Appendix 7.2

TRANSPORT EIA TECHNICAL APPENDIX

INTRODUCTION

Company

Mott MacDonald Limited

Authors

Author

Kevin Blakey - Principal Transport Planner for Mott MacDonald. 17 years' experience in Transport Planning, Chartered member of the Royal Town Planning Institute and Master of Civic Design.

Reviewer

Dave Drury- Director for Mott MacDonald. An experienced Project Manager and Director with approximately 28 years' experience, 17 of which were working for the Local Authorities of Wirral Borough Council and Liverpool City Council. Has significant experience in traffic and transportation working in both the public and private sector.

Appendix Purpose

This appendix provides the following detail to Chapter 7 Transport, of Volume 2 of the ES:

- Identification of receptors and sensitivity;
- Determination of Impact magnitude; and
- Likely Significant Impact Assessments.

IDENTIFICATION OF SENSITIVE RECEPTORS

IEMA's Guidelines for the Environmental Assessment of Road Traffic set groups or locations which may be sensitive to changes in traffic conditions. This includes:

- People at home
- People at work places
- Sensitive groups including children and the disabled
- Sensitive locations e.g. hospitals, churches, schools, historical buildings
- People walking
- People cycling
- Open spaces & recreational sites
- Sites of ecological / nature conservation value
- Sites of tourism attraction

The study area which surrounds the application site contains many of the uses set out here: people at home, people at work, schools, churches, pedestrians, cyclists and recreational sites.

DETERMINATION OF IMPACT MAGNITUDE

The IEMA's Guidelines for the Environmental Assessment of Road Traffic set out the broad principles of how to assess the magnitude of effect for each category identified for assessment. Where appropriate

this is summarised in this section. For some effects the IEMA's guidelines suggest that professional judgement should be used where there are no thresholds defined.

Environmental effects will be assessed in the context of two 'rules of thumb' which are taken from the IEMA Guidelines and informed by the Design Manual for Roads and Bridges (DMRB), which help to define which roads need to be considered within the assessment:

Rule 1: Include highway links where traffic flows will increase by more than 30% (or the number of HGVs will increase by more than 30%).

Rule 2: Include any other specifically sensitive areas where traffic flows will increase by 10% or more.

Severance

The Guidance states that "severance is the perceived division that can occur within a community when it becomes separated by a major traffic artery". Further, "Changes in traffic flow of 30%, 60% and 90% are regarded as producing 'slight', 'moderate' and 'substantial' changes in severance respectively". However, the guidance acknowledges that the measurement and prediction of severance is extremely difficult. The assessment of severance pays full regard to specific local conditions, in particular the location of pedestrian routes to key local facilities and whether or not crossing facilities are provided.

The DMRB Volume 11, Section 3, Part 8, Chapter 6 states that for severance two-way daily traffic flows of 8,000 vehicles or below may be classed as 'slight'. Severance can be 'moderate' with traffic flows between 8,000 and 16,000 and severe with flows of 16,000 or more.

Based on the above, a threshold of 4,000 vehicles Annual Average Daily Traffic flow (AADT) is a useful starting position above which assessment of severance could begin. This is comfortably below the 8,000 threshold that DMRB states to be the limit where severance is of a slight magnitude and is therefore considered a robust approach. Following that, the magnitude criteria have been developed using professional judgement based on the aforementioned 'slight, moderate, and substantial' criteria. Table 7.1 illustrates the severance magnitude criteria to be used:

Table 7.1

Scale of magnitude for severance impacts used in the assessment

MAGNITUDE	DESCRIPTION
High	Increase in AADT traffic flows of above 90%
Medium	Increase in AADT traffic flows of 61—90%
Low	Increase in AADT traffic flows of 31% to 60%
Very Low	Increase in AADT traffic flows 11% -30%
Negligible	Threshold for assessment total AADT below 4,000 vehicles. Increase in traffic flow 10% or under

Driver Delay

The IEMA guidance states that – such delays "...are only likely to be significant when the traffic on the network surrounding the development is already at, or close to, the capacity of the system".

For this topic, driver delay will be assessed on a case by case basis using professional judgement subject to the sensitivity of the receptor and informed by the delay results from traffic modelling undertaken as part of the Transport Assessment (TA). In this way junctions which are predicted to operate at less than 0% PRC on account of development are analysed in terms of change to driver delay. Table 7.2 shows the impact magnitude criteria.

Table 7.2

Scale of magnitude for driver delay impacts used in the assessment

MAGNITUDE	DESCRIPTION
Very High	Average vehicle delay changes of more than 1 minute as a result of the proposed development during the peak hour periods
High	Average vehicle delay changes are between 31 and 60 seconds as a result of the proposed development during the peak hour periods
Medium	Average vehicle delay changes are between 21 and 30 seconds as a result of the proposed development during the peak hour periods
Low	Average vehicle delay changes are 20 seconds or less as a result of the proposed development during the peak hour periods
Negligible	Threshold for assessment junctions operating over design capacity at less than 0% PRC

Pedestrian Delay

The IEMA guidance states that "Changes in the volume, composition or speed of traffic may affect the ability of people to cross roads". The guidance suggests that assessors "...use their judgement to determine whether pedestrian delay is a significant impact". Accordingly, this issue will be assessed on a case by case basis using professional judgement subject to the sensitivity of the receptor.

The Guidance notes that delays will depend not only on the increase in traffic but the likely level of pedestrian demand. The note states that flows of around 1,400 per hour can generate delay of up to 10 – 40 seconds. However, given the vast array of local conditions which can affect delay, the Guidance states professional judgement should be used rather than specific thresholds. Taking due cognisance of the 4,000-vehicle threshold for severance this threshold is also applied to pedestrian delay analysis, as severance includes an element of delay. Table 7.3 illustrates the magnitude criteria to be used.

Table 7.3

Scale of magnitude for pedestrian delay impacts used in the assessment

MAGNITUDE	DESCRIPTION
High	Increase in AADT traffic flows of above 90%
Medium	Increase in AADT traffic flows of 61—90%
Low	Increase in AADT traffic flows of 31% - 60%
Very Low	Increase in AADT traffic flows 11% -30%
Negligible	Threshold for assessment total AADT below 4,000 vehicles. Increase in traffic flow 10% or under. Road links with no or inadequate pedestrian facilities.

Pedestrian Amenity

The IEMA guidance broadly defines this as the relative pleasantness of a journey - it is affected by traffic flow, traffic composition and pavement width/separation from traffic. The guidance suggests a tentative threshold for judging the significance of changes in pedestrian amenity of where traffic flow (or its lorry/HGV component) is halved or doubled. This threshold will be adhered to when assessing this issue based on professional judgement. Table 7.4 illustrates the impact magnitude criteria for this assessment.

Table 7.4 Scale of magnitude for pedestrian amenity impacts used in the assessment

MAGNITUDE	DESCRIPTION
High	Increase in AADT traffic flows or lorry component above 200%
Medium	Increase in AADT traffic flows or lorry component— 101 - 200%
Low	Increase in AADT traffic flows or lorry component of 51% to 100%
Very Low	Increase in AADT traffic flows or lorry component 31-50%
Negligible	Threshold for assessment total AADT below 4,000 vehicles. Increase in traffic flow or lorry component 30% or under.

Road Safety

The guidance suggests that "Professional judgement will be needed to assess the implications of local circumstances, or factors, which may elevate or lessen risks of accidents, e.g. junction conflicts".

The TA produced a thorough review of Road Traffic Collisions (Section 3.8 Appendix 7.2). This analysis will form the basis of the impact magnitude assessment. The criteria used in this assessment is illustrated in Table 7.5 below:

Table 7.5 Scale of magnitude for road safety impacts used in the assessment

MAGNITUDE	DESCRIPTION
High	Area identified as an accident cluster site. Increase in traffic of 30% or more. Area not identified by LCC as an accident cluster site. Increase in traffic of 50% or more.
Medium	Area identified by LCC as an accident cluster site, increase in traffic 15% or more. Area not identified as an accident cluster site, increase in traffic of 30% or more
Low	Threshold for assessment total AADT of 4,000 or above. Area identified by LCC as an accident cluster site increase in traffic below 15%. Area not identified as an accident cluster site, increase in traffic below 30%.

TRAFFIC DATA USED IN ASSESSMENTS

The traffic data used as the basis for the impact assessment on severance, pedestrian delay and pedestrian amenity is included in tables 7.6 for construction traffic, 7.7 for 2028 operational traffic and 7.8 for 2032 operational traffic.

Table 7.6
2028 Construction Traffic Analysis

RECEPTOR LOCATION	2028 BASE		2028BASE + DEVELOPMENT		% DIFFERENCE	
RECEFIOR LOCATION	AADT	# HGV	AADT	# HGV	AADT	# HGV
Walton Lane North of Priory Road	27710	873	27824	987	0.4%	13%
Walton Lane South of Priory Road	32284	1075	32341	1132	0.2%	5%
Spellow Lane East	11875	236	11932	283	0.5%	24%
Bullens Road	811	30	868	87	7.0%	190%

Table 7.7
2028 base and base plus development traffic flows

DECEDIOD LOCATION	2028 BASE		2028 BASE +	DEVELOPMENT	% DIFFERENCE	
RECEPTOR LOCATION	AADT	# HGV	AADT	# HGV	AADT	HGV
Nalton Lane North of Priory Road	27774	827	29270	871	5%	5%
Valton Lane South of Priory Road	33002	986	34686	1037	5%	5%
wladys Street East of Bullens Road	1269	6	2501	12	100%	100%
Gwladys Street West of Bullens Road	1954	0	3091	0	58%	0%
Goodison Road North of Gwladys Street	1016	3	1125	3	11%	0%
Goodison Road South of Gwladys Street	4627	13	6285	17	36%	36%
Bullens Road North of site access	976	7	2204	15	126%	126%
Bullens Road South of site access	976	7	2204	15	126%	126%
Spellow Lane West of Goodison Road	9397	225	9772	234	4%	4%
Spellow Lane East of Goodison Road	11919	237	14118	281	18%	18%
Priory Road	10142	200	10330	204	2%	2%
City Road	3186	13	3376	13	6%	6%
Nimrod Street	663	6	1064	10	61%	61%

Table 7.8
2032 base and base plus development traffic flows

RECEPTOR LOCATION	AADT			DEVELOPMENT		ERENCE
	AADT	# HGV	AADT	# HGV	AADT	HGV
alton Lane North of Priory Road	28861	859	30357	903	5%	5%
alton Lane South of Priory Road	34294	1025	35978	1075	5%	5%
adys Street East of Bullens Road	1319	7	2551	13	93%	96%
Swladys Street West of Bullens Road	2028	0	3166	0	56%	0%
oodison Road North of Gwladys Street	1056	3	1165	3	10%	0%
oodison Road South of Gwladys Street	4799	13	6466	18	35%	35%
Illens Road North of site access	1007	7	2236	15	122%	122%
Illens Road South of site access	1007	7	2236	15	122%	122%
pellow Lane West of Goodison Road	9762	234	10137	243	4%	4%
Spellow Lane East of Goodison Road	12834	247	14118	290	18%	18%
Priory Road	10541	208	10728	212	2%	2%
City Road	3311	13	3501	14	6%	6%
Nimrod Street	688	6	1089	10	58%	58%