

SITE LOCATED OFF GOODLASS ROAD, SPEKE

FLOOD RISK ASSESSMENT Final Report v1.2

February 2011

Weetwood No 2 Smithy Farm Chapel Lane Bruera Chester CH3 6EW

Tel: 01244 677060 info@weetwood.net www.weetwood.net

Report Title:Site Located off Goodlass Road, Speke
Flood Risk Assessment
Final Report v1.2Client:Speke Business Park Limited

Date of Issue: 28 February 2011

Prepared by:	Carina Clarke BSc (Hons) Project Manager
Checked by:	Emily Farquharson-Smith BSc (Hons) Project Manager
Approved by:	Andrew Grime BEng MBA CEng C.WEM MICE FCIWEM Managing Director

This document has been prepared solely as a Flood Risk Assessment for Speke Business Park Limited. Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

CONTENTS

	Page
Signature Sheet	i
Contents	ii
List of Tables, Figures & Appendices	iii

1	INTRODUCTION	. 1
1.1 1.2 1.3 1.4	SITE LOCATION EXISTING AND PROPOSED DEVELOPMENT SITE LEVELS ACCESS AND EGRESS	1 2 2 2
2	PLANNING POLICY STATEMENT 25 (PPS25)	. 3
2.1 <i>2.2</i> 2.3 2.4 2.5	ENVIRONMENT AGENCY FLOOD MAP BREEAM CREDIT STRATEGIC FLOOD RISK ASSESSMENT SEQUENTIAL TEST DEVELOPMENT AND FLOOD RISK	3 3 3 3 4
3	FLOOD RISK	. 5
3.1 3.2 3.3 3.4 <i>3.5</i>	TIDAL FLOOD RISK - RIVER MERSEY HISTORICAL FLOOD RECORDS GROUNDWATER FLOODING SURFACE WATER FLOODING BREEAM CREDIT	5 5 6 7
4	MITIGATION MEASURES	. 8
4.1 4.2	FLOOD MITIGATIONACCESS AND EGRESS	8 8
5	SURFACE WATER	. 9
5.1 5.2 5.3 5.4 <i>5.5</i>	REQUIREMENTS FOR SURFACE WATER DRAINAGE AT THE SITE SITE AREAS SURFACE WATER RUNOFF FROM THE EXISTING SITE SURFACE WATER RUNOFF FROM THE REDEVELOPED SITE BREEAM CREDITS	9 9 9 10 12
6	CONCLUSIONS	13
6.1	PLANNING POLICY STATEMENT 25 (PPS25)	13

6.2 E	BREEAM INDUSTRIAL	2008 ASSESSOR	MANUAL: POL 5	(FLOOD RISK)	13
-------	-------------------	---------------	---------------	--------------	----

7	RECOMMENDATIONS	15
		± 0

LIST OF TABLES

Table 1:	Site Areas	9
Table 2:	Existing Runoff from Impermeable Areas1	0

LIST OF FIGURES

Figure 1:	Site Location1	L
Figure 2:	Environment Agency Flood Map	3

LIST OF APPENDICES

- Appendix A: Proposed Site Layout
- Appendix B: Topographic Survey
- Appendix C: United Utilities Public Sewer Record
- Appendix D: Modified Rational Method Calculation
- Appendix E: MicroDrainage Storage Volume Calculation

1 INTRODUCTION

Weetwood has been instructed by Speke Business Park Limited to undertake a Flood Risk Assessment (FRA) for the proposed redevelopment of a site located off Goodlass Road, Speke in accordance with the requirements of Planning Policy Statement 25 (PPS25): Development and Flood Risk.

In addition this report has been prepared in order to demonstrate compliance with Pol 5 (Flood Risk) of the *BRE Environmental and Sustainability Standard: BREEAM Industrial 2008 Assessor Manual*. Within the *BREEAM 2008 Industrial Assessor Manual* credits are awarded as follows for Pol 5:

Two credits

- 1. Where the assessed development is situated in a flood zone that is defined as having a <u>low annual probability</u> of flooding
- 2. A site specific FRA confirms that there is a low risk of flooding from all sources

One additional credit

- 3. Where attenuation measures are specified to ensure that the peak run-off rate from the site to the watercourse (natural or municipal) is no greater for the developed site than it is for the pre-development site
- 4. The capacity of the attenuation measures includes an allowance for climate change

1.1 SITE LOCATION

The site is located at Ordnance Survey National Grid Reference SJ 419 844 (**Figure 1**).

Image reproduced with permission of Ordnance Survey and Ordnance Survey of Northern Ireland

Figure 1: Site Location

1.2 EXISTING AND PROPOSED DEVELOPMENT

The site formerly comprised part of a paint and varnishing works. The buildings associated with the former paint and varnishing works have been demolished to allow for redevelopment. Currently, the site is comprised entirely of hardstanding areas.

Proposals are for the construction of four blocks of industrial units, associated car parking, and small landscaped areas. General industry is classified as '*less vulnerable'* development in Table D.2 of PPS25.

1.3 SITE LEVELS

A topographic survey of the site is provided in **Appendix B**. Site levels are in the region of 26.22 and 26.32 metres Above Ordnance Datum (m AOD).

1.4 ACCESS AND EGRESS

Access and egress for the site is provided directly off Goodlass Road, which leads in an easterly direction to Speke Hall Road.

2 PLANNING POLICY STATEMENT 25 (PPS25)

The aim of PPS25 is to ensure that flood risk is taken into account at all stages in the planning process and is appropriately addressed.

2.1 ENVIRONMENT AGENCY FLOOD MAP

According to the Environment Agency (EA) flood map (**Figure 2**), the site is located in Flood Zone 1 (land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding in any year (< 0.1%)).

Flooding from rivers / sea without defences (1 in 100 yr) – Flood Zone 3 Extent of extreme flood (1 in 1000 yr) – Flood Zone 2

Environment Agency, 100026380, 2010

Figure 2: Environment Agency Flood Map

2.2 BREEAM CREDIT

Flood Zone 1 is defined in Table D.1 of PPS25 as having a <u>low annual</u> <u>probability</u> of flooding. Therefore, the proposed redevelopment demonstrates compliance with point 1 (as previously detailed) of Pol 5 (Flood Risk) of the *BREEAM 2008 Industrial Assessor Manual*.

2.3 STRATEGIC FLOOD RISK ASSESSMENT

A SFRA was published by Liverpool City Council in 2008. The SFRA has been reviewed and the information therein has been used to inform this FRA.

2.4 SEQUENTIAL TEST

The aim of the Sequential Test (as outlined in Annex D of PPS25 and Chapter 4 of the PPS25 Practice Guide) is to encourage preference to be given to locating new development in areas at the lowest probability of flooding (i.e. Flood Zone 1).

The proposed development site is situated within Flood Zone 1 and is therefore shown to satisfy the requirements of the Sequential Test.

2.5 DEVELOPMENT AND FLOOD RISK

Table D.1 of PPS25 states that for development proposals on sites in Flood Zone 1 comprising one hectare or above, the vulnerability to flooding from other sources and the effect of the new development on surface water run-off should be incorporated in a FRA. This information is also required to demonstrate compliance with Pol 5 (Flood Risk) of the *BREEAM 2008 Industrial Assessor Manual.*

Other potential sources of flooding are discussed in **Section 3** of this report. The effect of the new development on surface water run-off is addressed in **Section 4**.

3 FLOOD RISK

3.1 TIDAL FLOOD RISK - RIVER MERSEY

The River Mersey Estuary is located approximately 2.2km to the south of the proposed development site.

As shown in **Figure 2** the site is not shown to be at risk of flooding from this source.

3.2 HISTORICAL FLOOD RECORDS

The SFRA does not list any historic records of flooding at or in the vicinity of the site.

The British Hydrological Society (BHS) Chronology¹ does not list any records of flooding at this location.

3.3 **GROUNDWATER FLOODING**

Groundwater flooding generally occurs during intense, long-duration rainfall events, when infiltration of rainwater into the ground raises the level of the water table until it exceeds ground levels. It is most common in low-lying areas overlain by permeable soils and permeable geology, or in areas with a naturally high water table.

A geo-environmental investigation and assessment² has been prepared for the portion of land located immediately adjacent to the eastern boundary of the site. This report indicates that natural soil conditions (beneath the top soil) are generally comprised of 'brown or reddish brown, sandy, gravelly clay' (glacial till). 'The clay was assessed as being soft or firm initially becoming stronger with depth'. This suggests that the risk of groundwater flooding at the site would be low.

According to Section 5.59 of the SFRA 'groundwater flooding could be an issue in Liverpool as the water table is rising'.

The EA Mersey Estuary Catchment Flood Management Plan (CFMP) states³ 'groundwater levels are rising in Liverpool and the Wirral...but in general, there is no known documented evidence of surface flooding from groundwater in the Mersey Estuary CFMP area'.

Any residual risk of groundwater flooding to the proposed buildings could be mitigated by raising finished floor levels above the levels of the immediately adjacent surrounding land.

¹ British Hydrological Society Chronology http://www.dundee.ac.uk/geography/cbhe/

² Results of a Phase ii Geo-Environmental Investigation and Assessment, Goodlass Road, Speke, February 2008

³ EA Mersey Estuary Catchment Flood Management Plan Summary Report (December 2009)

3.4 SURFACE WATER FLOODING

Surface water flooding comprises *pluvial flooding*, *sewer flooding* and flooding from *highway drains and gullies*.

3.4.1 Pluvial Flooding

Pluvial flooding results from rainfall-generated overland flow, before the runoff enters any watercourse or sewer, or where the sewerage/drainage systems and watercourses are overwhelmed and therefore unable to accept surface water. Pluvial flooding is usually associated with high intensity rainfall events but may also occur with lower intensity rainfall where the ground is saturated, developed or otherwise has low permeability resulting in overland flow and ponding within depressions in the topography.

Section 3.38 of the SFRA confirms that 'there is limited information regarding surface water flooding in the catchment'.

As previously noted, the site is currently comprised entirely of impermeable areas. Through the introduction of new landscaped (permeable) areas redevelopment of the site will reduce surface water runoff both at the site and in the surrounding areas. This will help minimise the likelihood of pluvial flooding; any residual risk to the proposed buildings could be mitigated by raising finished floor levels above the levels of the immediately adjacent surrounding land.

3.4.2 Sewer Flooding

Sewer flooding occurs when the capacity of underground sewerage systems is exceeded, resulting in flooding inside and outside of buildings. Normal discharge of sewers and drains through outfalls may be impeded by high water levels in receiving waters.

Table 10 of the SFRA identifies the number of properties within postcode areas which have experienced sewer flooding; no properties in the postcode area of the site (L24) are identified.

United Utilities has confirmed that they do hold any records of sewer flooding at or in the immediate vicinity of the site.

The risk of flooding from sewers is therefore considered to be low.

3.4.3 Flooding from Highway Drains and Gullies

Table 8 of the SFRA records an incident of flooding in 2002 at Speke Road (between Speke Hall Road and Speke Retail Park), which is located approximately 550m to the south of the site.

There are no recorded incidents at or in the vicinity of the site and therefore the risk of flooding from highway drains and gullies is considered to be low.

3.5 BREEAM CREDIT

The above confirms that there is a low risk of flooding from all sources therefore demonstrating compliance with point 2 (as previously detailed) of Pol 5 (Flood Risk) of the *BREEAM 2008 Industrial Assessor Manual*.

4 MITIGATION MEASURES

4.1 FLOOD MITIGATION

In order to mitigate the residual risk from groundwater flooding and pluvial flooding finished floor levels should be set above the levels of the immediately adjacent surrounding land, by at least 150mm.

4.2 ACCESS AND EGRESS

As previously noted, access and egress for the site is provided directly off Goodlass Road, which leads in an easterly direction to Speke Hall Road. This route is shown to be located within Flood Zone 1 and will therefore provide dry access and egress to the site.

5 SURFACE WATER

5.1 **REQUIREMENTS FOR SURFACE WATER DRAINAGE AT THE SITE**

PPS25 recommends that surface water arising from the developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development.

Redevelopment of the site should be such that the peak flow rates of surface water leaving the developed site are no greater than the rates prior to development. Opportunities to reduce surface water runoff, and the associated flood risk, should also be identified and climate change taken into consideration.

Recognising the above, and the requirements of the EA⁴, Building Regulations Approved Document H, the Code for Sustainable Homes Technical Guide (Category 4) and the requirement placed upon local planning authorities in PPS25 to promote the use of Sustainable Drainage Systems (SUDS), surface water runoff from the proposed site should demonstrate:

- no increase in existing flow rates discharged to watercourse/public sewer
- the use of SUDS as the preferred method of dealing with surface water
- how runoff up to the 1 in 100 year event plus an allowance for climate change will be dealt with without increasing flood risk elsewhere

5.2 SITE AREAS

The existing and proposed impermeable and permeable areas at the site are shown in **Table 1**. This indicates that the extent of impermeable area at the site will decrease by 0.04ha following redevelopment of the site.

	Existing Site	Redeveloped Site
Impermeable Area (ha)	1.40	1.36
Permeable Area (ha)	0.00	0.04
TOTAL (ha)	1.40	1.40

Table 1: Site Areas

5.3 SURFACE WATER RUNOFF FROM THE EXISTING SITE

The United Utilities (UU) public sewer records (**Appendix C**) indicate that there are a number of public sewers in the vicinity of the site. The nearest public sewer to the site is a 1372 x 2057 brick combined sewer which is located to the west of the site. Given that there are no watercourses in the immediate vicinity of the site, and that infiltration is not considered feasible (as detailed in Section 5.4.2.1), it is reasonable to assume that surface water runoff from the existing site discharges into the public brick combined sewer.

⁴ Preliminary Rainfall Runoff Management for Developments, R&D Technical Report W5-074/A/TR/1 Revision C, 2005

5.3.1 Runoff from Existing Impermeable Surfaces

The Modified Rational Method⁵ has been used to calculate the runoff from the impermeable surfaces at the existing site, as detailed in **Appendix D**. The flow rates calculated are shown in **Table 2**.

Return Period	Flow Rate for 1.4ha impermeable area (I/s)
1 in 2 year	225.4
1 in 30 year	421.6
1 in 100 year	538.2

Table 2: Existing Runoff from Impermeable Areas

5.4 SURFACE WATER RUNOFF FROM THE REDEVELOPED SITE

Table 1 indicates that impermeable areas at the site will decrease following redevelopment. The following sections describe how surface water runoff from the redeveloped site may be managed in line with the requirements of PPS25.

5.4.1 Surface Water Discharge Rate

Paragraph F10 of PPS25 states that the surface water drainage arrangements for any site should be such that the peak flow rates of surface water leaving a developed site are no greater than the rates prior to the proposed development.

It is proposed to limit runoff rates from the proposed impermeable areas to **421.6I/s**. This is the existing 1 in 30 year flow rate from the existing impermeable areas, as calculated in **Appendix D** and shown in **Table 2**. This restriction will ensure that rates of runoff from the site do not increase following redevelopment. The drainage system for the proposed site will be designed to manage flows in up to the 1 in 100 year event including an allowance for climate change.

5.4.2 Disposal of Surface Water

Building Regulations Approved Document Part H sets out a hierarchy of preferred methods for the disposal of surface water runoff. These are listed below in order of preference:

- 1. Disposal by infiltration
- 2. Disposal to a watercourse
- 3. Disposal to a public sewer⁶

5.4.2.1 Infiltration

According to the maps provided in *`The Wallingford Procedure*⁷' soil conditions at the site are generally impermeable.

⁵ The Wallingford Procedure, Volume 4, 1981

⁶ Building Regulations Approved Document H Section 3 page 45

⁷ See footnote 4

As noted in Section 3.3 a geo-environmental investigation and assessment[®] has been prepared for the portion of land located immediately adjacent to the eastern boundary of the site. Recognising the soil conditions at the site, the report concludes that '*soakaway drainage will not be possible'*.

Recognising the above, infiltration methods are not considered suitable for the disposal of surface water from the site.

5.4.2.2 Discharge to Watercourse

As previously noted the River Mersey Estuary is located approximately 2.2km to the south of the proposed development site. It is therefore not considered feasible to discharge directly to the estuary.

5.4.2.3 Discharge to Sewer

PPS25 recommends that surface water arising from the redeveloped site should **mimic** the surface water flows arising from the site prior to the proposed redevelopment. Given that it is assumed that surface water runoff from the existing site currently discharges into the public combined brick sewer, it is proposed that surface water runoff from the redeveloped site will mimic the existing situation and continue to discharge into the public sewer system.

UU will need to be consulted at the detailed drainage design stage to confirm that the rate of surface water runoff to the public sewer system is acceptable.

5.4.3 SUDS Options and Storage Calculations

In order to restrict runoff rates from the proposed impermeable areas as set out in **Section 5.4.1**, attenuation storage will be provided.

The surface water storage facilities described in the following sections have been modelled using the *Detailed Design* module of MicroDrainage Source Control.

5.4.3.1 Storage Volume Calculation- Total Storage Volume

The required storage volume has been sized to store the 1 in 100 year storm event including a 20% increase in rainfall intensity in order to allow for climate change in accordance with Table B.2 of PPS25.

The parameters used in the storage calculation along with the MicroDrainage Source Control output results are shown in **Appendix E** which indicates that a storage volume of $129.2m^3$ would be required. An orifice flow control device was used, achieving a flow rate of 420.8 l/s.

SUDS elements may be used to provide the required storage. Typical SUDS components include surface or subsurface storage (such as underground tank or oversized pipes) with flow limiting devices.

⁸ Results of a Phase ii Geo-Environmental Investigation and Assessment, Goodlass Road, Speke, February 2008

5.4.4 Maintenance of SUDS

PPS25 requires that the ownership and responsibility for maintenance of SUDS elements should be clear. In the past local planning authorities and water companies have been reluctant to adopt SUDS. With no arrangements in place that require LPAs or water companies to adopt SUDS their maintenance has subsequently been the responsibility of the developer.

The Flood and Water Management Act (2010) received Royal Assent on 8 April 2010 but the ministerial order to commence that Act has not yet been made. Paragraph 17 of the Act imposes a duty on the approving body (generally a unitary, county or county borough local authority) to adopt and maintain any new drainage system which has been constructed in line with an approved drainage plan and which conforms with national policy and is defined as a 'sustainable drainage system'. Prior to commencement of the Act, there may be a period of consultation to establish some national standards which can be applied by local authorities and developers to suit local conditions. The new approval system is unlikely to be in place until October 2011 at the earliest, and possibly not until April 2012.

In the meantime, options for maintenance of SUDS could include:

• SUDS elements within the curtilage of the site (e.g. tanks) will be the responsibility of the management company

5.4.5 Final Drainage Layout

The purpose of this FRA is to demonstrate that a surface water drainage strategy is feasible for the site given the development proposals and the land available. The site layout provides the opportunity for the inclusion of SUDS elements, ensuring that there will be no increase in surface water runoff from the proposed development.

In is important to note that a final decision on the types of storage to be provided will be made at the detailed drainage design stage.

5.5 BREEAM CREDITS

In order to restrict runoff rates from the proposed areas at the site following redevelopment, attenuation storage of 129.2m³ is proposed and this includes a 20% allowance for climate change.

This therefore demonstrates compliance with points 3 and 4 (as previously detailed) of Pol 5 (Flood Risk) of the *BREEAM 2008 Industrial Assessor Manual*.

6 CONCLUSIONS

6.1 PLANNING POLICY STATEMENT 25 (PPS25)

There are proposals for the redevelopment of a site located off Goodlass Road, Speke. According to the EA flood map the proposed development site is located outside the 1 in 1,000 year flood outline and is therefore defined as being situated within Flood Zone 1.

The proposed development site, being located in Flood Zone 1, is shown to satisfy the requirements of the Sequential Test.

Any residual risk of groundwater flooding or pluvial flooding to the proposed buildings could be mitigated by raising finished floor levels to a minimum of 150mm above the levels of the immediately adjacent surrounding land.

Access and egress for the site is provided directly off Goodlass Road, which leads in an easterly direction to Speke Hall Road. This route is shown to be located within Flood Zone 1 and will therefore provide dry access and egress to the site.

Following redevelopment the overall impermeable areas at the site are expected to decrease. In accordance with Annex F of PPS25, surface water discharges should be no greater than those rates prior to development. A scheme for the provision and implementation of a surface water regulation system following the principles set out in this FRA should be submitted to and approved in writing by the LPA, prior to the commencement of development.

6.2 BREEAM INDUSTRIAL 2008 ASSESSOR MANUAL: POL 5 (FLOOD RISK)

This report has also been prepared in order to demonstrate compliance with Pol 5 (Flood Risk) of the *BRE Environmental and Sustainability Standard: BREEAM Industrial 2008 Assessor Manual.* Within the *BREEAM 2008 Industrial Assessor Manual* credits are awarded as follows for Pol 5:

Two credits

- 1. Where the assessed development is situated in a flood zone that is defined as having a <u>low annual probability</u> of flooding
- 2. A site specific FRA confirms that there is a low risk of flooding from all sources

The EA Flood Maps confirms that the site is located within Flood Zone 1 (i.e. low annual probability of flooding). This FRA confirms that there is a low risk of flooding from all sources. As such, the first two credits of Pol 5 may be awarded to the development.

One additional credit

- 3. Where attenuation measures are specified to ensure that the peak run-off rate from the site to the watercourse (natural or municipal) is no greater for the developed site than it is for the pre-development site
- 4. The capacity of the attenuation measures includes an allowance for climate change

In order to restrict runoff rates from the proposed areas at the site following redevelopment, attenuation storage of 129.2m³ is proposed and this includes a 20% allowance for climate change. The one additional credit may therefore be awarded subject to the implementation of the drainage strategy as outlined within this report.

7 **RECOMMENDATIONS**

This FRA has demonstrated that the proposed development may be completed without conflicting with the requirements of PPS25 subject to the following:

- Finished floor levels to be set at a minimum of 150mm above adjacent ground levels
- The detailed drainage design, developed in accordance with the principles set down in this FRA, should be submitted to and approved by the local planning authority prior to the commencement of development
- The site has satisfied all criteria of the Pol 5 *BREEAM 2008 Industrial Assessors Manual* and as such should be awarded the maximum 3 credits

APPENDIX A:

Proposed Site Layout

APPENDIX B: Topographic Survey

APPENDIX C: United Utilities Public Sewer Record

APPENDIX D: Modified Rational Method Calculation

The Modified Rational Method⁹ has been used to calculate the runoff from the impermeable surfaces at the existing site.

The following parameters have been obtained from the maps in Volume 3 of the Wallingford Procedure:

M5-60 minute rainfall depth:	20 mm
Ratio of M5-60 to M5-2 day rainfall:	0.4
Average Annual Rainfall:	800 mm
Winter Rain Acceptance Potential/ Soil Type :	4 / 0.45
The Urban Catchment Wetness Index (UCWI) value:	85

A time of concentration of 8 minutes has been used comprising a time of entry of 4 minutes and a time of flow of 4 minutes.

A rainfall estimation calculation has been carried out to convert the M5-60 minute rainfall to the 5-minute duration rainfall for the 1 in 2 year, 1 in 30 year and 1 in 100 year return period events. The calculated rainfall intensities for these events are 55.6, 104.0, and 132.8 mm/hr respectively.

The flow rate as given by the Modified Rational Method is:

$Q=2.78 \times C_v \times C_r \times rainfall$ intensity x impermeable area

where:

 C_v is the volumetric runoff coefficient = $P_r/PIMP$ = 0.8 where P_r is Percentage Runoff and PIMP is Percentage Impermeable Area C_r is the routing coefficient = 1.3 Impermeable Area = 1.4 ha

The flow rates for the impermeable areas at the existing site are shown in the table below.

Flow Rates for Impermeable Areas, Existing Site

Return Period	Flow Rate for 1.4ha impermeable area (l/s)
1 in 2 year	225.4
1 in 30 year	421.6
1 in 100 year	538.2

⁹ The Wallingford Procedure, Volume 4, 1981

APPENDIX E: MicroDrainage Storage Volume Calculation

PARKING FOR 83 CARS | per 50sq.m.

AC COMN SCHEDULE

SITE TOTAL	TOTAL	D D 2 3	BLOCK D	TOTAL	0 C 2 C 4 3 2 C	BLOCK C	TOTAL	882 83 84	BLOCK B	TOTAL	A A A A 5 4 3 2 -	BLOCK A
4673sq.m.	540sq.m.	805q.m. 805q.m. 805q.m.		8125q.m.	203sq.m. 203sq.m. 203sq.m. 203sq.m. 203sq.m.		l 2005q.m.	300sq.m. 300sq.m. 300sq.m. 300sq.m.		21215q.m.	301sq.m. 455sq.m. 455sq.m. 455sq.m. 455sq.m. 455sq.m.	
50910sq.ft.	60005q.ft	2000sq.ft. 2000sq.ft. 2000sq.ft.		87405q.ft.	21855q.ft. 21855q.ft. 21855q.ft. 21855q.ft.		133205q.ft.	3330sq.ft. 3330sq.ft. 3330sq.ft. 3330sq.ft.		22850sq.ft.	3250sq.ft. 4900sq.ft. 4900sq.ft. 4900sq.ft. 4900sq.ft.	

©United Utilities 2001. The plan is based upon the Ordnance Survey Map with the sanction of the Controller of H.M.Stationery Office. Crown and United Utilities Water copyrights are reserved. Unauthorised reproduction will infringe these copyrights.

No 2 Smithy Farm Bruera Site located off Goodlass R Speke Speke Date 24 February 2011 File 1822 110224 POND 10 Designed By CarinaClarke Checked By Designed By CarinaClarke Checked By Micro Drainage Source Control W.12.1 Summary of Results for 100 year Return Period (+20%) Storm Event Max Level Max Depth Control (m) Max (r/s) Max Max (r/s) Max Max Max Max Max Max Max Max Max Max Max Max Status Status 15 min Summer 0.926 0.926 393.3 116.8 0 K 120 min Summer 0.926 0.926 393.8 119.6 0 K 130 min Summer 0.926 0.926 393.8 119.6 0 K 1400 min Summer 0.810 0.610 722.8 78.8 8 K 180 min Summer 0.334 0.725 75.3 5.5 0 K 600 min Summer 0.216 0.216 46.0 27.7 9.4 0 K 1260 min Summer 0.139 0.139 2.21.1 0 K 0 K 1260 min Summer 0.139 0.139 2.23 20.6 0 K 1320 m
Bruera Chester CH3 6EW Date 24 February 2011 File 1822 110224 POND 10 Designed By CarinaClarke Checked By Designed By CarinaClarke Checked By Micro Drainage Source Control W.12.1 Summary of Results for 100 year Return Period (+20%) Storm Max Event Max Level (m) Max Optic Control (m) Max Control (m) Max Control (m) Max Control (m) Max Control (m) Status Status 15 min Summer 0.904 0.904 393.3 116.8 0 K 30 min Summer 0.926 0.926 399.8 119.6 0 K 120 min Summer 0.610 0.726 78.8 0 K 136 120 min Summer 0.610 0.728 78.8 0 K 240 min Summer 0.393 137.7 53.4 0 K 400 min Summer 0.248 0.248 63.7 32.1 0 K 600 min Summer 0.179 0.179 33.3 0 K 140 600 min Summer 0.129 0.159 26.3 0.6 0 K 1260 min Summer 0.1159 15
Chester CH36EW Designed By CarinaClarke Checked By Designed By CarinaClarke Checked By Micro Drainage Source Control W.12.1 Designed By CarinaClarke Checked By Designed Checked By Micro Drainage Source Control W.12.1 Summary of Results for 100 year Return Period (+20%) Storm Max Max Max Max Max Status 15 min Summer 0.904 0.904 39.3 116.8 0 K 30 min Summer 0.786 0.786 356.8 101.6 0 K 120 min Summer 0.786 0.786 356.8 101.6 0 K 30 min Summer 0.130 0.161.7 670.0 0 K 100 K 120 min Summer 0.130 0.161.7 773.0 0 K 100 K 300 min Summer 0.134 0.334 10.7 43.1 0 K 200 min Summer 0.134 0.344 10.7 43.1 0 K 300 min Summer 0.134 0.34 0.34 0.33 0.16 200 min Summer
Date 24 Pebruary 2011 Designed by CarinaClarke File 1822 110224 POND 10 Checked By Source Control W.12.1 Summary of Results for 100 year Return Period (+20%) Storm Revent Max Max Max Status is min Summer 0.904 0.904 393.3 116.8 0 K 30 min Summer 0.904 0.926 399.8 119.6 0 K 10 min Summer 0.786 0.786 356.8 101.6 0 K 12 min Summer 0.519 0.519 214.2 67.0 0 K 180 min Summer 0.387 0.384 101.6 0 K 360 min Summer 0.387 0.384 101.2 0 K 480 min Summer 0.238 91.0 38.5 0 K 120 min Summer 0.238 91.0 38.5 0 K 480 min Summer 0.238 91.0 31.0 K 140 min Summer 0.179 31.3 0 K 0 K 2160 min Summer 0.139
Micro Drainage Source Control W.12.1 Summary of Results for 100 year Return Period (+20%) Storm Max Level Max Oph (m) Max Control Volume (m) Status Control (+20%) 15 min Summer 0.904 0.9
Summary of Results for 100 year Return Period (+20%) Storm Max Event Max Opp for the control wolume (m) Max Opp for the control wolume (r) Status (m) 15 min Summer 0.904 0.904 393.3 116.8 0 K 30 min Summer 0.926 0.926 399.8 119.6 0 K 10 min Summer 0.610 0.610 221.8 78.8 0 K 120 min Summer 0.610 0.610 272.8 78.8 0 K 180 min Summer 0.327 0.337 132.1 50.0 0 K 240 min Summer 0.237 0.337 132.1 50.0 0 K 240 min Summer 0.237 0.238 132.1 50.0 0 K 240 min Summer 0.237 0.237 73.5 35.5 0 K 240 min Summer 0.236 0.248 63.7 32.1 0 K 240 min Summer 0.159 0.216 0.216 46.0 7.29 0 K 2160 min Summer 0.179 0.179
Storm Max Level Max Max Max Max Max Max Status 15 min Summer 0.904 0.904 0.904 0.904 (1/s) Max Max Status Max 15 min Summer 0.904 0.904 393.3 116.8 0 K 30 min Summer 0.926 0.9926 399.8 119.6 0 K 60 min Summer 0.519 214.2 67.0 0 K 120 min Summer 0.519 214.2 67.0 0 K 360 min Summer 0.387 132.1 50.0 0 K 480 min Summer 0.387 0.324 0.443.1 0 K 600 min Summer 0.248 0.248 63.7 32.1 0 K 720 min Summer 0.216 0.216 46.0 0 K 1440 min Summer 0.315 0.133 23.1 0 K 2160 min Summer 0.179 0.179 3.3 23.1 0 K 1440 min Summer 0.100 42.10 0 K 2260 min Summer 0.1
Storm Event Max (m) Max Deph (m) Max (Control (1/s) Max Volume (m') Status 15 min Summer 0.904 0.904 393.3 116.8 0 K 30 min Summer 0.786 0.786 399.8 119.6 0 K 120 min Summer 0.519 0.519 2214.2 67.0 0 K 130 min Summer 0.387 0.387 132.1 50.0 0 K 360 min Summer 0.298 0.298 91.0 38.5 0 K 480 min Summer 0.275 79.5 35.5 0 K 720 min Summer 0.248 0.248 63.7 32.1 0 K 1440 min Summer 0.139 215.0 17.4 0 K 2880 min Summer 0.139 15.0 15.3 0 K 2000 min Summer 0.102 10.8 13.1 0 K 2880 min Summer 0.102 10.8 13.1 0 K
Status Max Max<
(m) (m) (1/s) (m³) 15 min Summer 0.904 0.904 393.3 116.8 0 K 30 min Summer 0.786 0.786 356.8 101.6 0 K 120 min Summer 0.610 272.8 78.8 0 K 130 min Summer 0.519 0.519 214.2 67.0 0 K 240 min Summer 0.460 0.460 176.7 59.4 0 K 360 min Summer 0.337 132.1 50.0 0 K 480 min Summer 0.275 79.5 35.5 0 K 960 min Summer 0.276 0.275 79.5 35.5 0 K 2160 min Summer 0.179 33.3 23.1 0 K 2180 min Summer 0.139 216.3 20.6 0 K 4320 min Summer 0.139 15.3 0 K 7200 min Summer 0.139 1.19 15.0 0 K 30 min Summer 0.095 9.5 1.2.0 0 K 15 min
15 min Summer 0.904 0.904 393.3 116.8 0 30 min Summer 0.786 0.786 356.8 101.6 0 K 120 min Summer 0.610 272.8 78.8 0 K 120 min Summer 0.610 272.8 78.8 0 K 240 min Summer 0.450 176.7 59.4 0 K 360 min Summer 0.337 0.387 132.1 50.0 0 K 480 min Summer 0.275 0.275 79.5 35.5 0 K 960 min Summer 0.276 0.275 79.5 35.5 0 K 2160 min Summer 0.216 46.0 27.9 0 K 2160 min Summer 0.179 33.3 23.1 0 K 4320 mis Summer 0.139 15.15 10.0 K K 2160 mis Summer 0.139 15.9 15.3 0 K 2260
60 min Summer 0.726 0.726 352.8 101.6 0 120 min Summer 0.610 0.272.8 78.8 0 K 120 min Summer 0.460 0.460 176.7 59.4 0 K 360 min Summer 0.387 0.321 152.0 0 K 360 min Summer 0.387 0.321 150.0 0 K 480 min Summer 0.387 0.321 50.0 0 K 720 min Summer 0.298 91.0 38.5 0 K 720 min Summer 0.216 0.216 40.0 27.9 0 K 2160 min Summer 0.129 0.159 26.3 20.6 0 K 2200 min Summer 0.159 0.135 19.0 17.4 0 K 2200 min Summer 0.190 10.19 15.1 10.0 K 1008 1008 1008 10.005 40.5 12.0 14.0 K 10
120 min Summer 0.610 0.610 272.8 78.8 0 K 180 min Summer 0.519 214.2 67.0 0 K 360 min Summer 0.387 132.1 50.0 0 K 480 min Summer 0.387 132.1 50.0 0 K 600 min Summer 0.298 91.0 38.5 0 K 720 min Summer 0.275 79.5 35.5 0 K 960 min Summer 0.216 46.0 27.9 0 K 2160 min Summer 0.216 46.0 27.9 0 K 2180 min Summer 0.179 0.133 23.1 0 K 2180 min Summer 0.135 19.0 17.4 0 K 320 min Summer 0.135 19.0 17.4 0 K 7200 min Summer 0.102 10.10 13.1 0 K 10080 min Summer 0.109 12.5 14.0 0 K 10080 min Summer 0.095 9.5 12.2 0 K 10080 min Summer 0.095 9.5 12.2 0 K 10080 min Summer 0.724
240 min Summer 0.460 176.7 59.4 0 K 360 min Summer 0.387 0.387 132.1 50.0 0 K 480 min Summer 0.334 0.372 43.1 0 K 600 min Summer 0.275 79.5 35.5 0 K 720 min Summer 0.275 79.5 35.5 0 K 1440 min Summer 0.248 0.248 63.7 32.1 0 K 2160 min Summer 0.179 33.3 23.1 0 K 2180 min Summer 0.179 13.5 19.0 17.4 0 K 4320 min Summer 0.135 19.0 17.4 0 K 4320 min Summer 0.135 19.0 17.4 0 K 5760 min Summer 0.109 12.5 14.0 0 K 8640 min Summer 0.102 10.8 13.1 0 K 10080 min Summer 0.095 0.955 9.5 12.2 0 K 15 min Summer 0.351 12.4 86.2 0 K 120 min Winter 0.555 0.535 22.4 8
480 min Summer 0.334 0.334 0.107.2 43.1 0 K 600 min Summer 0.298 0.298 91.0 38.5 0 K 720 min Summer 0.275 79.5 35.5 0 K 960 min Summer 0.278 0.278 79.5 35.5 0 K 1440 min Summer 0.216 0.216 46.0 27.9 0 K 2160 min Summer 0.179 0.179 33.3 23.1 0 K 2160 min Summer 0.179 0.179 33.3 23.1 0 K 4320 min Summer 0.135 19.0 17.4 0 K 5760 min Summer 0.139 119 15.3 0 K 8640 min Summer 0.100 10.8 13.1 0 K 10080 min Summer 0.095 0.95 9.5 12.2 0 K 30 min Winter 0.956 0.956 408.6 123.5 0 K 120 min Winter 0.956 0.956 408.6 123.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K <t< td=""></t<>
600 min Summer 0.298 0.298 91.0 38.5 0 K 720 min Summer 0.248 0.248 63.7 32.1 0 K 1440 min Summer 0.216 0.216 46.0 27.9 0 K 2160 min Summer 0.179 33.3 23.1 0 K 2280 min Summer 0.179 0.173 33.3 23.1 0 K 2380 min Summer 0.159 26.3 20.6 0 K 4320 min Summer 0.119 0.159 26.3 20.6 0 K 5760 min Summer 0.119 0.109 12.5 14.0 0 K 5760 min Summer 0.109 0.108 13.1 0 K 10080 min Summer 0.095 9.5 12.2 0 K 15 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 6
960 min Summer 0.248 0.248 63.7 32.1 0 K 1440 min Summer 0.216 0.216 46.0 27.9 0 K 2160 min Summer 0.179 0.179 33.3 23.1 0 K 2880 min Summer 0.159 0.159 26.3 20.6 0 K 4320 min Summer 0.119 0.119 15.0 15.3 0 K 7200 min Summer 0.109 0.109 12.5 14.0 0 K 8640 min Summer 0.109 0.109 12.5 14.0 0 K 8640 min Summer 0.095 0.095 9.5 12.2 0 K 10080 min Summer 0.095 0.956 408.6 123.5 0 K 30 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K 120 min Summer 77.747 22 60 min Summer 77.747 22 60 min Summer 77.747 22 60 min Summer 12.556 96 240 min Summer 12.556 96 240 min Summer 12.556 96 240 min Summer 12.501 188 4800 min Summer 48.347 308 720 min Summer 4.148 734 2160 min Summer 5.740 488 1440 min Summer 5.740 488 1440 min Summer 2.371 1468 4320 min Summer 1.705 2156
2160 min Summer 0.179 0.1210 33.3 23.1 0 K 2800 min Summer 0.159 0.159 26.3 20.6 0 K 4320 min Summer 0.135 0.135 19.0 17.4 0 K 5760 min Summer 0.119 0.119 15.0 15.3 0 K 7200 min Summer 0.109 0.109 12.5 14.0 0 K 8640 min Summer 0.095 9.5 12.2 0 K 10080 min Summer 0.095 0.95 12.2 0 K 30 min Winter 0.956 408.6 123.5 0 K 60 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K 120 min Summer 118 min Summer 118 min Summer 120 min Summer 19.56 15 min Summer 118 min Summer 120 min Summer 120 min Summer 120 min Summer 120 min Summer 118 417 15 15 130 min Summer 120 min Summer 120 min Summer 12.55
2880 min Summer 0.159 20.3 20.6 0 K 4320 min Summer 0.119 0.119 15.0 17.4 0 K 5760 min Summer 0.109 0.109 12.5 14.0 0 K 8640 min Summer 0.109 0.102 10.8 13.1 0 K 10080 min Summer 0.095 0.095 9.5 12.2 0 K 15 min Winter 1.000 1.000 420.8 129.2 0 K 30 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K 120 min Summer 118.417 15 30 min Summer 21.556 96 120 min Summer 21.556 96 240 min Summer 12.501 188 480 min Summer 17.210 128 360 min Summer 8.347 308 720 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 7.210 128 960 min Summer 7.221 368 960 min Summer 7.221 368
5760 min Summer 0.119 0.119 15.0 15.3 0 K 7200 min Summer 0.109 0.109 12.5 14.0 0 K 8640 min Summer 0.102 10.8 13.1 0 K 10080 min Summer 0.095 0.95 9.5 12.2 0 K 15 min Winter 1.000 1.000 420.8 129.2 0 K 30 min Winter 0.724 0.724 335.7 93.5 0 K 60 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K Storm Rain Time-Peak Event (mm/hr) 15 min Summer 118.417 15 30 min Summer 77.747 22 60 min Summer 21.556 96 240 min Summer 21.556 96 240 min Summer 12.501 188 480 min Summer 12.501 188 480 min Summer 9.602 248 600 min Summer 7.221 368 960 min Summer 7.221
1200 min Summer 0.102 0.102 10.8 13.1 0 K 10080 min Summer 0.095 0.095 9.5 12.2 0 K 15 min Winter 1.000 1.000 420.8 129.2 0 K 30 min Winter 0.956 0.956 408.6 123.5 0 K 120 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K 120 min Summer 118.417 15 15 0 min Summer 77.747 22 60 min Summer 21.556 96 188 1480 110 188 1480 1480 144 308 120 128 360 360 308 720 128 368 960 962 248 600 600 600 600 600 600 600 600 600 600 1444
10080 min Summer 0.095 0.095 9.5 12.2 0 K 15 min Winter 1.000 1.000 420.8 129.2 0 K 30 min Winter 0.956 408.6 123.5 0 K 60 min Winter 0.724 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K Storm Rain Time-Peak Event (mm/hr) (mins) 15 min Summer 118.417 15 30 min Summer 77.747 22 60 min Summer 29.354 66 180 min Summer 12.556 96 240 min Summer 12.501 128 360 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 5.740 488 960 min Summer 5.740 488 1440 min Summer 2.992 1100 2880 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
30 min Winter 0.956 0.956 408.6 123.5 0 K 60 min Winter 0.724 335.7 93.5 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K Storm Rain (mm/hr) Time-Peak (mins) 15 min Summer 118.417 15 30 min Summer 77.747 22 60 min Summer 29.354 66 180 min Summer 12.556 96 240 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 7.210 128 360 min Summer 7.221 368 960 min Summer 7.221 368 960 min Summer 7.448 734 2160 min Summer 2.371 1468 4320 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
120 min Winter 0.724 0.724 33.7 33.3 0 K 120 min Winter 0.535 0.535 224.8 69.2 0 K Storm Rain (mm/hr) Time-Peak (mins) 15 min Summer 118.417 15 30 min Summer 77.747 22 60 min Summer 29.354 66 180 min Summer 29.356 96 240 min Summer 21.556 96 240 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 8.347 308 720 min Summer 5.740 488 1440 min Summer 2.992 1100 280 min Summer 2.371 1468 4320 min Summer 1.705 2156 57600 min Summer 1.348 2936
Storm Event Rain (mm/hr) Time-Peak (mins) 15 min Summer 118.417 15 30 min Summer 77.747 22 60 min Summer 48.611 38 120 min Summer 29.354 66 180 min Summer 21.556 96 240 min Summer 17.210 128 360 min Summer 12.501 188 480 min Summer 9.962 2448 600 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 2.992 1100 280 min Summer 2.371 1468 4320 min Summer 1.348 2936
15 min Summer 118.417 15 30 min Summer 77.747 22 60 min Summer 48.611 38 120 min Summer 29.354 66 180 min Summer 21.556 96 240 min Summer 17.210 128 360 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 8.347 308 720 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 2.992 1100 280 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
30 min Summer 77.747 22 60 min Summer 48.611 38 120 min Summer 29.354 66 180 min Summer 21.556 96 240 min Summer 17.210 128 360 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 2.992 1100 2880 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
120 min Summer 29.354 66 180 min Summer 21.556 96 240 min Summer 17.210 128 360 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 8.347 308 720 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 2.992 1100 280 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
180 mini Summer 21.330 36 240 min Summer 17.210 128 360 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 8.347 308 720 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 4.148 734 2160 min Summer 2.992 1100 2880 min Summer 1.705 2156 5760 min Summer 1.348 2936
360 min Summer 12.501 188 480 min Summer 9.962 248 600 min Summer 8.347 308 720 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 4.148 734 2160 min Summer 2.992 1100 2880 min Summer 1.705 2156 5760 min Summer 1.348 2936
600 min Summer 8.347 308 720 min Summer 7.221 368 960 min Summer 5.740 488 1440 min Summer 4.148 734 2160 min Summer 2.992 1100 2880 min Summer 1.705 2156 5760 min Summer 1.348 2936
960 min Summer 7.221 308 960 min Summer 5.740 488 1440 min Summer 4.148 734 2160 min Summer 2.992 1100 2880 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
1440 min Summer 4.148 734 2160 min Summer 2.992 1100 2880 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
2880 min Summer 2.371 1468 4320 min Summer 1.705 2156 5760 min Summer 1.348 2936
5760 min Summer 1.348 2936
7200 min Summer 1.123 3584 8640 min Summer 0.967 4352
10080 min Summer 0.852 5088
30 min Winter 77.747 22
60 min Winter 48.611 38 120 min Winter 29.354 68
©1982-2010 Micro Drainage Ltd

Weetwood					Pag	e 2		
No 2 Smithy Farm	n Si	te located	d off Go	odlass R.				
Bruera	Sp	eke						
Chester CH3 6	EW					بساحد		
Date 24 February	2011 De	esigned B	y Carin	aClarke	— D D) Test	nanz	
File 1822 110224	POND 10 Cł	ecked By	,					
Micro Drainage	Sc	ource Con	trol W.	12.1	I			
	Summary of Re	sults for	<u>100 ye</u>	ar Return	Period	<u>(+20%)</u>		
	Storm	Мах	Max	Max	Max	Status		
Storm Max Max Max Max Status Event Level Depth Control Volume								
		(m)	(m)	(1/s)	(m³)			
	180 min Winte	er 0.447	0.447	168.7	57.7	0 К		
	240 min Winte 360 min Winte	er 0.393 er 0.316	0.393	135.8 99.3	50.8 40.8	0 K 0 K		
	480 min Winte	er 0.275	0.275	79.5	35.5	ΟK		
	600 min Winte 720 min Winte	er 0.254 er 0.239	0.254	67.0 58.1	32.8 30.8	0 K 0 K		
	960 min Winte	er 0.216	0.216	46.0	27.9	0 K		
	2160 min Winte	er 0.179 er 0.153	0.179	33.3 24.0	23.2 19.7	0 K 0 K		
	2880 min Winte	er 0.135	0.135	19.1	17.4	0 K		
	5760 min Winte	er 0.114	0.114 0.102	10.9	14.7	0 K 0 K		
	7200 min Winte	er 0.092	0.092	9.0	11.9	0 K		
	10080 min Winte	er 0.085	0.085	6.9	10.3	0 K 0 K		
Storm Rain Time-Peak Event (mm/hr) (mins)								
	180	min Wint	or 21	556	98			
	240	min Wint	er 17	.210	128			
	360 480	min Wint min Wint	er 12 er 9	.501 .962	188 248			
	600	min Wint	er 8	.347	308			
	960	min Wint	er 7 er 5	.740	300 490			
	1440 2160	min Wint	er 4 er 2	.148	734 1096			
	2880	min Wint	er 2	.371	1472			
	4320 5760	min Wint min Wint	er 1 er 1	.705 .348	2196 2872			
	7200	min Wint	er 1	.123	3672			
	8640 10080	min Wint	er O er O	.967 .852	4400 5112			
	@ 1	282-2010	Micro	Drainago	Itd			
	UT.	202-2010		Jamaye	LUU			

Weetwood		Page 3				
No 2 Smithy Farm						
, Bruera	Speke					
Chester CH3 6EW		TTTELED ON				
Date 24 February 2011 File 1822 110224 POND 10	Designed By CarinaClarke	Drainage.				
Micro Drainage	Source Control W 12 1					
	Rainfall Details					
Rainfall ModelFSRWinter StormsYesReturn Period (years)100Cv (Summer)0.750RegionEngland and WalesCv (Winter)0.840M5-60 (mm)20.000Shortest Storm (mins)15Ratio R0.400Longest Storm (mins)10080Summer StormsYesClimate Change %+20						
	<u> Time / Area Diagram</u>					
	Total Area (ha) 1.360					
	Time Area Time Area (mins) (ha) (mins) (ha)					
	0-4 0.680 4-8 0.680					
© 1982-2010 Micro Drainage Ltd						

Weetwood		Page 4
No 2 Smithy Farm	Site located off Goodlass R	
Bruera	Speke	
Chester CH3 6EW		
Date 24 February 2011	Designed By CarinaClarke	D Patrace
File 1822 110224 POND 10	Checked By	
Micro Drainage	Source Control W.12.1	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000	129.2	2.800	129.2	5.600	129.2	8.400	129.2
0.400	129.2	3.600	129.2	6.400	129.2	9.200	129.2
1.200	129.2	4.000	129.2	7.200	129.2	10.000	129.2
2.000 2.400	129.2 129.2	4.800 5.200	129.2 129.2	7.600 8.000	129.2 129.2		

Orifice Outflow Control

Diameter (m) 0.481 Discharge Coefficient 0.600 Invert Level (m) 0.000

©1982-2010 Micro Drainage Ltd