria used are UK drinking water standards and as such are conservative.

The presence of leachable contaminants does not preclude a risk to groundwater and other factors have to be taken into account such as the infiltration rate of water and underlying geology. It is anticipated that the two areas of concern will be covered by the proposed building and car park. This will greatly inhibit infiltration rates and hence leachability of the soil. Further to this low permeability cohesive deposits have been encountered across the site which will attenuate the downward migration of contaminants.

Information from the post siteworks monitoring visits show that whilst there is a small quantity of water contained within the wells, this appears not to be in hydraulic conductivity with the bedrock aquifer and is likely to be attributable to recent periods of heavy rainfall.

It is therefore reasonable to assume that given the above discussion that the risk to groundwater is considered to be low and in turn the risk to the underlying bedrock aquifer to be negligible.

7.2.3 CONSTRUCTION AND WORKERS AS A TARGET

There is the potential that during construction, site personnel and maintenance staff may be exposed to potential contaminants. It is advised that appropriate precautions are taken to reduce the risk through good working practices on site i.e. the appropriate PPE is worn at all times and adherence to a good, common sense hygiene practices (no smoking, eating, drinking etc.).

7.2.4 FUTURE MAINTENANCE WORKERS AS A TARGET

It is likely that the proposed development will require future maintenance of both the building and landscaped areas. The risk to these future maintenance workers is considered to be low as the soils underlying the site will have been covered by buildings, hardstanding and managed landscaping thus removing the direct pathways from identified contaminants.

7.3 GROUND GAS

Guidance from CIRIA Report C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' uses gas concentration and flow rates to calculate the Gas Screening Value (GSV). The GSV for the worst case scenario is then used to categorise the site as defined in CIRIA Report C665. For the land use of commercial/industrial which most closely fits the proposed end use for ground gas risk, the Wilson and Card (1999) methodology is used to class the site as a 'Characteristic Situation'.

At the time of writing of this report only three of the scheduled six ground gas monitoring visits had been completed and this therefore forms a preliminary assessment. Once the ground gas monitoring has been fully completed then an addendum report will be issued with a final ground gas assessment.

The gas monitoring results so far show that only a trace of methane gas has been detected in WS3 only. Concentrations of oxygen were shown to be generally in the range of normal with the exception of WS3 during the third visit where depleted oxygen levels were recorded. Slightly raised levels of carbon dioxide also detected throughout the monitoring completed so far. No hydrogen sulphate or carbon monoxide was detected in any of the installations. The maximum flow rate recorded was 5.6 l/h.

The GSV has been calculated using the highest value recorded for carbon dioxide and methane and the highest flow reading which gives a figure of 0.14l/h for carbon dioxide and 0.0056l/h for methane. The site therefore just falls into the category of Characteristic Situation 2 (Low Risk) for which special ground gas protection measures are required.

8 PROPOSED DEVELOPMENT

8.1 INTRODUCTION

It is proposed to build a specialist care unit with associated access roads and car parking. A preliminary architects drawing provided by BKP shows that the building will be predominantly situated to the north (upper plateau) of the site comprising one storey. The very southern part of the building will comprise two storeys as it will bridge across the lower plateau. The proposed car park will be located at the south of the site where presently the existing pub stands. A private secure garden will be located to the northeast of the site with small areas of landscaping throughout. The preliminary architects' drawing is presented as Figure 3 in Appendix A.

8.2 CONSTRAINTS

8.2.1 BURIED OBSTRUCTIONS

No buried obstructions were encountered during the intrusive investigation. It is not anticipated that any buried obstructions will be present underlying the proposed building over the upper site. However, if any obstructions are encountered during the earthworks phase of the development then further advice should be sought.

8.2.2 CONTAMINATION

As discussed in sections 6 and 7 of this report the risk of contamination at this site is considered to be low and does not pose a constraint to the proposed development.

8.2.3 GROUND GAS

Ground gas is considered to be a low risk to the end users of the site. As discussed in section 7.3 the site has been preliminarily classified as 'Characteristic Situation 2'. Once the ground gas monitoring period has been fully completed, an addendum letter report will be issued with the final ground gas assessment and recommendations.

8.2.4 EXISTING SERVICES

A full survey of existing services has not been within the scope of this investigation. Services that are known to exist on this site may require removal or redirection prior to development commencing. These services should be traced by a suitably qualified contractor and advice sought from the persons responsible for these services.

9.1 GENERAL

The general geology underlying the site is best described by discussing the upper and lower plateaus of the site independently.

The geology of the upper plateau is characterised by the presence of tarmac over subgrade at the surface which is in turn underlain by granular made ground. The made ground extends the deepest in WS5 (2.1m) where cohesive made ground was encountered. Directly underlying the made ground are natural cohesive deposits interspersed with small bands of granular material and pockets of sand. Weathered bedrock is inferred to underlie the natural cohesive deposits.

The geology of the lower plateau (approximately 2.5m below upper plateau) is similar to that of the upper plateau with the exception of natural granular deposits directly underlying the made ground which are in turn underlain by natural cohesive deposits followed by bedrock.

9.2 FOUNDATIONS

The proposed new building will be constructed mainly over the upper plateau. This area is covered by around 1.0m thickness of made ground which is underlain by firm natural cohesive deposits. These firm natural clays can offer a safe bearing capacity of around 90KPa which is adequate for supporting the proposed one storey buildings over traditional spread footings.

However, nearer to the lower plateau (as seen in WS5) the made ground attains a thickness of around 2.1m with the top of more competent firm natural clays laying at depth of around 2.4m below existing ground level. It is understood that the building spans into the lower plateau where it is proposed to comprise two storey building. Combination of poorer ground and expected higher loading requirements means that the use of traditional shallow spread foundations for the southern end of the building is not practical. Besides, due to lack of access the present investigation could not provide any information on the soil quality at the northern part of the lower plateau. At this stage it appears that the southern section of the proposed building may require deep trench filling or the use of stone columns to support the two storey building. It is recommended to commission a supplementary investigation once the pub is demolished, comprising three to four shallow mini-percussive holes to further investigate the quality of near surface soils and depth to the firm natural clays within the northern part of the lower plateau. Although the primary purpose of the supplementary investigation will be to explore and confirm the geology underlying the pub and close to the base of the slope, some chemical samples could be taken during the investigation to confirm the findings of this report.

9.3 FLOOR SLABS

Ground bearing slabs at this site should be constructed over a minimum of 300mm of well compacted granular engineering fill. Recommendations given in Section 9.9 should also be considered for the design of the floor slabs.

9.4 BURIED CONCRETE

The site has been given a Design Sulphate Classification of DS-1 and an Aggressive Chemical Environment for Concrete (ACEC) of AC-1 in accordance with BRE Special Digest 1:2005 Concrete in Aggressive Ground.

9.5 PAVEMENT DESIGN

The near surface soils mainly comprise granular made ground. From the site observations and laboratory derived CBR values the near surface materials vary significantly in terms of their CBR values which can range between 3 and 50%. Therefore a conservative design CBR value of around 5% must be considered for the design of paved areas with the proviso that any localised wet/soft pockets must be removed and replaced by adequately compacted granular engineering fill.

9.6 EXCAVATION AND EARTHWORKS

Based on the observations made during the intrusive investigation and the general assessment of the near surface soil profile it is considered that shallow temporary excavations for foundations and services not requiring man entry will stand vertical for the short term stability. Localised shallow perched water entries may be encountered which may require appropriate water exclusion measures.

Any surplus excavated material destined for offsite disposal will require Waste Acceptance Criteria (WAC) testing in order to categorise the waste for disposal. It should be noted that WAC testing can take up to ten days to complete.

9.7 CONTAMINATION

As discussed in sections 6 and 7 of this report, the risk to site in terms of contaminated soils is low for which no remedial measures are required. However, it should be noted that at the time of the intrusive investigation the Red Lion building remained onsite. If during the demolition/construction phase of the development any signs of contamination are encountered below the footprint of the Red Lion building then further advice should be sought.

9.8 GROUND GAS PROTECTION

As discussed in the previous ground gas sections of this report (section 7.3 & 8.2.3) the full ground gas monitoring period is yet to be completed at the time of writing of this report. However as a preliminary assessment the site has been classified as 'Characteristic Situation 2' (Low Risk) for which ground gas protection measures are required. The typical scope of protective measures relating to 'Characteristic Situation 2' is as follows (as recommended in CIRIA C665):

- a) Reinforced concrete in situ floor slab (suspended, non-suspended or raft) with at least 1200gDPM2.
- b) Beam and block or pre cast concrete slab minimum 2000gDPM/reinforced gas membrane.
- c) All joints and penetrations sealed.
- d) Possibly underfloor venting or pressurisation in combination with a) or b) depending on use.

It should be noted that these protective measures relate to generic commercial buildings. Therefore as the proposed development is a specialist care unit it may be more appropriate to use the points system given in BS8485:2007 'Code of Practice for characterisation and remediation from ground gas in affected developments' as it defines public buildings (eg. Managed apartments, schools, hospitals) as a separate category. Although this development may not be considered a public building the end use of the site could be considered similar in use to a public building. This system still uses the Characteristic Situation scenario but for required protection measures a certain number of points have to be achieved through the construction method. Therefore for 'Characteristic Situation 2' a total of 3 points have to be scored. However the recorded concentrations of carbon dioxide and methane are only slightly raised and the Gas Screening Value is only slightly above the boundary between 'Characteristic Situation 2' and 'Characteristic Situation 1'. It may therefore be more appropriate to relax the number of points required to that of a commercial building for which 2 points are required.

As the exact design structure is not available at the time of writing of this report GRS cannot score the ground gas protection measures. Reference should therefore be made to the below table 3 extract from BS8485 during the construction design phase.

Table 3 Solutions scores

PROTECTION ELEMENT/SYSTEM		SCORE	COMMENTS
a) Venting/dilution (see Annex A)			
Passive sub floor ventilation (venting lay can be a clear void or formed using	er Very good performance	2.5	Ventilation performance in accordance with Annex A.
gravel, geocomposites, polystyrene void formers, etc.) ^{A)}	Good performance	1	If passive ventilation is poor this is generally unacceptable and some form of active system will be required.
Subfloor ventilation with active abstract (venting layer can be a clear void or for geocomposites, polystyrene void former	ion/pressurization med using gravel, rs, etc.) ^{A)}	2.5	There have to be robust management systems in place to ensure the continued maintenance of any ventilation system. Active ventilation can always be designed to meet good performance. Mechanically assisted systems come in two main forms: extraction and positive pressurization.
Ventilated car park (basement or under	roft)	4	Assumes car park is vented to deal with car exhaust fumes, designed to Building Regulations Document F [3] and IStructE guidance [6].
b) Barriers			
Floor slabs			
Block and beam floor slab		0	It is good practice to install ventilation in
Reinforced concrete ground bearing floo	or slab	0.5	all foundation systems to effect pressure
Reinforced concrete ground bearing fou	ndation raft with limited	1.5	relief as a minimum.
service penetrations that are cast into sl	ab	1.1.1	Breaches in floor slabs such as joints have
Reinforced concrete cast in situ suspend service penetrations and water bars arou and at joints	led slab with minimal and all slab penetrations	1.5	to be effectively sealed against gas ingress in order to maintain these performances.
Fully tanked basement		2	
c) Membranes			
Taped and sealed membrane to reasonal workmanship/in line with current good y validation ²). ⁽¹⁾	ble levels of practice with	0.5	The performance of membranes is heavily dependent on the quality and design of the installation, resistance to
Proprietary gas resistant membrane to r workmanship/in line with current good j independent inspection (CQA) ^{B), C)}	reasonable levels of practice under	1	damage after installation, and the integrity of joints.
Proprietary gas resistant membrane inst	talled to reasonable	2	
levels of workmanship/in line with curre CQA with integrity testing and independ	nt good practice under lent validation		
d) Monitoring and detection (not ap	plicable to non-manag	ed prope	rty, or in isolation)
Intermittent monitoring using hand held	equipment	0.5	
Permanent monitoring and alarm system ^{A)}	Installed in the underfloor venting/ dilution system	2	Where fitted, permanent monitoring systems ought to be installed in the underfloor venting/dilution system in the
	Installed in the building	1	first instance but can also be provided within the occupied space as a fail safe.
e) Pathway intervention			
Pathway intervention		-	This can consist of site protection measures for off-site or on-site sources (see Annex A).

NOTE In practice the choice of materials might well rely on factors such as construction method and the risk of damage after installation. It is important to ensure that the chosen combination gives an appropriate level of protection

A) It is possible to test ventilation systems by installing monitoring probes for post installation validation.

B) If a 1 200 g DPM material is to function as a gas barrier it should be installed according to BRE 212 [8]/BRE 414 [9], being taped and sealed to all penetrations.

^{c)} Polymeric Materials >1 200 g can be used to improve confidence in the barrier. Remember that their gas resistance is little more than the standard 1 200 g (proportional to thickness) but their physical properties mean that they are more robust and resistant to site damage.

Source: Table 3 BS8485:2007 'Code of Practice for characterisation and remediation from ground gas in affected developments'

10 DESIGN ASSUMPTIONS - RISK MATRIX

	Informa	ation F	rom Desk Study	Information From Intrusive Investiga					
Item Description	Comments	Risk	Recommendations	Comments	Risk	Recommendations			
Foundations	Ground conditions are expected to comprise made ground over bedrock.	4	An investigation specific to the development is required.	The subsurface ground conditions comprise made ground over mainly firm natural clay deposits at depth of around 1.0mbgl.	2 (4)	The majority of the propose traditional spread footings f southern two storey section Alternative foundation solut been recommended.			
Ground Slab Build Up	Ground bearing slabs may be feasible on this site.	4	Investigation to assess near surface soil properties is required.	The near surface material comprises predominantly granular made ground.	2 (4)	Ground bearing slab is feasi compacted granular engine consider ground gas protect			
Mining	The site is not within an area affected by coal mining.	1	None.						
Contamination	There is the potential albeit low that contamination from historical uses is present on site.	3	Further investigation required.	The site is considered to be at low risk for which no remedial measures are required.	1	None.			
Ground Gas	Ground gas risk is considered to be low given infilled ground on and surrounding the site.	3	Further investigation/monitoring required.	The ground gas monitoring results so far show the site to fall into 'Characteristic Situation 2' for which ground gas protection measures will be required.	4	Although the ground gas preliminary assessment su required and appropriate r of this report. An addendu complete with the final grou			
Pavement Build Up	Paved areas will be required for access routes and car parking.	3	Investigation required to determine pavement design parameters.	The near surface granular made ground exhibits variable CBR values.	2	A conservative CBR design we that any localised soft/wet provide that any localised soft/wet provide the transmission of transmission of the transmission of t			
Slopes	There is potential for slopes to be present on site. However exact details are not known.	2	Further advice should be sought if slopes are to feature in the development.						
Cut and Fill	There are no details of any cut and fill requirements at this stage. However initial architect's drawings show the proposed building over a split level.	2	If cut and fill is required then further advice should be sought.						
Retaining Walls	Retaining structures already exist on site between the upper and lower plateaus. The fate of these is at present unknown. Details of any retaining walls required to accommodate the proposed development are currently unavailable.	2	Further advice should be sought if retaining walls are required as part of this development.						
Flooding	There is less than 0.1% chance of flooding from rivers or seas.	1	None.						
Drainage	Provision of SUDS may be feasible	3	Further investigation of feasibility required.	Although shallow granular deposits are present across parts of the site, these are directly underlain by cohesive soils.	2	It is not likely that SUDS suc required further insitu testin potential for SUDS.			
Radon	Less than 1 % of homes are below the action level.	1	None.						

1. The recommendations are based on available information on 11/05/12.

2. A full site investigation has to be carried out before design scheme.

3. The risks are on a scale of 1 to 5.

4. Risks rated 1 & 2 no action. Risks rated 3 & 4 can be downgraded with further information which is due to become available. Those rated 5 need costs allocating.

gation

ed one storey building can be supported on formed over natural firm clays. However, the n spans over deeper incompetent ground. Itions and further supplementary investigation has

ible at this site constructed over 300mm of well eering fill. The design of the floor slab should also ction recommendations given in section 9.9.

monitoring period has yet to be completed this uggest that ground gas protection measures are recommendations have been given in section 9. 9 um report will be submitted once all monitoring is bund gas assessment and recommendations.

value of 5% must be considered with the proviso pockets must be replaced with suitably eering fill. .

ch as soakaways are feasible on this site. If ing can be carried out to further assess the

REFERENCES

The following is a list of the relevant current British and European Standards that have been used in compiling this report. Where ambiguity between different documents exists, the relevant European Standard will take precedence.

- > BS EN 1997-2:2007 Geotechnical Design. Ground Investigation and Testing.
- BS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil Part 1: Identification and description.
- BS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil Part 2: Principals for a classification.
- BS EN ISO 14689-1:2003 Geotechnical Investigation and Testing Identification and Classification of Rock-Identification and description.
- **BS EN ISO 22476-3:2005 Geotechnical Investigation and Testing Field Testing. Standard penetration test.**
- BS EN ISO 22476-2:2005 Geotechnical Investigation and Testing Field Testing. Dynamic probing.
- BS EN ISO 22475-1:2006 Geotechnical Investigation and Testing Sampling Methods and Groundwater Measurements. Technical principals for execution.
- > BS 10175:2011 Investigation of Potentially Contaminated Sites Code of Practice.
- ▶ BS 5930:1999 Code of Practice for Site Investigations.
- > BS 1377:1990 Methods of Test for Soils for Civil Engineering Purposes.
- > BRE Special Digest 1:2005 Concrete in Aggressive Ground.
- CIRIA Report C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- BS8485:2007 'Code of Practice for characterisation and remediation from ground gas in affected developments'

PRELIMINARY PROPOSED SPECIALIST BEAIN INJURY CARE UNIT

THE GARDENER'S ARMS FUELIC HOUSE

BROAD GREEN 2D. LIVERPOOL

24.02.2012 KOH

12.001-5K 07

0

Key To Exploratory Hole Logs

BOREHOLE LOG

Boring Progress and Water Observations Boring Progress and Water Observations Chick Setdoms WS1 Boring Progress and Water Observations Site of the completed and menizoring print installed. Boring Progress and Water Observations Chick Setdoms Other Water Added Boring Progress and Water Observations Chick Setdoms Other Water Added Boring Progress and Water Observations Chick Setdoms Other Water Added Boring Progress and Water Observations Chick Setdoms Other Water Added Boring Progress and Water Observations Chick Setdoms Chick Setdoms Add dimension in metrice Cleast Setdoms Chick Setdoms Add dimension in metrice Cleast Setdoms Chick Setdoms	Project													BOREH	OLE	No	
Job No. Date 26-03-12 Cound Level (n) Co-Ordinates () Contractor Sheet 1 of 1 SAMPLES & TESTS Restarce Restarce Legend Depth DLSCRIPTION Botting 0.20 CH1 Contractor Sibert DLSCRIPTION Botting Botting Botting DLSCRIPTION Botting Botting Botting Botting DLSCRIPTION Botting Botting Botting Botting Botting DLSCRIPTION Botting	Gard	deners A	Arms, B	road	l Green	Road,	Liverpool								S1		
GREAT 20-03-12 Silect Interview Silect Depth The Test Silect Depth The Test Silect Depth The Test Silect STRATA OLD CHI Depth DESCRIPTION STRATA OLD CHI Depth DESCRIPTION STRATA OLD CHI DESCRIPTION DESCRIPTION STRATA OLD CHI DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION 0.00 CHI OLD CHI DESCRIPTION DESCRIPTION DESCRIPTION 0.00 DESCRIPTION DESCRIPTION DESCRIPTION 100 DESCRIPTION DESCRIPTION DESCRIPTION 100 DESCRIPTION DESCRIPTION DESCRIPTION <th col<="" td=""><td>Job No</td><td></td><td>Dat</td><td>te 2</td><td>6-03-1</td><td>2</td><td>Ground Le</td><td>evel (n</td><td>n)</td><td>Co-Or</td><td>dinates ()</td><td></td><td></td><td></td><td></td><td></td></th>	<td>Job No</td> <td></td> <td>Dat</td> <td>te 2</td> <td>6-03-1</td> <td>2</td> <td>Ground Le</td> <td>evel (n</td> <td>n)</td> <td>Co-Or</td> <td>dinates ()</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Job No		Dat	te 2	6-03-1	2	Ground Le	evel (n	n)	Co-Or	dinates ()					
Londactor Just of 1 Image: Constraint of the second seco	GRS01	12-1458		2	6-03-1	2								Chaot			
SAMPLES & TESTS STRATA Depth Type Test Rental Performance Depth Depth Depth 0.20 Citi Level Citic MADE GROUND: Farmac over subgrade. 0.3 0.30 Citi2 MADE GROUND: Farmac over subgrade. 0.4 MADE GROUND: Farmac over subgrade. 0.4 0.30 Citi2 MADE GROUND: Farmac over subgrade. 0.3 MADE GROUND: Farmac over subgrade. 0.4 1.00-1.45 SPT N10 0.3 MADE GROUND: Farmac over subgrade. 0.4 1.00-1.45 SPT N10 0.3 MADE GROUND: Farmac over subgrade. 0.4 1.00-1.45 SPT N10 0.3 MADE GROUND: Black clays subgilding gravelly CLAY. 1.0 1.00-1.45 SPT N10 0.3 Set for firm dark hown satisfy slightly gravelly CLAY. 1.0 1.80-2.25 SPT N12 Set for firm dark hown satisfy slightly gravelly CLAY. 1.0 1.0 2.00 J N14 Set for firm dark hown satisfy slightly gravelly CLAY. 1.0 1.0 1.80-2.25 SPT N14 Set for firm light hown red subgit slightly gravelly CLAY. 1.0 1.0 1.80-5.25 SPT N21 Set for firm light hown red subgit s	Contractor													Sheet	f 1		
SIRATA Depth Test Depth Test Reduced Legend Logend Test Depth Depth Depth Depth Depth Depth Depth Depth Depth Depth Depth Depth <			Fama	1										10			
Depth Type Test Seduced Legend Tops Test MADE (ROUND: Tarmac over subgrade. 0.0 CHI 0.00 CHI 0.00 MADE (ROUND: Tarmac over subgrade. 0.00 0.90 CHI 0.00 MADE (ROUND: Light down slight) clavey sand and grovel with high cobele contrat. Gravel and cobles comprise brick and clarker. 0.00 1.00 Time 0.00 Soft to firm dark hown slight) clavey sand and grovel with soft down slight) clavey sand sand lenses noted. 1.80-225 SFT N12 Sign of the soft down slight) clave sand sand lenses noted. Sign of the soft down slight) clave sand sand lenses noted. 2.00 SFT N2 Sign of the soft down slight) clave sand sand lenses noted. Sign of the soft down slight) clave sand sand lenses noted. Sign of the soft down slight)	SAMPLI	ES & T	ESTS	ter			Dopth			STRA	ΤA				gy	ment	
0.20 CIII CIII CIII CIII CIIII CIIII CIIIII CONTROL CONTROL Formation or straight of charge stand and gravel with high exhibits constraint. Gravel and cohies: comprise horids and clinice: 0.30 CH2 CIIIII CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Depth	Type No	Test Result	Wa	Reduce Level	d Legend	(Thick- ness)				DESCH	RIPTION			Geolo	Instru Backfi	
0.50 CH2 0.50 high coble content. Gravel and cobles comprise brick and clinker. 0.00 <td>- 0.20</td> <td>CH1</td> <td></td> <td></td> <td></td> <td></td> <td>× 0.15 ×</td> <td>MAI</td> <td>DE GRU</td> <td>DUND: Ta DUND: Li</td> <td>armac over</td> <td>subgrade. slightly cla</td> <td>vev sand an</td> <td>d gravel with</td> <td></td> <td></td>	- 0.20	CH1					× 0.15 ×	MAI	DE GRU	DUND: Ta DUND: Li	armac over	subgrade. slightly cla	vev sand an	d gravel with			
100-145 SPT N10 Image: Control biase carry statuty gravely CLAY. 100-145 SPT N10 100-145 SPT N10 100-25 SPT N12 200-325 SPT N14 200-325 SPT N21 200-325<	0.50	СН2					0.50	high	cobble o	content. C	Gravel and c	obbles con	nprise brick	and clinker.			
1.00-1.45 SPT N10 Image: Constraint of the con	-						0.80	NA		douls hass							
1.00 D3 subangular of sandstone. Occasional sand lenses noted. 1.80-2.25 SPT N12 2.70 D5 2.80-3.25 SPT 3.80-4.25 SPT 3.80-4.25 SPT 3.80-4.25 SPT 3.80-2.25 SPT N14	- 1.00-1.45	SPT	N10			- <u>··</u> .	- 1.00	Firm	light br	own red s	andy slight	ly gravelly	CLAY. Gra	avel is			
1.80-2.25 SPT N12 Sec	1.00	D3						suba	ngular o	of sandstor	ne. Occasio	nal sand le	nses noted.				
180-2.25 SPT N12 Total Total <tht< td=""><td>-</td><td></td><td></td><td></td><td></td><td><u> </u></td><td>··- </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tht<>	-					<u> </u>	··- 										
1.30 D4 D4 2.70 D5 2.80-3.25 D5 380-4.25 SPT 380-4.25 SPT 380-4.25 SPT 380-4.25 SPT 1 1 <	1.80-2.25	SPT	N12														
2.70 2.20 3.80 4.25 SPT N9 N9 N14 N14 <td< td=""><td>1.80</td><td>D4</td><td></td><td></td><td></td><td>-<u>····</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1.80	D4				- <u>····</u>											
2.70 2.80-3.25 D5 SPT N9 Image: Construction of the completed and monitoring point installed. 3.80-4.25 SPT N21 Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. 4.80-5.25 SPT N21 Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-																
2.20-3.25 SPT N9 30-425 SPT N14 3.80-4.25 SPT N14 30-2-1 10-2-1 10-2-1 4.80-5.25 SPT N21 10-2-1 10-2-1 10-2-1 4.80-5.25 SPT N21 10-2-1 10-2-1 10-2-1 4.80-5.25 SPT N21 10-2-1 10-2-1 10-2-1 1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-1 10-2-2-1 10-2-1 10-2-2-1 10-2-2-1 10-2-2-1 10-2-2-1 10-2-2-1 10-2-2-1 10-2-2-2-1 10-2-2-1 10-2-2-2-	2.70	Df															
3.80-4.25 SPT N14 Image: Construction of the completed and monitoring point installed. 4.80-5.25 SPT N21 Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed. Image: Construction of the completed and monitoring point installed.	2.80-3.25	SPT	N9			<u> </u>											
3.80.4.25 SPT N14 Image: Specific and specific and monitoring point installed. 4.80.5.25 SPT N21 Image: Specific and specific and monitoring point installed. Image: Specific and the specific and	-						(4.25)										
3.80-4.25 SPT N14 Image: Constraint of the completed and monitoring point installed. 4.80-5.25 SPT N21 Image: Constraint of the completed and monitoring point installed. 4.80-5.25 SPT N21 Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the completed and monitoring point installed. Image: Constraint of the constra	-																
3.80-4.25 SPT N14 N14 Image: Spring state of the spring		apm															
4.80-5.25 SPT N21 Image: Signal and the second secon	- 3.80-4.25 - 3.80	SPT D6	N14													2000	
4.80-5.25 SPT N21 Image: state of the state of	-					<u> </u>	· -										
4.80-5.25 SPT N21 5.25 Image: Second state of the second	-																
All dimensions in metres Client Seddons Method// Plant Used Logged By DD	- 4.80-5.25	SPT	N21			- <u>···</u>											
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia. mm Opt From To Hours From To Image: Scale 1:50 Client Seddons Method/	-	511	1,21				5 25										
Boring Progress and Water Observations Chiselling Water Added GENERAL REMARKS Date Time Depth Dia.mm Dpt From To Hours From To All dimensions in metres Client Seddons Method/ Plant Used Logged By DD	-						- 5.25	Hole	comple	ted and n	nonitoring p	oint install	ed.			FASIC	
Boring Progress and Water Observations Chiselling Water Added GENERAL REMARKS Date Time Depth Depth Dia. mm Dpt From To Hours From To Image: Client Seddons Client Seddons Method/ Plant Used Logged By DD	-																
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia. mm Dpt From To Hours From To Image: Scale 1:50 Client Seddons Method// Plant Used Logged By DD	-																
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Dia. mm Dpt From To Hours From To Image: Scale 1:50 Client Seddons Method/ Image: Scale 1:50 Logged By DD	2						-										
Boring Progress and Water Observations Chiselling Water Added Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia. mm Dpt Image: Date Image: Depth Depth Depth Depth From To Hours From To Image: Date Image: Depth Depth Depth Dia. mm Dpt From To Hours From To Image: Date <	/#/07						Ē										
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia.mm Dpt From To Hours From To Image: Scale 1:50 Client Seddons Method/ Plant Used Logged By DD																	
Boring Progress and Water Observations Chiselling Water Added GENERAL REMARKS Date Time Depth Depth Dia, mm Dpt From To Hours From To Image: Client Seddons Image: Client Seddons Client Seddons Method/ Plant Used Image: Client Seddons							-										
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia. mm Mater Dpt From To Hours From To Hours Image: Construction of the section of the s							Ē										
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Depth Dia. mm Dpt From To Hours From To REMARKS I. Water in pit at 0.5m bgl. All dimensions in metres Scale 1:50 Client Seddons Method/ Plant Used																	
Boring Progress and Water Observations Chiselling Water Added Date Time Depth Casing Depth Water Depth From To Hours From To Image: Casing Depth Depth Dia.mm Dpt From To Hours From To Image: Casing Depth Depth Depth Dia.mm Dpt From To Hours From To Image: Casing Depth Dia.mm Dpt From To Hours From To Image: Casing Depth Dia.mm Dpt From To Hours From To Image: Casing Depth Client Seddons Method/ Plant Used Image: Client Seddons Method/ DD	10						-										
Date Time Depth Casing Depth Water Dpt From To Hours From To Image: Second and the s	Boriu	ng Prog	ress an	d W	ater Ol	servati	005		C	hisellin	σ	Water	Added	CENE			
All dimensions in metres Client Seddons Method/ Plant Used Logged By DD	Dorn	Time	Depth		Casi	ng	Water	Fr	rom	To	Hours	From	То	REMA	RKS		
All dimensions in metres Scale 1:50 Client Seddons Method/ Plant Used DD					Jeptn	Dia. mm	Dpt							1. Water in pit a	at 0.5n	n bgl.	
All dimensions in metres Scale 1:50 Client Seddons Method/ Plant Logged By DD														1		e	
All dimensions in metres Client Seddons Method/ Plant Logged By DD	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
All dimensions in metres Scale 1:50 Client Seddons Method/ Plant Logged By DD	-2110																
All dimensions in metres Client Seddons Method/ Plant Logged By DD																	
All dimensions in metres Scale 1:50 Client Seddons Method/ Plant Used Logged By DD	<u>н</u>																
	All dimens	ions in me le 1:50	etres C	lient	Sede	lons			Metho Plant U	d/ Jsed				Logged By DI)		

BOREHOLE LOG

Project												BOREH	OLE	No
Gar	deners A	Arms,	Broad	l Green	Road,	Liverpool	1	-					52	
Job No		D	ate 2	6-03-12	2	Ground L	evel (m)	Co-Ord	linates ()				52	
GRS01	12-1458	8	2	6-03-1	2									
Contractor												Sheet	C 1	
												1 0		
SAMPL	ES & T.	ESTS	ter			Donth		STRAT	ľA				gy	nent
Depth	Type No	Test Resul	t Å	Reduce Level	d Legend	Thick- ness)			DESCH	RIPTION			Geolo	Instru
-						¥ 0.15 ×	MADE GRO	UND: Tai UND: Mi	rmac over ulticoloure	subgrade.	lavev sand a	nd gravel with		
- 0.30	CH1					- 0.50	high cobble c	ontent. G	ravel and c	cobbles con	nprise variou	is lithologies		
-						(0.40)	MADE GRO	UND: Sof	ft dark bro	wn black sa	undy slightly	gravelly clay.		
-	SPT	N9				- 0.20	(Possible reli Thin layer of	c topsoil). black gra	vel.			/		
-	511	10			<u> </u>		Firm light bro	own/red sa	andy slight	ly gravelly	CLAY. Gra	vel comprises		
1.50	D2					4	c1.1m bgl Th	indstone.	ed sand ba	nd.				
- 2.00-2.45	SPT	N15				(2.10)								
2.00	D3													
- - -					- <u>-</u>									
-					<u> </u>	3.00								
-						-	Hole continue	ed by dyna	amic probe	е.				
-														
-						-								
-						-								
-						-								
-						-								
-						-								
-						-								
-														
-						-								
-														
-						-								
						-								
-														
						-								
						-								
						E								
						[]				W	A dd- 1	~		
Doto	ing Prog	Donth		ater Ol Casi	ng	Water		$\frac{1}{T_{0}}$	Hours	From		GENE RFMA	KAL RKS	
Date	rinne	Deptr		Depth	Dia. mm	Dpt	From	10	nours	rrom	10	1 Dry to beec		
												1. Dry to base.		
All dimens	ions in m	etres	Client	Sede	lons	1	Method Diant U	1/ [sed		1		Logged By		
Sca	le 1:50						Plant U	sea)	

DYNAMIC PROBE LOG

Project									PROBE No	
Gardeners	Arms, Br	oad Green Ro	ad, Liverpoo	ol					WCO	
Job No		VV.52								
GRS0112-145 Contractor	8	26-03-12							Sheet 1 of 1	
Depth Re (m) (blow	adings s/100mm	1) 5	Diagr	am (N100	Values)	25	30	Torque (Nm)	Remarks	
$\begin{array}{c} \text{(III)} & \text{(BIOW)} \\ \begin{array}{c} -1 \\ -2 \\ -3 \\ -3 \\ 2 \\ 1 \\ 3 \\ 7 \\ -4 \\ 3 \\ 3 \\ 3 \\ -5 \\ 4 \\ 6 \\ 9 \\ 8 \\ 11 \\ -7 \\ \end{array}$	³ ³ ³ ³ ³ ² ³ ² ³ ² ⁴ ⁸ ⁶ ⁸ ⁷ ⁸ ²³ ⁵⁰								N6 N9 N23 N9 N7 N9 N10 N20 N25 N23 N42 N>50	
Hammer Wt (kg	Hammer Wt (kg)									
Cone Dia (mm)	Cone Dia (mm)									
Cone Type	Cone Type									
Damper	orgred By									
All dimensions in I Scale 1:50	All dimensions in metres Scale 1:50 Client Seddons Method/ Plant Used									

BOREHOLE LOG

Project	Project BORI													No
Job No Date 26-03-12 Ground Level (m) Co-Ordinates () GRS0112-1458 26-03-12 Ground Level (m) Co-Ordinates ()											— W:	S3		
Contractor Sheet														
		70770										1 0	f 1	<u> </u>
SAMPLES & IESIS							SIRAIA						gy	iment 611
Depth	Type No	Test Result	W	Level	Legend	(Thick- ness)			DESCH	RIPTION			Geolc	Instru Backi
0.15	CH1					0.15	MADE GROUND: Tarmac over subgrade. MADE GROUND: Multicoloured slightly clavey sand and gravel with							
-							medium cobble content. Gravel and cobbles comprise brick, hardcore, tarmac and sandstone.							
- -						★ 0.80 ★ 1.00	MADE GRC	OUND: So	oft dark bro	wn black sa	andy slightly	gravelly clay.		
1.00-1.45	SPT D2	N11					(Possible reli Firm light br	c topsoil) own/red s). sandy slight	ly gravelly	CLAY. Gra	wel comprises		
- 1.20							subangular s	andstone.	, ,	, , , ,		1		
-						- F - F - F - L								
2.00-2.45	SPT	N8				(2.00)								
-														
2.50	D3													
-					<u></u>	- 3.00	Hole continu	ed by Dy	namic Prob	e.				2025
- - -						-		5 5						
-						-								
-						-								
-						-								
-						-								
-						-								
-						-								
						-								
-														
71/7/07						-								
						-								
 - -						-								
						-								
						-								
						-								
Boring Progress and Water Observations							Chiselling Water Added						RAL	
Date	Time	Depth	E	Depth	ng Dia. mm	water Dpt	From	То	Hours	From	То	KEMA	KKS	
												1. Dry to base.		
1458 G														
0112														
All dimens	Client Seddons				Metho	Method/					Logged By			
Sca Sca						Plant U	Plant Used				DD			

DYNAMIC PROBE LOG

Project		PROBE No				
Gardeners Arm		WG3				
Job No	Date 26-03-12	Ground Level (m)	Co-Ordinates	s ()		1100
GRS0112-1458 Contractor	26-03-12					Sheet 1 of 1
		D: (110)				
Depth Readir (m) (blows/10	ngs (0mm) 5	Diagram (N10 10 15	20	25 30	Torque (Nm)	Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				50		N5 N7 N9 N12 N11 N12 N18 N17 N18 N23 N26 N>50 GENERAL REMARKS
Hammer Drop (mm)	_			1.	Dry to base.
Cone Dia (mm) Cone Type		-				
Damper						
All dimensions in metre Scale 1:50	s Client Seddons	Met Plan	hod/ nt Used		L	ogged By DD

	Project												BOREH	OLE	No
	Ga	rdeners A	Arms,	Broa	d Gree	n Road,	Liverpool	1					w/	S4	
	Job No		I	Date 2	26-03-1	2	Ground L	evel (m)	Co-Or	dinates ()				JT	
	GRS0	112-1458	3	2	26-03-1	2									
	Contracto	r											Sheet		
													1 0	f 1	
	SAMP	LES & T	ESTS						STRA	TA				y	ent/
	Depth	Type No	Test Resu	t Aate	Reduce Leve	ed Legend	Depth (Thick- ness)			DESCI	RIPTION			Geolog	Instrum Backfill
	-						0.15	MADE GRO	UND: Ta	irmac over	subgrade.			-	
	-						(0.40)	MADE GRO medium cobb	OUND: M	ulticoloure it. Gravel a	d slightly c nd cobbles	layey sand a comprise bi	ind gravel with rick, hardcore,		
	0.55	CH1					¥ 0.55 X	tarmac and sa	andstone.	ft douls have	um blools o	-			
	-					_ <u></u>	0.90	(Possible reli	c topsoil)		wn black sa	andy slightly	graveny ciay.		
	1.00-1.45	SPT	N9					Firm light bro	own/red s	andy slight	ly gravelly	CLAY. Gra	wel comprises		
	- 1.20	CH2					+ -1_ -1_	subaligulai sa	indstone.						
	-					<u> </u>									
	-					<u> </u>	(2.10)								
	2.00-2.45	SPT D3	N9												
	- 2.20	03					-[
	-														
	-						- 3.00	Hole continu	ad her Den	nomio Duch	-				19931
	-						-	Hole continue		namic Prod	e.				
	-						-								
	-						-								
	-						-								
	-						Ē								
	-														
	-						-								
	-						-								
	-						-								
	-						-								
	-						-								
	-						-								
4/12	-						-								
T 25/	-						-								
1.GD	-						-								
5S 3	-						-								
TD AC	-						-								
NT S.	-						-								
J GI	-														
AS.GF	De	ing Droc	ress a	nd W	Lator O	beenvet	000		vicelling	.	Watar	Addad			1
S ARN	Date		Dept	h		ing	Water			Hours	From	To	GENE REMA	kal RKS	
NER	Date	THIC	Бері		Depth	Dia. mm	Dpt		10	110015	110111	10	1 Dry to base		
RADE													1. Dry 10 0ase.		
58 GF															
12-14.															
RS01															
3H G															
UKE	All dime	nsions in m	etres	Clien	t Sed	dons	1	Method	1/	L	1	<u> </u>	Logged Bv		
AGS3	S	ale 1:50			500			Plant U	Ised				DE)	

DYNAMIC PROBE LOG

Project Gardeners Arms, Broad Green Road, Liverpool									PROBE No			
Gardeners Arms, Broad Green Road, Liverpool Job No Date 26-03-12 Ground Level (m) Co-Ordinates ()											WSA	
Job No		Date	26-03-12		Ground l	Level (n	1)	Co-Ordir	nates ()			1104
GRS0 Contracto	112-1458 r		26-03-12									Sheet 1 of 1
Depth (m)	Readin	gs Jmm)	5	ť	Diagr	am (N	1100 Va	alues)	25	20	Torqu (Nm)	e Remarks
()			3)	10		15	20	25	30		
1 2 3 4 5 6 7 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2^{2} 2^{4} 4$ $4^{4} 4$ $5^{5} 5^{12} 9^{10} 10^{10}$ $19^{50} 50^{10}$										N5 N6 N10 N14 N12 N10 N15 N24 N29 N31 N42 N>50
Hamme	r Wt (kg)											REMARKS
Hamme	r Drop (mm))										1. Dry to base.
Cone D	ia (mm)											
Damper												
All dimer	nsions in metres	Clie	nt Seddor	ns	11		Method/ Plant Use	d				Logged By
	anc 1.50						1 June Ost					

Project											BOREH	OLE	No
Gar	deners A	Arms,	Broad	d Green	n Road,	Liverpoo	1				w/	25	
Job No		D	^{ate} 2	7-03-1	2	Ground L	evel (m)	Co-Ordinates	0			55	
GRS01	12-1458		2	7-03-1	2								
Contractor											Sheet		
											1 0	f 1	
SAMPL	ES & TI	ESTS	r					STRATA				y	ent/
Depth	Type No	Test Resul	t Mate	Reduce	Legend	Depth (Thick- ness)		DE	SCRIPTION			Geolog	Instrum Backfill
-						0.15	MADE GRO	UND: Tarmac o	ver subgrade.			-	200
						0.45	MADE GRO	UND: Multicolo ole content. Grav	ured slightly c el and cobbles	comprise br	nd gravel with ick, hardcore,		
0.45	СНІ					¥0.55, ↓-	tarmac and sa	andstone.	1		/		
F						(0.65)	MADE GRO	UND: Black gra	brown/red sa	ndv slightly g	/		
1.00-1.45	SPT	N3				1.20	CLAY. Grav	el comprises sub	angular sands	tone.			
1.30	CH2					ž	MADE GRO sample.	UND: Soft dark	brown very sa	ndy CLAY.	Ash noted in		
1.50	D3					(0.90)	-						
E													
2.00-2.45	SPT	N7				2.10	Brown very of	layey SAND. (S	trata noted as	damp).			
2.20	D4					(0.40) 2.50	2			17			189
-					<u> </u>		Firm light bro	own/red sandy sl	ightly gravelly	CLAY. Gra	vel comprises		
2.80	D5					3.00	subulgular st	inditione.					
-						-	Hole continu	ed by Dynamic H	robe.				
						Ē							
-						-							
-						-							
-						F							
-						-							
						Ē							
-						-							
						-							
-						-							
-						-							
-						-							
						-							
						E							
2 -						-							
						E							
0 						-							
						-							
5						-							
Bori	ng Prog	ress a	nd W	ater O	bservati	ONS Water			Water	Added	GENE	RAL	
Date	Time	Depth	<u>1</u>	Depth Depth	Dia. mm	Dpt	From	To Hour	s From	To	KEIVIA	кко)
											1. Dry to base.		
EB													
All dimens	ions in me	etres	Client	Sed	dons		Method Diant L	1/ Isad			Logged By	、	
g Sca	le 1:50						Plant U	seu			DL	,	

DYNAMIC PROBE LOG

Project Gardeners Arms, Broad Green Road, Liverpool									PROBE No	
Gardeners Arms, Broad Green Road, Liverpool Job No Date 27-03-12 Ground Level (m) Co-Ordinates ()										W95
Job No		Date	27-03-12	Ground Lev	vel (m)	Co-Ordina	ites ()			W00
GRS0	112-1458		27-03-12							Shoot
Contractor										1 of 1
Depth	Readin	ngs		Diagrar	n (N100	Values)			Torque	Remarks
(m)	(blows/10	0mm) 5	10	15	20	25	30	(Nm)	Remarks
									-	
								Í	-	
								Í	-	
· 1								ļ		
									-	
									-	
2									-	
									-	
									-	
2										
3	$\begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 \end{bmatrix}$								-	N5
										N6
	2 2 3	2							-	N7
4	3 2	2 2							-	N7
	2 2	3							-	N7
	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}_{4}$	2							-	N9
5	5	4 4							-	N13
	4 5	7		,					-	N16
	10 8	<i>′</i> 7		1					-	N25
,	6	7 10		 1					-	N23
6	50	10						50		N>50
									-	
								1	-	
7								1	-	
								Ì	-	
								Ì	-	
										CENED AI
Hamme	r Wt (kg)			_						REMARKS
Hamme	r Drop (mm)							1.	Dry to base.
Cone Di	a (mm)			_						
Cone Ty	pe			_						
Damper	• •		nt C-11		Mad-					agged By
All dimen	ale 1:50	s Cile	an Seadons		Plant	Used				DD

Project												BOREH	OLE	No
Gare	deners A	Arms, H	Broad	l Green	n Road,	Liverpool	1					w/	26	
Job No		Da	^{ite} 2	7-03-1	2	Ground L	evel (m)	Co-Ore	dinates ()				50	
GRS01	12-1458		2	7-03-1	.2									
Contractor												Sheet		
												1 0	t I	1
SAMPL	ES & TI	ESTS	er					STRA	ГА				y,	nent
Depth	Type No	Test Result	Wat	Reduce	ed Legend	Depth (Thick- ness)			DESCH	RIPTION			Geolog	Instruc
-						- 0.15	MADE GRO	UND: Ta	rmac over	subgrade.	iou cond on	graval Graval		
-						<u>-</u> 	comprise hard	lcore.	uk biown s	singhtly etay				
- - -						(1.00)	Loose red slig	shtly clay	ey to claye	ey slightly g	gravelly SAI	ND.		
1 00-1 45	SPT	N7			. <u></u> a .									
1.00	D1	147				1.20	Soft light brow	wn red ve	ery sandy s	lightly grav	velly CLAY	. Gravel is		R
1.50	D2						subangular of	sandston	ne.					
					<u> </u>	·• •- •-[
2.00-2.45	SPT	N4				(1.60)								
•					- <u>°</u>									
2.50	D3													
2.80	D4					2.80	Light brown v	ery claye	ey SAND.	Samples no	oted as damp).		
3.00-3.45	SPT	N31			· • · · ·		Very dense lig	ght brown	n orange gr	avelly SAM	ND with low	v cobble		
3 40	D5				. α	(0.63)	content. (wea	unered be	edfock).					
3.60-3.63	SPT	N>50			0	3.63	Hole complet	ed due to	refusal.					1002
3.60	D6					-	riole complet		Terusuit					
-						-								
-						-								
						-								
-						-								
•						-								
-						-								
- -						-								
•						-								
						-								
- - -						-								
-						-								
						-								
						-								
Bori	ng Prog	ress ar	nd W	ater O	bservati	ons	Ch	iselling	5	Water	Added	GENE	RAL	,
Date	Time	Depth		Cas Depth	ing Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	5
												1. Dry to base.		
A 11 dim	ions in m	atres	Client	Sod	dons			/				Logged By		
Sca	le 1:50		chent	360	00115		Plant U	sed				DE)	

Project										BOREH	OLE	No
Gar	deners A	Arms, B	roac	d Greer	n Road,	Liverpool	l	1			S 7	
Job No		Dat	^{te} 2	7-03-1	2	Ground L	evel (m)	Co-Ordinates ()			51	
GRS01	12-1458		2	7-03-1	2							
Contractor										Sheet	C 1	
										1 0	t l	
SAMPL	ES & TI	ESTS	er					STRATA			Ŋ,	l l
Depth	Type No	Test Result	Wat	Reduce Level	Legenc	Depth (Thick- ness)		DESCI	RIPTION		Geolog	Instrum Backfil
-							MADE GRO	UND: Tarmac over	subgrade.			
					Ĭ	1 0.13 1 0.30	MADE GRO	UND: Multicoloure	d slightly clayey sand	and gravel with		
-						×0.60/	high cobbles.	Gravel and cobbles	comprise brick, tarma	ac, hardcore and		
	0.000				. : <u></u> a '		MADE GRO	UND: Multicoloure	d slightly clayey grave	elly sand. Gravel		
- 1.00-1.45	SPT D1	N4				(1.00)	comprises bri	ck, tarmac, hardcore	e and sandstone.			目
- 1.20						1.60	Loose red slig	ginity clayey to claye	y singinity graveny SA	IND.		目:
-					- <u>-</u>	1.00	Firm light bro	wn red very sandy	slightly gravelly CLA	Y. Gravel is		「目
- 1.80	D2	NG				+ +	subangular of	sandstone.				
- 2.00-2.45	SPI	No			<u> </u>	(1.30)						
-												
						- 200						
-2.90	D3				• • • • •	2.90	Very dense li	ght brown orange gi	avelly SAND with low	w cobble		
= 3.00-3.35 - 3.00	D4	N>50			a .	(0.45) 3.35	content. (Wea	thered bedrock).				
È						-	Hole complet	ed due to refusal.				
-						-						
						-						
-						-						
-						-						
						-						
-						-						
-												
-						-						
[-						
						-						
F						-						
						-						
-						-						
-						-						
L Dom	ng Droc	race	4 W	Inter O	hearnati			iselling	Water Addad			<u> </u>
Doto		Dopth		Cas	ing	Water	Erom		From To	GENE REMA	KAL RKS	
Date	Time	Depui	I	Depth	Dia. mm	Dpt				1 Dry to base		
										1. Dry to base.		
	ione in m	atrac C	lient	- Cod	done			/				
Sca	le 1:50	erres C	nem	Sed	uons		Plant U	sed		DI)	
L							I					

Project											BOREH	OLE	No
Ga	deners A	Arms	, Bro	ad Gre	en Road,	Liverpoo	1					22	
Job No			Date	27-03-	12	Ground L	evel (m)	Co-Ordinates ()			v,	50	
GRS01	12-1458	8		27-03-	12						~		
Contractor											Sheet	C 1	
											1 0	t I	
SAMPL	ES & T	EST	S	er				STRATA				S	nent/
Depth	Type No	Te: Res	st ult	Redu	el Legend	1 (Thick- ness)		DESC	RIPTION			Geolog	Instrur Backfi
0 20-0 40	B2					0.20	MADE GROU	JND: Concrete.	d clavev sand	and gravely	with medium		-
0.50						(0.47)	cobble content	t. Gravel and cobbl	e comprise br	ick, concrete	e and		
- 0.50	Спі					- 0.07	Hole terminate	ed due to flat solid	obstruction at	base of hole	e.		-
F						-							
-						-							
Ē						-							
È						-							
-						-							
Ē						-							
È						-							
È.						-							
Ē						-							
E						-							
-						-							
						-							
È						- E							
F						-							
Ē						-							
-						-							
Ē						-							
Ē						-							
Ę						-							
F						-							
						-							
						-							
						-							
<u>n</u>						-							
						-							
						-							
2						-							
Bor	ing Pros	ress	and	Water	Dbservati	ons	Ch	iselling	Water A	dded	GENE	RAT	
Date	Time	Der	oth	Canth	ising	Water	From	To Hours	From	То	REMA	RKS	
		- 1	$\neg \uparrow$							1	. Dry to base.		
UN HAU													
1458 (
1-2110													
CHX CHX													
H													
All dimen	sions in m	etres	Clie	ent Se	ddons		Method/	/		L	logged By	、	
Sca Sca	ale 1:50						Plant Us	seu			DL)	

Proje	BOREHOLE No															
	Gardeners Arms, Broad Green Road, Liverpool No Date 27.02.12 Ground Level (m) Co-Ordinates ()															
Job N	lo			Date	27	7-03-1	2	Ground L	evel (m)	Co-C	Ordinates ()				55	
G	RS01	12-1458	3		27	7-03-1	2									
Cont	ractor													Sheet	C 1	
														1 0	T I	
SA	MPL	ES & T	EST	S	ter			Danth		STRA	ATA				gy	nent
De	epth	Type No	Te Res	st ult	Wai	Reduce Leve	^{ed} Legen	1 (Thick- ness)			DESC	RIPTION			Geolo	Instrui Backfi
Ē								-0.10	MADE C	FROUND: 1 FROUND: N	armac over	subgrade.	nd and grave	el with medium		
- 0.30 - 0.50		CH1						(0.50)	cobble co	ontent. Grav	el and cobbl	le comprise	brick, concr	rete and		
- 0.50		102						0.80	Red sligh	tly clayey to	o clayey slig	ghtly gravel	ly SAND.			
- 1.00-	-1.45	SPT	N	7			- <u>°.</u>		Firm ligh	t brown red ar of sandsto	very sandy	slightly gra	velly CLAY	. Gravel is		
-									8							
- 1.50		D3						-								
Ē							<u> </u>	(2.00)								
2.00-	-2.45	SPT	N	9												
- 2.00		D4					- <u>·</u>									
Ę								2.80								
-2.90		D5					0.00	2.90	Very den	se red orang	ge gravelly S	SAND with	low cobble	content.		
3.00-	-3.04	SPT D6	N>	50				¥3.04	Very den	se light brow	wn sandy G	RAVEL wit	th low cobbl	e content.		
-		20						-	(Weather Hole con	ed bedrock)	to refusal			/		
-								-		ipieted due	io rerusar.					
-								-								
F								-								
Ē								-								
È								-								
-								-								
Ē								-								
È								-								
Ę								-								
~								-								
25/4/1								-								
								-								
ε. 								-								
AGS								-								
								-								
UN C								-								
S.GPJ								<u> </u>	<u> </u>	~			1			
ARM	Bori	ng Prog	gress	and	Wa	$\frac{\text{ater O}}{C^{28}}$	bservat	ions Water		Chisellir	lg	Water	Added	GENE	RAL	
SH Dat	te	Time	Dep	oth	D	epth	Dia. mm	Dpt	From	То	Hours	From	То		UU2	
ADEI														1. Dry to base.		
58 GF																
12-14																
IRS01																
BHG																
Š All	dimens	sions in m	etres	Cl	ient	Sed	dons	1	Me	thod/	1			Logged By		
AGS	Sca	ale 1:50							Pla	nt Used				DE)	

Project	oject TRIAL PIT No						
Gardener	Gardeners Arms, Broad Green Road, Liverpool HP3						
Job No	Date 26-03-	-12 Gi	round Level (m)	Co-Ordinates ()			TIFS
GRS0112-14	58 26-03-	-12					
Contractor							Sheet
							1 of 1
0	Α	В		C	D	-0	Legend
					E		
						-	
					E		
1						- 1	
					E		
						-	
2-						- 2	
					E		
						-	
					E		
3-						- 3	
					F		
						- -	
4-7		CTD	۸ T ۸			-4	
		51K				SAN Donth	PLES & IESIS
Depth No	MADE GROUND: Tar	mac over subgr	DESCRIPTION ade.			Depth	INO Remarks/Tests
0.15-0.30	MADE GROUND: Fill	with steel reinf	Forcement bars.				
0.50	Hole terminated due to	steel bar obstru	ction.				
Shoring/Suppor	rt:						GENERAL
Stability:							REMARKS
						1. I	Dry to base.
							
	ΑΤ						
D	В						
<u> </u>							
All dimensions in	metres Client Se	ddons	Metho	d/		Log	gged By
Scale 1:50)		Plant	Jsed			DD

Project	roject TRIAL PIT No							
Gardeners Arm	Gardeners Arms, Broad Green Road, Liverpool HP4							
Job No	Date 26-03-12	Ground Level (m)	Co-Ordinates ()		111 4			
GRS0112-1458	26-03-12				01			
Contractor					Sheet			
	D		2	<u> </u>	1 of 1			
0 A 1	B B B B B B B B B B B B B B B B B B B	TRATA DESCRIPTION subgrade. reinforcement bars. bstruction.		D 0 1 2 3 3 	Legend Legend MILES & TESTS No Remarks/Tests No Remarks/Tests Dry to base.			
│								
D C	B							
All dimensions in metres Scale 1:50	Client Seddons	Mether	od/ Used		ogged By DD			

APPENDIX C - LABORATORY RESULTS

LABORATORY REPORT

4043

Contract Number: PSL12/1354

Client's Reference:

Report Date: 17 April 2012

Client Name: GRS Evans Business Centre Durham Way South Newton Aycliffe

DL5 6XP

For the attention of: D David

Contract Title: Gardeners Arms

Date Received:30-Mar-12Date Commenced:30-Mar-12Date Completed:17-Apr-12

Notes: Observations and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

M.burt

M Beastall (Laboratory Manager)

R Gunson (Director) A Watkins (Director)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
WS1	4	D	1.80	Brown slightly gravelly very sandy CLAY.
WS2	2	D	1.50	Brown slightly gravelly very sandy CLAY.
WS3	3	D	2.50	Brown slightly gravelly very sandy CLAY.
WS4		D	1.20	Brown slightly gravelly sandy CLAY.
WS5	3	D	1.50	MADE GROUND dark grey slightly gravelly very sandy clay with ash.
WS5	5	D	2.80	Brown slightly gravelly very sandy CLAY.
HP1		В	0.20-0.40	MADE GROUND brown gravelly sand.
HP2		В	0.30-0.50	Brown very gravelly SAND.
HP2		В	0.60-0.80	MADE GROUND brown very gravelly sand.

	Compiled by	Date	Checked by	Date	Approved by	Date
PSL		17/04/12	M.b.D	17/04/12	M.S.S.	17/04/12
Professional Soils Laboratory				Contract No:	PSL12/1354	
		GAKDENE	LKS AKIVIS.		Client Ref:	GRS0112-1458

SUMMARY OF SOIL CLASSIFICATION TESTS

(B.S. 1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Depth m	Moisture Content %	Bulk Density Mg/m ³	Dry Density Mg/m ³	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	% Passing .425mm	Remarks
				Clause 3.2	Clause 7.2	Clause 7.2	Clause 8.	Clause 4.3/4.4	Clause 5.	Clause 6.		
WS1	4	D	1.80	16				29	13	16	98	Low plasticity CL.
WS2	2	D	1.50	16				33	15	18	98	Low plasticity CL.
WS3	3	D	2.50	17				28	12	16	97	Low plasticity CL.
WS4		D	1.20	19				36	16	20	96	Intermediate plasticity CI.
WS5	3	D	1.50	25				30	16	14	95	Low plasticity CL.
WS5	5	D	2.80	18				30	14	16	97	Low plasticity CL.

SYMBOLS: NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

	Compiled by	Date	Checked by	Date	Approved by	Date
e pol	$\partial \mathcal{D}$	17/04/12	M. ber	17/04/12	M. Sun	17/04/12
Professional Soils Laboratory					Contract No:	PSL12/1354
		GANDENE	AND ANNIS.		Client Ref:	GRS0112-1458

California Bearing Ratio Test.

BS 1377 : Part 4 : 1990

Initial Sample Conditions		Test Conditions		Method of compaction		2.5Kg Rammer	
Moisture Content:	11	Surcharge Kg:	4.20	Final Moistur	e Content %	C.B.R. Value %	
Bulk Density Mg/m3:	2.09	Soaking Time hrs	0	Sample Top	11	Sample Top	44.5
Dry Density Mg/m3:	1.88	Swelling mm:	0	Sample Bottom	12	Sample Bottom	50.6
Percentage retained on	8	Remarks:	See Su	mmary of Soil D	escription.		
20mm BS test sieve:	0						

Checked by	Date	Approved By	Date
M.b.D	17/04/12	M.S.	17/04/12

PSL Professional Soils Laboratory	GARDENERS ARMS.	Contract No. PSL12/1354
---	-----------------	----------------------------

California Bearing Ratio Test.

BS 1377 : Part 4 : 1990

Initial Sample Conditions		Test Conditions		Method of compaction		2.5Kg Rammer	
Moisture Content:	17	Surcharge Kg:	4.20	Final Moisture	e Content %	C.B.R. Value %	
Bulk Density Mg/m3:	2.01	Soaking Time hrs	0	Sample Top	17	Sample Top	14.6
Dry Density Mg/m3:	1.72	Swelling mm:	0	Sample Bottom	17	Sample Bottom	15.3
Percentage retained on	0	Remarks:	See Su	mmary of Soil D	escription.		
20mm BS test sieve:	2						

Checked by	Date	Approved By	Date
M.b.D	17/04/12	M.S.	17/04/12

PSL Professional Soils Laboratory	GARDENERS ARMS.	Contract No. PSL12/1354
---	-----------------	----------------------------

California Bearing Ratio Test.

BS 1377 : Part 4 : 1990

Initial Sample Conditions		Test Conditions		Method of compaction		2.5Kg Rammer	
Moisture Content:	16	Surcharge Kg:	4.20	Final Moisture	e Content %	C.B.R. Value %	
Bulk Density Mg/m3:	2.08	Soaking Time hrs	0	Sample Top	15	Sample Top	2.9
Dry Density Mg/m3:	1.80	Swelling mm:	0	Sample Bottom	16	Sample Bottom	2.9
Percentage retained on	4	Remarks:	See Su	mmary of Soil D	escription.		
20mm BS test sieve:	4						

Checked by	Date	Approved By	Date
M.b.D	17/04/12	M.S.	17/04/12

PSL Professional Soils Laboratory	GARDENERS ARMS.	Contract No. PSL12/1354
---	-----------------	----------------------------

ANALYTICAL TEST REPORT

Contract no:	44819
Contract name:	Gardeners Arms
Client reference:	PSL12/1354
Clients name:	Professional Soils Laboratory
Clients address:	5-7 Hexthorpe Road Doncaster DN4 0AR
Samples received:	03 April 2012
Analysis started:	03 April 2012
Analysis completed	: 11 April 2012
Report issued:	11 April 2012
Notes:	Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd were not responsible for sampling. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
Key:	U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing
Approved by:	Kampbell Karan Campbell John Campbell Director Director

SOILS

Lab number			44819-1
Sample id			WS 4
Depth (m)			1.20
Test	Method	Units	
рН	CE004 ^M	units	7.8
Sulphate (2:1 water soluble)	CE049 ^U	g/I SO ₄	0.02

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	Wet	М	-	units
CE049	Sulphate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	0.01	g/I SO ₄

ANALYTICAL TEST REPORT

Contract no:	44769(1)
Contract name:	Gardeners Arms
Client reference:	GRS0112-1458
Clients name:	Geoenvironmental Risk Solutions
Clients address:	Evans Business Centre Durham Way South Newton Aycliffe DL5 6XP
Samples received:	28 March 2012
Analysis started:	28 March 2012
Analysis completed	: 19 April 2012
Report issued:	20 April 2012
	This is a supplementary report to report number 44769 issued 20 April 2012.
Notes:	Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
Key:	U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

K Campbell

Karan Campbell Director John Campbell Director

Unit 25a-25b Number One Industrial Estate, Consett, County Durham, DH8 6TJ Tel 01207 581260 Fax 01207 581582 Email info@chemtech-env.co.uk

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are exclusive of stones.

Lab ref	Sample id	Depth (m)	Soil description	Description of material	% Retained	Moisture
			passing 2mm sieve	retained on 2mm sieve	on 2mm sieve	(%)
44769-1	HP 1	0.30	Sand	Stones & Gravel	15.8	9.1
44769-2	HP 2	0.20	Sand	Stones, Gravel, Clinker & Brick	69.0	11.4
44769-3	WS 1	0.20	Sand	Stones, Clinker, Brick & Gravel	66.8	12.9
44769-4	WS 2	0.30	Sand	Stones, Clinker, Brick & Gravel	72.1	10.1
44769-5	WS 3	0.15	Sand	Stones, Clinker, Brick & Gravel	74.4	9.1
44769-6	WS 3	1.20	Sandy Clay	Gravel	10.2	12.7
44769-7	WS 4	0.55	Ashy Sandy Clay	Stones, Gravel & Clinker	42.3	14.5
44769-8	WS 5	0.45	Ashy Sand	Clinker & Stones	73.7	17.7
44769-9	WS 5	1.30	Ashy Sand Clay	Clinker & Gravel	43.4	21.6
44769-10	WS 6	1.00	Clayey Sand	Stones & Gravel	31.5	10.9
44769-11	WS 8	0.50	Clayey Sand	Stones, Clinker, Gravel & Brick	63.9	12.7
44769-12	WS 9	0.30	Sand	Stones, Gravel & Clinker	61.1	10.0

SOILS

Lab number			44769-1	44769-2	44769-3	44769-4	44769-5	44769-6
Sample id			HP 1	HP 2	WS 1	WS 2	WS 3	WS 3
Depth (m)	1		0.30	0.20	0.20	0.30	0.15	1.20
Test	Method	Units						
Arsenic (total)	CE054 ^M	mg/kg As	7.2	15	10	23	7.1	16
Boron (water soluble)	CE063 ^M	mg/kg B	0.4	<0.3	<0.3	0.4	0.4	<0.3
Cadmium (total)	CE054 ^M	mg/kg Cd	0.5	0.4	0.7	0.8	0.7	0.9
Chromium (total)	CE054 ^M	mg/kg Cr	24	14	19	21	40	25
Copper (total)	CE054 ^M	mg/kg Cu	13	59	46	43	18	34
Lead (total)	CE054 ^M	mg/kg Pb	6.2	3019	348	74	6.9	37
Mercury (total)	CE054	mg/kg Hg	0.6	18.1	<0.5	<0.5	<0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	27	11	24	29	33	28
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	32	91	176	64	43	62
рН	CE004 ^M	units	7.9	8.6	8.3	8.5	8.7	8.0
Sulphate (2:1 water soluble)	CE049 ^U	mg/l SO ₄	14	11	17	70	16	12
Sulphur (free)	CE034	mg/kg S	<10	<10	15	121	<10	<10
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Cyanide (total)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Thiocyanate	CE014 ^M	mg/kg SCN	6.5	<1	<1	<1	<1	<1
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
РАН	1							
Naphthalene	CE087	mg/kg	<0.1	<0.1	0.3	0.2	<0.1	<0.1
Acenaphthylene	CE087	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1	<0.1
Acenaphthene	CE087	mg/kg	<0.1	4.0	0.3	0.2	<0.1	<0.1
Fluorene	CE087	mg/kg	<0.1	2.2	0.3	0.1	<0.1	<0.1
Phenanthrene	CE087	mg/kg	1.2	13.9	3.1	1.7	0.2	<0.1
Anthracene	CE087	mg/kg	0.4	7.7	0.4	0.2	<0.1	<0.1
Fluoranthene	CE087	mg/kg	3.8	47.5	3.1	1.6	0.2	<0.1
Pyrene	CE087	mg/kg	3.5	42.9	2.9	1.4	0.3	<0.1
Benzo(a)anthracene	CE087	mg/kg	2.0	24.9	1.2	0.6	0.2	<0.1
Chrysene	CE087	mg/kg	1.6	23.4	1.4	0.7	0.1	<0.1
Benzo(b)fluoranthene	CE087	mg/kg	2.1	32.3	1.3	0.5	0.2	<0.1
Benzo(k)fluoranthene	CE087	mg/kg	0.7	13.3	0.4	0.3	<0.1	<0.1
Benzo(a)pyrene	CE087	mg/kg	1.8	32.3	1.1	0.5	0.2	<0.1
Indeno(123cd)pyrene	CE087	mg/kg	1.0	16.7	0.6	0.2	<0.1	<0.1
Dibenz(ah)anthracene	CE087	mg/kg	0.2	3.7	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	CE087	mg/kg	1.1	17.8	0.7	0.3	0.1	<0.1
PAH (total)	CE087	mg/kg	19	283	17	8.5	<5	<5
трн	-	-		•	•	•	•	•
TPH (C10-C40)	CE033 ^U	mg/kg	32	1236	545	251	440	<10

SOILS

Lab number			44769-7	44769-8	44769-9	44769-10	44769-11	44769-12
Sample id			WS 4	WS 5	WS 5	WS 6	WS 8	WS 9
Depth (m)			0.55	0.45	1.30	1.00	0.50	0.30
Test	Method	Units						
Arsenic (total)	CE054 [™]	mg/kg As	16	29	37	5.2	14	5.3
Boron (water soluble)	CE063 ^M	mg/kg B	0.6	0.4	1.4	<0.3	0.4	0.7
Cadmium (total)	CE054 ^M	mg/kg Cd	0.8	1.2	1.5	0.4	0.7	0.4
Chromium (total)	CE054 ^M	mg/kg Cr	24	22	25	19	26	16
Copper (total)	CE054 ^м	mg/kg Cu	30	76	122	14	35	17
Lead (total)	CE054 ^M	mg/kg Pb	37	72	3307	14	49	21
Mercury (total)	CE054	mg/kg Hg	<0.5	1.3	<0.5	0.6	0.9	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	27	40	33	22	33	14
Selenium (total)	CE054 ^M	mg/kg Se	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Zinc (total)	CE054 ^M	mg/kg Zn	59	118	368	28	54	32
рН	CE004 ^M	units	7.8	8.1	7.4	8.0	10.1	10.0
Sulphate (2:1 water soluble)	CE049 ^U	mg/l SO ₄	48	84	<10	12	91	184
Sulphur (free)	CE034	mg/kg S	39	119	85	<10	26	<10
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Cyanide (total)	CE077	mg/kg CN	<2	<2	<2	<2	<2	<2
Thiocyanate	CE014 ^M	mg/kg SCN	1.5	<1	4.8	4.5	<1	<1
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
РАН		•		•			•	
Naphthalene	CE087	mg/kg	0.3	0.1	0.3	<0.1	<0.1	2.3
Acenaphthylene	CE087	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1	0.7
Acenaphthene	CE087	mg/kg	<0.1	<0.1	7.2	<0.1	<0.1	9.1
Fluorene	CE087	mg/kg	<0.1	<0.1	4.4	<0.1	<0.1	9.2
Phenanthrene	CE087	mg/kg	0.4	0.6	39.7	0.3	0.4	89.3
Anthracene	CE087	mg/kg	<0.1	<0.1	8.8	0.2	<0.1	26.4
Fluoranthene	CE087	mg/kg	0.1	0.4	70.6	1.3	0.9	87.5
Pyrene	CE087	mg/kg	0.1	0.4	70.7	1.2	0.9	71.6
Benzo(a)anthracene	CE087	mg/kg	<0.1	0.2	29.1	0.7	0.5	30.4
Chrysene	CE087	mg/kg	<0.1	0.1	30.0	0.5	0.4	27.1
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	0.2	22.6	0.6	0.5	28.7
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	<0.1	11.6	0.4	0.3	12.6
Benzo(a)pyrene	CE087	mg/kg	<0.1	0.2	23.6	0.6	0.4	28.1
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	<0.1	10.3	0.4	0.3	13.8
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	<0.1	2.7	<0.1	<0.1	3.4
Benzo(ghi)perylene	CE087	mg/kg	<0.1	0.1	11.9	0.3	0.3	14.6
PAH (total)	CE087	mg/kg	<5	<5	344	6.5	<5	455
ТРН								
TPH (C10-C40)	CE033 ^U	mg/kg	97	99	1369	42	74	2005

LEACHATES

Lab number			44769-2L	44769-9L	44769-12L	
Sample id			HP 2	WS 5	WS 9	
Depth (m)			0.20	1.30	0.30	
Test	Method	Units				
Arsenic (dissolved)	CE055	mg/l As	0.016	0.016	0.007	
Cadmium (dissolved)	CE055 ^U	mg/l Cd	<0.001	<0.001	<0.001	
Chromium (dissolved)	CE055 ^U	mg/l Cr	0.007	<0.003	<0.003	
Copper (dissolved)	CE055 ^U	mg/l Cu	0.015	0.010	<0.004	
Lead (dissolved)	CE055 ^U	mg/l Pb	0.358	0.055	<0.009	
Mercury (dissolved)	CE055	mg/l Hg	<0.001	<0.001	<0.001	
Nickel (dissolved)	CE055 ^U	mg/l Ni	0.016	0.016	<0.003	
Selenium (dissolved)	CE055	mg/l Se	0.002	0.004	0.002	
Zinc (dissolved)	CE055 ^U	mg/l Zn	<0.020	<0.020	0.034	
PAHs						
Naphthalene	CE087	mg/l	0.0005	<0.0001	<0.0001	
Acenaphthylene	CE087	mg/l	<0.0001	<0.0001	<0.0001	
Acenaphthene	CE087	mg/l	0.0001	<0.0001	0.0005	
Fluorene	CE087	mg/l	<0.0001	<0.0001	0.0006	
Phenanthrene	CE087	mg/l	0.0008	0.0083	0.0034	
Anthracene	CE087	mg/l	0.0001	0.0004	0.0005	
Fluoranthene	CE087	mg/l	0.0013	0.0021	0.0012	
Pyrene	CE087	mg/l	0.0014	0.0014	0.0008	
Benzo(a)anthracene	CE087	mg/l	0.0004	0.0002	0.0003	
Chrysene	CE087	mg/l	0.0007	0.0002	0.0002	
Benzo(b)fluoranthene	CE087	mg/l	<0.0001	0.0001	<0.0001	
Benzo(k)fluoranthene	CE087	mg/l	<0.0001	<0.0001	<0.0001	
Benzo(a)pyrene	CE087	mg/l	<0.0001	<0.0001	<0.0001	
Indeno(123cd)pyrene	CE087	mg/l	<0.0001	<0.0001	<0.0001	
Dibenz(ah)anthracene	CE087	mg/l	<0.0001	<0.0001	<0.0001	
Benzo(ghi)perylene	CE087	mg/l	<0.0001	<0.0001	<0.0001	
PAH (total)	CE087	mg/l	0.0053	0.0127	0.0075	

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE054	Arsenic (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg As
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	М	0.3	mg/kg B
CE054	Cadmium (total)	Aqua regia digest, ICP-OES	Dry	М	0.2	mg/kg Cd
CE054	Chromium (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Cr
CE054	Copper (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Cu
CE054	Lead (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Pb
CE054	Mercury (total)	Aqua regia digest, ICP-OES	Dry		0.5	mg/kg Hg
CE054	Nickel (total)	Aqua regia digest, ICP-OES	Dry	М	1	mg/kg Ni
CE054	Selenium (total)	Aqua regia digest, ICP-OES	Dry	М	0.3	mg/kg Se
CE054	Zinc (total)	Aqua regia digest, ICP-OES	Dry	М	3	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	Wet	М	-	units
CE049	Sulphate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	10	mg/l SO ₄
CE034	Sulphur (free)	Solvent extraction, HPLC	Dry		10	mg/kg S
CE079	Sulphide	Extraction, Continuous Flow Colorimetry	Wet		10	mg/kg S ²⁻
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	Wet		2	mg/kg CN
CE077	Cyanide (total)	Extraction, Continuous Flow Colorimetry	Wet		2	mg/kg CN
CE014	Thiocyanate	Weak acid extraction, Colorimetry	Dry	М	1	mg/kg SCN
CE078	Phenols (total)	Extraction, Continuous Flow Colorimetry	Wet		0.5	mg/kg PhOH
CE087	PAH (speciated)	Solvent extraction, GC-MS	Wet		0.1	mg/kg
CE087	PAH (total)	Solvent extraction, GC-MS	Wet		5	mg/kg
CE033	TPH (C10-C40)	Solvent extraction, GC-FID	Wet	U	10	mg/kg

METHOD DETAILS

METHOD	LEACHATES	METHOD SUMMARY	STATUS	LOD	UNITS
CE055	Arsenic (dissolved)	ICP-OES		0.001	mg/l As
CE055	Cadmium (dissolved)	ICP-OES	U	0.001	mg/l Cd
CE055	Chromium (dissolved)	ICP-OES	U	0.003	mg/l Cr
CE055	Copper (dissolved)	ICP-OES	U	0.004	mg/l Cu
CE055	Lead (dissolved)	ICP-OES	U	0.009	mg/l Pb
CE055	Mercury (dissolved)	ICP-OES		0.001	mg/l Hg
CE055	Nickel (dissolved)	ICP-OES	U	0.003	mg/l Ni
CE055	Selenium (dissolved)	ICP-OES		0.001	mg/l Se
CE055	Zinc (dissolved)	ICP-OES	U	0.020	mg/l Zn
CE087	PAH (speciated)	Solvent extraction, GC-MS		0.0001	mg/l
CE087	PAH (total)	Solvent extraction, GC-MS		0.0001	mg/l

							Gro	und Gas and	Groundwat	er Monitorir	ng Resu	lts												
Sit	e No:	GR	S0112-1458																					
Site	Name:	Former	Gardeners A	Arms	Weather Conditions: Rain				Pre	essure T	rend		Fal	ling		RISK								
D	Date:	0	3/04/2012		1												SOLUTIONS							
		CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H_2S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks							
	Ambient		0	0	21	79	0	L	0	0														
WS3		30 Sec	0	1	16	83	0	L	0	0														
	Installation	1 Min	0	0.8	16.8	86.4	0	L	0	0	0	1.5	13.6	0.31	998	-	1							
		5 Min	0	1.4	13.8	84.8	0	L	0	0														
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min														
F	low (l/h)	-0.1	0	-0.1	-0.1	-0.1	0	-0.1	-0.1	-0.1														
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	(Low/Med /High)	H₂S ppm	CO ppm	CH ₄ (%)	CO2 (%)	0 ₂ (%)	Pressure (mB)	Pressure (mB)	Groundwater (mbgl)	(mbgl)	Remarks						
	Amb	ient	0	0	21.3	78.7	0	L	0	0														
WS1		30 Sec	0	0	21.5	78.5	0	L	0	0					-0.03									
	Installation	1 Min	0	0	21.5	78.5	0	L	0	0	0	0	21.5	0 21.5		-0.03 998	-0.03 99	-0.03 9	998	0.96	2.91			
		5 Min	0	0	21.5	78.5	0	L	0	0														
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min														
F	low (l/h)	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6														
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H₂S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks						
	Amb	ient	0	0	21.6	78.4	0	L	0	0														
WS7		30 Sec	0	0.7	21.1	78.2	0	L	0	0														
	Installation	1 Min	0	0.7	21.1	78.2	0	L	0	0	0	0 0.7	21.1	-0.06	998	-	2.95							
	5 Min	0	0.7	21.1	78.2	0	L	0	0															
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min														
F	low (l/h)	0	0	0	0	0	0	0	0	0														

	Ground Gas and Groundwater Monitoring Results																			
	Site No:	(GRS0112-1458	3																
S	te Name:	Form	er Gardeners	Arms	Weather Conditions: Sunny				Pre	essure T	rend		Ste	ady						
	Date:		12/04/2012]												SOLUTIONS			
			-																	
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H_2S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks		
	Ambient		0	0	20.9	79.1	0	L	0	0										
WSB		30 Sec	0.1	0	20.8	79.2	0	L	0	0										
	Installatio	n 1 Min	0	0	20.8	79.2	0	L	0	0	0.1	0	20.8	0	998	0.7	1			
		5 Min	0	0	20.8	79.2	0	L	0	0										
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min										
	Flow (I/h) 0 0		0	0	0	0	0	0	0	0										
	CH _{4 (%)} C		CO _{2 (%)}	0 _{2 (%)}	BAL (%)	LEL (%)	(Low/Med /High)	H₂S ppm	CO ppm	CH ₄ (%)	CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Groundwater (mbgl)	Depth to Base (mbgl)	Remarks			
	A	mbient	0	0	21	79	0	L	0	0										
WS1		30 Sec	0	0.1	20.7	79.2	0	L	0	0				-0.04						
	Installatio	າ 1 Min	0	0	20.8	79.2	0	L	0	0	0	0.1	20.7		-0.04 998	1.08	2.9			
		5 Min	0	0	20.8	79.2	0	L	0	0										
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min										
	Flow (I/h)	0	0	0	0	0	0	0	0	0										
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H ₂ S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks		
	۵	mbient	0	0	20.9	79.1	0	L	0	0										
WS7		30 Sec	0	0.6	19.9	79.5	0	L	0	0		0 0.6								
	Installatio	n 1 Min	0	0.6	19.9	79.6	0	L	0	0	0			-0.04	998	2.88	2.95			
		5 Min	0	0.6	19.9	79.5	0	L	0	0										
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min										
	Flow (l/h)	0	0	0	0	0	0	0	0	0										

							Gro	ound Gas and	Groundwat	er Monitoriı	ng Resu	lts						
Site No: GRS0112-1458													1					
Site Name:		Former Gardeners Arms			Weather Conditions:			Cloudy		Pressure Trend				Ris	ing			
Date: 20/04/2012																		
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H ₂ S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks
WS3	Ambient		0	0	20.8	79.2	0	L	0	0								
	Installation	30 Sec	0	0.1	20.1	79.8	0	L	0	0				-0.07	987	0.6	1	
		1 Min	0	0.1	20.2	79.7	0	L	0	0	0	0.1	20.1					
		5 Min	0	0.1	20.2	79.7	0	L	0	0								
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min								
FI	ow (l/h)	0	0	0	0	0	0	0	0	0								
		CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	(Low/Med /High)	H ₂ S ppm	CO ppm	CH ₄ (%)	CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Groundwater (mbgl)	Depth to Base (mbgl)	Remarks	
	Ambient		0	0	20.9	79.1	0	L	0	0								
WS1	Installation	30 Sec	0	0.3	20.5	79.2	0	L	0	0	0 0		20.5	-0.08	987	1.1	2.9	
		1 Min	0	0.3	20.6	79.1	0	L	0	0		0.3						
		5 Min	0	0.1	20.7	79.2	0	L	0	0								
Time 1		10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min								
Flow (l/h) -4.8		-4.8	3.5	4.8	4.8	4.8	4.7	4.8	4.8	4.8								
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H₂S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks
WS7	Ambient		0	0	21.1	78.9	0	L	0	0								
	Installation	30 Sec	0	0.8	20	79.2	0	L	0	0			21.1	0	987	2.9	2.95	
		1 Min	0	0.8	20	79.2	0	L	0	0	0	0.8						
		5 Min	0	0.8	20	79.2	0	L	0	0								
Time 1		10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min								
Flow (I/h) 0		0	0	0	0	0	0	0	0	0								

							Gro	ound Gas and	Groundwat	er Monitorii	ng Resu	lts							
Site No: GRS0112-1458														GEOENVIRON	MENTAL				
Site Name:		Former	Former Gardeners Arms			Weather Conditions:		Sunny			Pressure Trend				ing	RISK			
Date: 30/04/2012																			
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H_2S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks	
	Ambient		0	0	20.7	79.3	0	L	0	0									
WS3	Installation	30 Sec	0	0.2	19.6	80.1	0	L	0	0				-0.31	1009	0.5	1		
		1 Min	0	0.1	20.2	79.7	0	L	0	0	0	0.2	19.6						
		5 Min	0	0.1	20.2	79.7	0	L	0	0									
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min									
FI	Flow (l/h)		0.1	0	0	0	0	0	0	0									
		·+	CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	(Low/Med /High)	H ₂ S ppm	CO ppm	CH ₄ (%)	CO ₂ (%)	0 ₂ (%)	Pressure (mB)	Pressure (mB)	Groundwater (mbgl)	(mbgl)	Remarks	
	Ambient		0	0	20.8	79.2	0	L	0	0									
WS1	Installation	30 Sec	0	2.5	16.5	81	0	L	0	0	0 2.5		16.5	-0.28	1009			Installation damaged, bung could not be	
		1 Min	0	2.4	16.7	81	0	L	0	0		2.5							
		5 Min	0	2.3	16.8	80.9	0	L	0	0								removed	
Time 10 sec		10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min									
Flow (I/h) -4.1		-4.1	-1.3	0	0	0	0	0	0	0									
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H_2S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks	
WS7	Ambient		0	0	20.8	79.2	0	L	0	0									
		30 Sec	0	0.7	18.7	80.6	0	L	0	0			18.7	-0.34	1009	2.68	2.95		
	Installation	1 Min	0	0.7	18.7	80.6	0	L	0	0	0	0.7							
		5 Min	0	0.7	18.7	80.6	0	L	0	0									
Time 10 s		10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min									
Flow (I/h) 0		0	0	0	0	0	0	0	0	0									
							Gro	ound Gas and	Groundwat	er Monitorii	ng Resu	lts							
-----------------------	---	--	-----------------------------	---------------------	--------------------	---------------------	---------	--------------------------------------	------------	--------------	--------------------------------	--------------------------------	---------------------------	---------------------------	---------------------------------------	-----------------------------------	-------------------------	---------	
Site No: GRS0112-1458													Falling		GEOENVIRONMENTAL Risk Solutions				
Site Name:		Former	Former Gardeners Arms			Weather Conditions:		Rain			Pressure Trend								
Date:			9/05/2012																
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H_2S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks	
WS3	Ambient		0	0	21	79	0	L	0	0									
	Installation	30 Sec	0	0	20.9	79.1	0	L	0	0	0 0		20.9	-0.15	1002	0.7	1		
		1 Min	0	0	20.9	79.1	0	L	0	0		0							
		5 Min	0	0	20.9	79.1	0	L	0	0									
	Time	10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min									
Flow (l/h)		0	0	0	0	0	0	0	0	0									
WS1 Fl	Amb Installation Time ow (I/h)	ient 30 Sec 1 Min 5 Min 10 sec	30 Sec 1 Min 5 Min 10 sec																
			CH _{4 (%)}	CO _{2 (%)}	O _{2 (%)}	BAL (%)	LEL (%)	H ₂ (Low/Med /High)	H₂S ppm	CO ppm	Peak CH ₄ (%)	Peak CO ₂ (%)	Min 0 ₂ (%)	Relative Pressure (mB)	Atmospheric Pressure (mB)	Depth to Groundwater (mbgl)	Depth to Base (mbgl)	Remarks	
WS7	Ambient		0	0	20.9	79.1	0	L	0	0									
	Installation	30 Sec	0	1	19.3	79.7	0	L	0	0	0	1	19.3	0.32	1002	2.8	2.95		
		1 Min	0	1	19.3	79.7	0	L	0	0									
		5 Min	0	1	19.3	79.7	0	L	0	0									
Time		10 sec	30 sec	1 min	2 min	3 min	4 min	5 min	10 min	15 min									
														-					