CBRE | ENVIRONMENTAL STATEMENT VOLUME III

14. Water Resources & Flood Risk

Appendix 14.1

FLOOD RISK AND DRAINAGE ASSESSMENT

Goodison Park Legacy Project

Flood Risk & Drainage Assessment A100795-1

February 2020 Prepared on behalf of Everton Stadium Development Limited

3 Sovereign Square, Leeds, LS1 4ER Tel: +44 (0)113 278 7111 Fax: +44 (0)113 219 2317 Email: Website: www.**wyg**.com

Registered Office: WYG Engineering Limited. Registered in England number: 1959704. Registered Office: 3 Sovereign Square, Leeds, LS1 4ER VAT No: 431-0326-08.

Document Control

Document:	Flood Risk & Drainage Assessment
Project:	Goodison Park Legacy Project
Client:	Everton Stadium Development Limited
Job Number:	A100795-1
File Origin:	\\LEEDS2\Projects\$\A100500-A110000\A100795-1\reports\FRDA\A100795-1 FRDA_First Issue_FINAL.docx

Revision:	First Issue		
Date:	04/02/2020		
Prepared by:		Checked by:	Approved By:
Ross Armstrong		Tom Beavis	Tom Beavis
Description of revision:			
-			

Revision:			
Date:			
Prepared by:		Checked by:	Approved By:
Description of re	evision:		

Revision:			
Date:			
Prepared by:		Checked by:	Approved By:
Description of revision:			

Contents

1.0	Intro	duction1
	1.1	Purpose of this Report 1
	1.2	Proposed Development 1
	1.3	Requirement for a Flood Risk Assessment 1
	1.4	Scope of the Report 2
	1.5	Limitations of this Report 2
2.0	Site	Description3
	2.1	Existing Site
	2.2	Existing Drainage 5
		2.2.1 Main Rivers
		2.2.2 Ordinary Watercourses
		2.2.3 Canals
		2.2.4 Sewers
	2.3	Ground Conditions
		2.3.1 Geology
		2.3.2 Hydrogeology 6
		2.3.3 Site Investigation
3.0	Flood	d Risk8
	3.1	Tidal & Fluvial Flooding
		3.1.1 Main Rivers
	3.2	Surface Water Flooding & Overland Flows
	3.3	Groundwater Flooding10
	3.4	Sewer Flooding10
	3.5	Reservoir Flooding10
	3.6	Canal Flooding11
	3.7	Summary of Flood Risk

4.0	Deve	elopment Proposals
	4.1	Proposed Development
	4.2	Sequential and Exception Tests
	4.3	Local Planning Policies
		4.3.1 Liverpool Unitary Development Plan
	4.4	Development and Flood Risk
		4.4.1 Flood Risk to the Development
		4.4.2 Flood Risk Arising from the Development
	4.5	Surface Water Drainage13
		4.5.1 Drainage Hierarchy13
		4.5.2 Pre and Post-Development Areas14
		4.5.3 Pre and Post-Development Discharge Rates15
		4.5.4 Required Attenuation16
		4.5.5 Proposed Surface Water Drainage Strategy17
	4.6	Overland Flow Routes17
	4.6 4.7	Overland Flow Routes
5.0	4.6 4.7 Susta	Overland Flow Routes 17 Residual Flood Risk 18 ainable Drainage 19
5.0	4.6 4.7 Susta 5.1	Overland Flow Routes 17 Residual Flood Risk 18 ainable Drainage 19 Review of SuDS Options 19
5.0	4.6 4.7 Susta 5.1 5.2	Overland Flow Routes 17 Residual Flood Risk 18 ainable Drainage 19 Review of SuDS Options 19 The SuDS Management Train 19
5.0	4.6 4.7 Susta 5.1 5.2 5.3	Overland Flow Routes 17 Residual Flood Risk 18 ainable Drainage 19 Review of SuDS Options 19 The SuDS Management Train 19 Surface Water Drainage Principles 21
5.0	4.6 4.7 Susta 5.1 5.2 5.3	Overland Flow Routes17Residual Flood Risk18ainable Drainage19Review of SuDS Options19The SuDS Management Train19Surface Water Drainage Principles215.3.1 Permeable Paving21
5.0	4.6 4.7 Susta 5.1 5.2 5.3	Overland Flow Routes17Residual Flood Risk18ainable Drainage19Review of SuDS Options19The SuDS Management Train19Surface Water Drainage Principles215.3.1 Permeable Paving215.3.2 Other Potential SuDS Elements21
5.0	4.6 4.7 5.1 5.2 5.3	Overland Flow Routes17Residual Flood Risk18ainable Drainage19Review of SuDS Options19The SuDS Management Train19Surface Water Drainage Principles215.3.1 Permeable Paving215.3.2 Other Potential SuDS Elements21Water Quality22
5.0	4.6 4.7 5.1 5.2 5.3 5.4 5.5	Overland Flow Routes17Residual Flood Risk18ainable Drainage19Review of SuDS Options19The SuDS Management Train19Surface Water Drainage Principles215.3.1 Permeable Paving215.3.2 Other Potential SuDS Elements21Water Quality22SuDS Maintenance23
5.0	4.6 4.7 5.1 5.2 5.3 5.4 5.5 Foul	Overland Flow Routes17Residual Flood Risk18ainable Drainage19Review of SuDS Options19The SuDS Management Train19Surface Water Drainage Principles215.3.1 Permeable Paving215.3.2 Other Potential SuDS Elements21Water Quality22SuDS Maintenance23Drainage25
5.0	4.6 4.7 5.1 5.2 5.3 5.4 5.5 Foul 7.1	Overland Flow Routes17Residual Flood Risk18ainable Drainage19Review of SuDS Options19The SuDS Management Train19Surface Water Drainage Principles215.3.1 Permeable Paving215.3.2 Other Potential SuDS Elements21Water Quality22SuDS Maintenance23Drainage25Post-Development Foul Flows25

	7.3	United Utilities	25
8.0	Cons	ents Required	26
	8.1	Section 106	26
	8.2	Section 104	26
	8.3	Works Affecting Public Sewers on Site	26
9.0	Conc	lusions and Recommendations	27
	9.1	Conclusions	27
	9.2	Recommendations	28

Appendices

- Appendix A Indicative Site Layout
- Appendix B United Utilities Sewer Records
- Appendix C Liverpool City Council Pre-Development Enquiry
- Appendix D United Utilities Pre-Development Enquiry
- Appendix E Greenfield Runoff Rates
- Appendix F Quick Storage Estimates
- Appendix G Indicative Surface Water Drainage Strategy Plan

1.0 Introduction

1.1 Purpose of this Report

WYG Engineering Ltd (WYG) have been appointed by Everton Stadium Development Ltd (hereafter referred to as Everton / The Club) to prepare a Flood Risk and Drainage Assessment (FRDA) in support of an outline planning application for proposed redevelopment of Goodison Park football stadium on Goodison Road, Liverpool (hereafter referred to as 'the application site'), as described in Section 1.2 below.

1.2 Proposed Development

The proposed development, known as the Goodison Park Legacy Project (GPLP), comprises demolition of existing buildings and redevelopment of the application site for a mix of uses, comprising residential units; residential institution; shops; financial and professional services; food and drink use; drinking establishments; hot food takeaways; business use; non-residential institutions; and open space, with associated access, servicing, parking and landscaping. All matters are reserved for future determination.

The illustrative masterplan is contained within Appendix A.

1.3 Requirement for a Flood Risk Assessment

The application site covers an area of 3.39 ha and is located wholly in Flood Zone 1 (i.e. land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1% AEP)¹ in any one year). In accordance with the National Planning Policy Framework (NPPF) (Chapter 14)², a Flood Risk Assessment is required to support planning applications for developments greater than 1 ha located within Flood Zone 1.

¹ Flood frequency can alternatively be expressed in terms of an annual exceedance probability (AEP), which is the probability over the course of a year that there will be a flood event equal to or exceeding the indicated flood extent, depth or level. It is the inverse of the annual maximum return period. For example, the 100-year flood can be expressed as the 1% AEP flood, which has a 1% chance of being exceeded in any year.

² Ministry of Housing, Communities and Local Government (February 2019), *National Planning Policy Framework*, Para 163 Note 50

1.4 Scope of the Report

The FRA has been undertaken in accordance with the NPPF, Planning Practice Guidance (PPG) (Flood Risk and Coastal Change)³ and Environment Agency guidance⁴.

In line with the PPG, the FRDA considers all potential sources of flood risk including Main Rivers, Ordinary Watercourses (not shown on Environment Agency flood maps), overland flow routes, sewers, groundwater, reservoirs and canals.

The FRDA identifies a surface water management strategy for surface water runoff from the application site such that flood risk to areas elsewhere is not exacerbated by the introduction of new impermeable surfaces, all as required by the NPPF (para.155).

The FRDA also identifies a foul drainage strategy. A review has been undertaken of the existing foul water drainage systems in the locality, identifying potential discharge points and identifying the peak flows from the proposed development together with points of connection to the public sewer network

1.5 Limitations of this Report

This report has been prepared by WYG on behalf of the Club in connection with the scope of the report as described in Section 1.4 above and taking into account the particular instructions and requirements set out in WYG's fee proposal and the Client's acceptance. It is not intended for and should not be relied on by any third party and no responsibility is undertaken to any third party.

WYG accepts no duty or responsibility (including in negligence) to any party other than Everton Stadium Development Ltd and disclaims all liability of any nature whatsoever to any such party in respect of this report.

This report cannot be reproduced without WYG's written consent.

³ Ministry of Housing, Communities and Local Government (March 2014), *Flood risk and coastal change*

⁴ Environment Agency (February 2017), *Flood risk assessment in flood zone 1 and critical drainage areas*

2.0 Site Description

2.1 Existing Site

The site is located to the north west of Stanley Park in Liverpool, approximately 4km to the north east of the city centre. The application site's postcode is L4 4EL, approximately centred on grid reference SJ 35897 93976.

The application site location is shown in Figure 1 below.

Figure 1 – Site Location

The application site covers an area of 3.39 ha and is currently occupied by Goodison Park, Everton Football Club's stadium, and other ancillary structures. The central and northern part of the application site is occupied by the football stadium and pitch. The southern part of the application site comprises hardstanding areas and car parking and a small vehicle access road that extends from Goodison Road eastwards into the southern part of the application site.

The application site is bound by Goodison Road to the west, Spellow Lane to the south west, Walton Lane to the south, Bullens Road to the east, Gwladys Street to the north, and Goodison Place and Church of St Luke the Evangelist to the north west.

The existing site plan is shown in Figure 2 below.

Figure 2 – Existing Site Plan

There is no topographical survey of the application site available at present. LIDAR for the application site and surrounding area shows that it is relatively flat, with levels varying across the application site between 40m AOD and 41m AOD. Ground levels fall from the centre of the pitch to low points around the edges of the pitch. In the south of the application site ground levels falls towards the access road off Goodison Road. Generally, levels surrounding the application site fall to the west towards the River Mersey.

2.2 Existing Drainage

2.2.1 Main Rivers

The nearest Main River to the application site (as shown on the Environment Agency's Flood Map for Planning⁵) is the River Mersey, located approximately 2.7km to the west. It flows in a south to north direction into Liverpool Bay, located over 4km to the north west of the application site.

2.2.2 Ordinary Watercourses

The nearest surface water feature to the application site is Stanley Park Lake located 40m to the south in Stanley Park. The lake is separated from the application site by Walton Lane. The lake is a recreational fishing lake managed by Liverpool City Council's (LCC's) Park and Greenspaces team. It is understood that the lake receives inflows from a self-regulated borehole abstraction and surface water drainage.

2.2.3 Canals

The Leeds & Liverpool Canal runs from north to south approximately 1.5km to the west of the application site.

2.2.4 Sewers

Public Sewers

Sewer records obtained from United Utilities indicate that the application site and surrounding area is served by network of public combined sewers:

- A 225mm diameter sewer drains westwards from manhole no. 9002 in Gwladys Street to join a 450mm diameter sewer in City Road, which in turn joins a 450mm diameter sewer running southwards in Goodison Road.
- A 225mm diameter sewer drains from the south stand (head of the system) via an ancillary building and the access road off Goodison Road to the 450mm diameter sewer in Goodison Road.
- A 225mm diameter sewer drains from manhole no. 8813 in the car park to south of the stadium to the 450mm diameter sewer in Goodison Road.

⁵ Environment Agency (2019), *Flood Map for Planning*

- To the south west of the application site the 450mm diameter sewer in Goodison Road upsizes to a 500 x 800mm diameter then a 900mm diameter sewer, which drains westwards in Langham Street (further to the south west).
- A 300mm diameter sewer drains southwards from manhole no. 9001 in Bullens Road. It upsizes to a 375mm diameter sewer in Bullens Road, before joining a 375mm diameter sewer in Walton Lane, which drains westwards and continues along Langham Street.

The sewer records from United Utilities are contained within Appendix B.

Private Sewers

Liaison with Everton Football Club has confirmed that the entire site, including the pitch, is drained via private combined sewers to the public combined sewer network. There are estimated to be 10 points of connection to the public system.

2.3 Ground Conditions

2.3.1 Geology

A review of British Geological Survey (BGS) mapping⁶ indicates that the bedrock geology underlying the application site comprises the Chester Formation (sandstone and pebbles). Superficial deposits are generally not present, with the exception of a portion of the southern part of the application site adjacent to Walton Lane, where Devensian Till is recorded. It is likely that a layer of Made Ground (Fill) overlies the existing deposits beneath the application site.

2.3.2 Hydrogeology

DEFRA's 'Magic' mapping⁷ indicates that the Till (Devensian) is classified as a Secondary (undifferentiated) aquifer. This aquifer type is assigned where it is not possible to attribute an exact aquifer type. In most cases, this means that the layer in question has previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type.

The Chester Formation is classified as a Principal aquifer. This aquifer type is defined as layers of rock or drift deposits that have high intergranular and/or fracture permeability, meaning that they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale.

⁶ British Geological Survey (2019), *Geology of Britain viewer*

⁷ DEFRA (November 2019), *Magic*

The site is not located within a groundwater Source Protection Zone.

2.3.3 Site Investigation

No site investigation has been undertaken at this stage. A Phase 1 Desk Study has been undertaken and corroborates with the findings above.

A review of BGS borehole records from 1993 within the south of the application site confirms the presence of made ground overlying the strata described above. There is no record of the presence of any groundwater.

A BGS borehole record in Stanley Park to the south of the application site indicates the presence of groundwater at 23.10m below ground level (bgl) within the Chester Formation.

3.0 Flood Risk

3.1 Tidal & Fluvial Flooding

Tidal and fluvial flood risk is the risk arising from Main Rivers and Ordinary Watercourses.

3.1.1 Main Rivers

A floodplain is the area that would naturally be affected by flooding if a river rises above its banks. In England, floodplains of Main Rivers are divided into flood zones for planning purposes. These areas show the extent of the natural floodplain area at risk of inundation if there were no flood defences or certain other manmade structures and channel improvements. They are divided as follows:

- Flood Zone 3 shows the land having a 1 in 100 or greater annual probability of river flooding.
- Flood Zone 2 shows the additional extent of an extreme flood from rivers. It is land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding.
- Flood Zone 1 is the area of land where flooding from rivers and the sea is very unlikely.

Figure 3 below shows an extract of the Environment Agency's Flood Map for Planning.

The mapping shows that the application site is located entirely within Flood Zone 1 and therefore at low risk of tidal and fluvial flooding from the River Mersey, or other fluvial sources. As there are no known Ordinary Watercourses in the vicinity of the application site, the overall risk of tidal and fluvial flooding is considered to be low.

3.2 Surface Water Flooding & Overland Flows

Surface water flooding occurs where high rainfall events exceed the drainage capacity in an area (i.e. sewer system and/or watercourse). Surface water then collects at topographical low points on the surface or flows overland, leading to flooding.

An extract of the Environment Agency's Flood Risk from Surface Water Map is shown in Figure 4 below.

Figure 4 – Flood Risk from Surface Water (Environment Agency, November 2019)

The mapping indicates that the majority of the application site is at very low risk of surface water flooding. Small, isolated areas at the access road off Goodison Road are indicated to be at low risk, whilst a very small part of the access road is at medium risk. The edge of the

football pitch is shown to be at low to medium risk, but this is due to the stands acting as physical barriers to localised ponding where the ground may be slightly lower than the pitch. Overall, there is a very low risk of surface water flooding on the application site.

It should also be noted that the surface water flooding maps do not take into account any existing site drainage and therefore provide a 'worst case' assessment of the risk of flooding.

3.3 Groundwater Flooding

Groundwater flooding occurs when water levels in the ground rise above the land surface. This type of flooding is most likely to occur in areas above an aquifer.

The Preliminary Flood Risk Assessment (PFRA)⁸ for Liverpool states that records do not show any instances of groundwater flooding. The PFRA's 'Areas Susceptible to Groundwater Flooding' map indicates that the application site is not located within a 1km² grid that is susceptible to groundwater flood emergence. On the basis of the above, the risk of groundwater flooding at the application site is considered to be low.

3.4 Sewer Flooding

Sewer flooding occurs when intense rainfall overloads the sewer system capacity and/or when sewers cannot discharge properly to watercourses due to high water levels. Sewer flooding can also be caused when problems such as blockages, collapses or equipment failure occur in the sewerage system.

There are no known records of sewer flooding on the application site or in the vicinity. Assuming continued management of the public sewer network, the risk of flooding is considered to be low.

3.5 Reservoir Flooding

Flooding from reservoirs occurs when a reservoir dam is overtopped or breaches due to structural failure. The consequence of such an event would be severe but the probability of a catastrophic dam failure is considered to be extremely low due to the management and maintenance required under the Reservoirs Act 1975.

⁸ Liverpool City Council (June 2011), *Liverpool City Council Preliminary Flood Risk Assessment Report*

The site is not located within the reservoir flood extent, therefore the risk of flooding is considered to be low.

3.6 Canal Flooding

Flooding from a canal occurs when a canal breaches or is overtopped.

The PFRA for Liverpool states that there are no records of canal flooding. In the event of flooding, it is likely that floodwaters would follow the local topography and flow away from the application site towards the River Mersey. On this basis the flood risk is considered to be low.

3.7 Summary of Flood Risk

The flood risk to the existing site is assessed as low from all sources.

4.0 Development Proposals

4.1 Proposed Development

The GPLP comprises demolition of existing buildings and redevelopment of the application site for a mix of uses, comprising residential units; residential institution; shops; financial and professional services; food and drink use; drinking establishments; hot food takeaways; business use; non-residential institutions; and open space, with associated access, servicing, parking and landscaping. All matters are reserved for future determination.

The illustrative masterplan is contained within Appendix A.

4.2 Sequential and Exception Tests

One of the aims of the NPPF is to steer development away from zones of high flood risk towards Flood Zone 1 (para.158). In accordance with Table 2 of the PPG (Flood Risk and Coastal Change), the proposed development is classed as 'More Vulnerable'. Therefore, in accordance with Table 3 of the PPG (Flood Risk and Coastal Change), 'More Vulnerable' development is acceptable in flood risk terms within Flood Zone 1, and the Sequential Test is passed. The Exception Test is not required.

4.3 Local Planning Policies

4.3.1 Liverpool Unitary Development Plan

The Unitary Development Plan (UDP)⁹ was adopted by LCC in November 2002 and is a 'saved plan' within the Local Plan Framework whilst the new Local Plan is being developed.

Under Policy EP12 (Protection of Water Resources) of the UDP, planning permission will not be granted for development which would adversely affect the quality or supply of surface water or groundwaters as a result of the nature of the surface water or foul discharge.

Under Policy EP13 (Flood Prevention) of the UDP, planning permission will not be granted for development which would be at direct unacceptable risk of flooding, be likely to increase the risk of flooding elsewhere, or result in an adverse impact on the water environment due to additional surface water runoff.

⁹ Liverpool City Council (November 2002), *Liverpool Unitary Development Plan*

4.4 Development and Flood Risk

4.4.1 Flood Risk to the Development

As stated in Section 3.7, the application site is considered to be at low risk of flooding from all sources.

4.4.2 Flood Risk Arising from the Development

The proposed redevelopment of the application site will reduce the impermeable area of the application site by incorporating new areas of soft landscaping in addition to maintaining the area that is currently the pitch as soft landscaping. This will therefore reduce the volume of runoff from the application site by design.

Nevertheless, under Policy EP13 (Flood Prevention) of the UDP, planning permission will not be granted for development which would increase the risk of flooding elsewhere or result in an adverse impact on the water environment due to additional surface water runoff. It will therefore be necessary to manage surface water runoff on site to avoid increasing the risk of flooding to areas elsewhere.

4.5 Surface Water Drainage

4.5.1 Drainage Hierarchy

The management of runoff should be considered via a sequential approach, in line with Building Regulations¹⁰. The following options for the disposal of surface water runoff have been considered, in order of preference:

- Discharge to an adequate soakaway or some other adequate infiltration system (i.e. to ground);
- Discharge to a watercourse; and
- Discharge to a sewer.

Discharge to Ground

The Chester Formation comprises sandstone, which could infer potential for infiltration drainage, although no evidence had been found as to the use of soakaways locally. There is likely to be a depth of made ground beneath the application site, therefore any soakaways would need to be deep soakaways.

¹⁰ HM Government (2010), *The Building Regulations 2010, Approved Document H (Part H3)*

In the absence of a site investigation to establish the ground conditions and site-specific infiltration rates, and on the assumption that the existing site currently discharges to public combined sewers (based on United Utilities' sewer records, as described in Section 2.2.4), discharge to ground has been discounted as an option at this stage of the assessment.

The use of soakaways may be reviewed and incorporated into the detailed drainage design, should future in-situ infiltration testing in accordance with BRE 365 indicate suitable infiltration rates.

Should soakaway drainage be utilised on site, it is recommended that the Local Authority and the Environment Agency are consulted, given that the underlying natural strata is classified as a Principal Aquifer.

Discharge to Watercourse

There are no watercourses nearby but LCC Parks and Greenspaces team have confirmed that discharge to Stanley Park Lake is a potential option, subject to their approval of further information and detailed design. Given that new drainage infrastructure would be required in Walton Lane, approval from LCC Highways would also be required. Correspondence from LCC Parks and Greenspaces team is contained within Appendix C.

The Parks and Greenspaces team would also need to approve the long-term management of the discharge and outfall into Stanley Park Lake, which would be the responsibility of the landowner or site management firm.

Discharge to Sewer

Discharge to the public combined sewer network, as per the existing site arrangements, is also an option, as confirmed by United Utilities. Correspondence from the United Utilities team is contained within Appendix D.

Given the uncertainties surrounding discharge to Stanley Park Lake at this stage, the proposed surface water drainage strategy is based upon discharge to sewer.

4.5.2 Pre and Post-Development Areas

The 3.39 ha site is currently developed and apart from the football pitch is entirely hard standing. The pitch drains to sewer so the pitch area is assumed to be 70% impermeable.

The proposed illustrative site layout has been split into five catchments to reflect as close as possible the phasing of the development as outlined in the Construction Strategy & Construction Management Plan. The central spine road and central landscaped area may form

additional catchments of be combined with others. The impermeable areas have been estimated from the illustrative layout.

Table 1 below summarises the pre and post-development areas.

Status	Permeable Area (ha)	Impermeable Area (ha)
Pre-development	0.21	3.18
Post-development	1.23	2.16
Catchment 1	0.18	0.41
Catchment 2	0.15	0.35
Catchment 3	0.26	0.38
Catchment 4	0.19	0.29
Catchment 5	0.28	0.41
Central spine road	0.18	0.18
Central landscaped area	0.00	0.13

Table 1 – Pre and Post-Development Areas

4.5.3 Pre and Post-Development Discharge Rates

As an existing developed site, the pre-development discharge rate from the whole site has been calculated as approximately 283 I/s based on the Modified Rational Method (2.78*30 mm/hr*3.39 ha). It is acknowledged that this method produces a very high runoff rate.

There is an aspiration for new developments, even those on brownfield land, to achieve greenfield runoff rates. The greenfield runoff rates for the application site have been obtained using the online UK SuDS Tool (Sustainable Drainage Systems). The Qbar rate has been calculated as 7.4 l/s. This assumes no infiltration. A copy of the full greenfield run off calculations is contained within Appendix E.

The proposed development incorporates new areas of soft landscaping, thereby providing a betterment to the existing surface water runoff rate from the application site. It is proposed to further reduce runoff from the existing brownfield site by restricting discharge from each outfall to the greenfield (Qbar) rate of 7.4 l/s during all storm events.

There are believed to be 10 existing connections to the public combined sewer system. Based on the indicative site layout it is envisaged that there could be up to six connections to the combined network. Where possible, existing connections will be maintained. If the use of

existing connections is not considered practicable, these will be infilled and new connections made, subject to detailed design and approval from United Utilities.

Assuming six connections to sewer, each with a restricted discharge rate of 7.4 l/s, the total runoff rate from the developed site is estimated as 44.4 l/s, which is significantly less than the pre-development brownfield runoff rate.

United Utilities have indicated that this rate is acceptable, subject to detailed design and the following:

- Evidence to discount infiltration drainage; and
- Evidence to discount drainage to Stanley Park Lake; and
- A full CCTV survey of the existing connections showing the impermeable areas that are draining to the surrounding combined sewers.

Correspondence with United Utilities is contained within Appendix C.

LCC, as LLFA, have also confirmed that this rate is acceptable. Correspondence is contained within Appendix D.

4.5.4 Required Attenuation

The attenuation volumes have been calculated using the Micro Drainage Quick Storage Estimates. The results are shown in Table 2 below, with full calculations within Appendix F.

Catchment	Impermeable Area (ha)	Discharge Rate (I/s)	Estimated Storage Volume: 1 in 100 year plus 40% CC (m ³)
1	0.41	7.7	203
2	0.35	6.6	173
3	0.38	8.4	179
4	0.29	6.3	138
5	0.41	9.1	193

 Table 2 – Attenuation Estimates

In order to minimise any flooding of the application site, it is proposed to attenuate runoff on site up to and including the 1 in 100 year event plus allowance for Climate Change (CC). The climate change allowance is based on the latest guidance provided by the Environment

Agency¹¹. The upper end allowance for peak rainfall intensity in small and urban catchments across all of England is 40% for the 2080s epoch.

Attenuation could be provided by geo-cellular storage below ground and surface and subsurface SuDS features wherever practicable and reasonable. Given the application site layout proposed, SuDS features are likely to include permeable paving but could include other features. The SuDS features appropriate to the application site are considered in more detail in Section 5 below.

It is noted that the current illustrative masterplan does not include any SuDS features, as the outline application reserves the matter of landscaping for future determination, and any future detailed site layout should seek to incorporate SuDS wherever viable and reasonable.

4.5.5 Proposed Surface Water Drainage Strategy

As discussed previously, it is proposed to drain the new development via five outfalls to the existing United Utilities combined sewer network based on the catchments and analysis described in Section 4.5. An indicative surface water drainage strategy plan for the application site, illustrating potential SuDS and connections to sewer, is contained within Appendix G.

This plan and above analysis demonstrate that there is a viable surface water drainage strategy for the application site and therefore the disposal of surface water runoff will not provide a restriction to the development of the application site. This strategy will be revisited at detailed design stage as Reserved Matters submissions are made.

4.6 **Overland Flow Routes**

In setting the final external levels for the development it is important to ensure that if flows in exceedance of the 1 in 100 years plus 40% allowance for climate change storm event occur or a failure of the application site surface water drainage system occurs, suitable overland flood routes are provided within the development to ensure that no localised flooding of the buildings occurs within the development.

It is recommended that proposed external ground levels across the application site fall away from the proposed buildings in a manner which does not create low points where water might collect unintentionally. This will ensure that any surface water will not flow towards the proposed buildings.

¹¹ Environment Agency (February 2019), *Flood risk assessments climate change allowances*

4.7 Residual Flood Risk

There will remain a residual risk that an extreme rainfall event could exceed the managed exceedance flow routes, as events beyond the 1 in 100 year event plus 40% allowance for climate change will not be catered for explicitly.

There would also remain a residual risk of failure of the surface water drainage system. This could be caused by operational failure or if the drainage system is not maintained on a regular, on-going basis.

5.0 Sustainable Drainage

5.1 Review of SuDS Options

In order to comply with the national guidelines and policies set by the NPPF and the Non-Statutory Technical Standards for Sustainable Drainage¹², the design of the surface water drainage system should seek to maximise the use of SuDS techniques. This section reviews the suitability of the different SuDS elements available for the application site.

5.2 The SuDS Management Train

The main purpose of a SuDS system is to manage the surface water runoff generated by a development within the application site, attenuating the additional runoff whilst providing water quality treatment to the runoff and amenity and landscape benefits to the community. The different SuDS elements can be categorised as follows:

- Source Control: manage runoff at its source
 - Water butts, green/brown roofs, permeable pavements, rainwater harvesting systems, bio-retention systems.
- Site Control: manage runoff generated by a wider area
 - Swales, ponds, infiltration devices, filter strip, French drains.
- Regional Control: manage runoff generated by several sites
 - Basins, ponds and wetlands

The following is an illustration of the SuDS principles and how they may be applied to a development via a SuDS Management Train.

Figure 5 – SuDS Management Train

¹² DEFRA (March 2015), *Non-statutory technical standards for sustainable drainage systems*

Table 3 below summarises the suitability of the different SuDS elements for the proposed development site.

Type of SUDS		Description	Applicability to			
.,,,		Description	the Site			
	Water butts	Vater butts Small storage tanks on building.				
	Rainwater	Recycling of water from roofs and	May be appropriate			
	harvesting	impermeable areas.	May be appropriate.			
ntrol	Green roofs	Vegetated roofs that reduce runoff and				
	Green roors	remove pollutants.				
ပိ		Pavements that allow surface water to				
urce	Pervious	flow into underlying layers of the	May be appropriate			
Sol	surfaces	pavement and either infiltrate or drain to	May be appropriate.			
		an on-site drainage network.				
	Rain Gardens	Shallow depressions with free draining soil				
	& Bioretention and planted with vegetation that		May be appropriate.			
	Systems	withstands occasional flooding.				
			Not appropriate			
		Vegetated channels to convey store and	within current			
	Swales	troat runoff	indicative site			
			layout due to space			
			constraints.			
ō	Detention Shallow areas of open space that		May be appropriate			
onti	basins &	temporarily hold water and collect silt	in landscaped			
al C	ponds	temporarily noise water and conect sit.	areas.			
lion		Linear drains or trenches filled with	Not considered			
Reg	Filter Drains	granular material that allow infiltration to	appropriate at this			
യ യ		the surrounding ground.	stage however,			
Sit	Infiltration	Shallow depression that stores runoff	these options are to			
	basin	before it infiltrates into the subsoil.	be reviewed			
		Generally granular trenches or soakaways	pending the results			
	Infiltration	that store water and allow infiltration to	of the future			
	devices	the surrounding ground	permeability testing			
			results.			

Table 3 – Review of SuDS	components for the	e proposed development	site
	components for the	e proposed development	Site

5.3 Surface Water Drainage Principles

5.3.1 Permeable Paving

Permeable pavements allow rainwater to infiltrate through the surface and underlying layers where runoff is temporarily stored within the basal stone layer before being discharged to the downstream SuDS components or on-site sewers at controlled rates.

Permeable paving could be utilised within the access road and car parking, subject to appropriate adoption and maintenance requirements being in place.

5.3.2 Attenuation tanks

Stormwater attenuation tanks provide a storage system for rainwater and surface water. The stored water inside the attenuation tank is released via a flow-control chamber and either pumped via a pumping chamber or run-off through a gravity stormwater pipe system.

Underground attenuation tanks could be used on site to store large volumes of surface water where space for surface SuDS features is constrained.

5.3.3 Other Potential SuDS Elements

Water Butts and Rainwater Harvesting

The use of water butts and rainwater recycling in individual dwellings could be promoted in order to reduce runoff and to minimise water consumption.

Rain Gardens and Bioretention Systems

Bioretention areas are shallow landscaped depressions that are typically under-drained and rely on engineered soils, enhanced vegetation and filtration to remove pollution and reduce runoff. They are aimed at managing and treating runoff from frequent rainfall events.

Rain gardens and bioretention systems could be incorporated into the central landscaped area and green spaces (shown illustratively on the masterplan in front of Blocks A and B).

Detention Basins

Detention basins are dry depressions that attenuate storm water runoff by providing temporary storage and controlled release of detained runoff. They are normally vegetated depressions (i.e. grass) that remain mainly dry, except during and immediately after storm events.

It could be possible to incorporate detention basins in the central landscaped area and green spaces (shown illustratively on the masterplan as located in front of Block A and Block B).

Oversized Pipes

Oversized pipes and box culverts may need to be considered in the central access road running east-west to provide online storage that will help reduce overall storage requirement on the application site.

All SuDS elements should comply with the DEFRA Non-Statutory Technical Standards for Sustainable Drainage Systems and The SuDS Manual¹³.

5.4 Water Quality

The SuDS design should seek to provide an appropriate management train of SuDS features to effectively mitigate the pollution risks associated with the different site users.

The proposed uses of the application site are covered by Table 26.2 of The SuDS Manual under both 'individual property driveways, residential car parks, low traffic roads and non-residential car parking' and 'commercial yard and delivery area and non-residential parking'. Therefore, the requirements for discharge to surface waters state that the 'Simple index approach' should be used.

Step 1 of the simple index approach is to identify the pollution hazard indices for the proposed land uses. These are set out in Table 4 below, which is an extract of Table 26.2.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydro- carbons
Individual property				
driveways, residential car				
parks, low traffic roads and	Low	0.5	0.4	0.4
non-residential car parking				
with infrequent change.				
Commercial yard and delivery				
areas, non-residential car	Medium	0.7	0.6	0.7
parking with frequent				

Table 4 – Pollution Hazard Indices

¹³ CIRIA (2015), *The SuDS Manual (C753)*

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydro- carbons
change, most roads.				

Step 2 of the simple index approach is to select SuDS features with a total pollution mitigation index that equals or exceeds the pollution hazard index. Table 26.3 of The SuDS Manual states the various mitigation indices for discharges to surface waters. The mitigation indices for the potential SuDS systems are shown below in Table 5.

Table 5 – SuDS Mitigation Indices

SuDS Element	TSS	Metals	Hydrocarbons
Pervious paving	0.7	0.6	0.7

The total SuDS mitigation index for each pollutant is a combination of the mitigation indices of each element. The first SuDS element of the train will always be more effective than the subsequent elements, given that the concentration of pollutants in the runoff entering these is lower.

Based on Table 5 above, it can be seen that runoff from the application site will receive sufficient treatment via the pervious surfaces alone.

It should be noted that alternative SuDS options may also be considered during the detailed design stage which achieves or exceeds the water quality objective.

Provided that the mitigation indices of the treatment techniques are greater than or equal to the hazard indices for the proposed development then there should be no reduction in the overall water quality within the receiving system.

5.5 SuDS Maintenance

By their nature, SuDS require regular maintenance to keep them working effectively. Prior to commencing the development, LCC LLFA should approve the SuDS maintenance plan.

Responsibility for the maintenance of the new surface water drainage system on site is likely to be undertaken by an assigned management company. Details of the maintenance requirements should be set out within a building maintenance file.

The management company will perform the maintenance tasks required by the various elements of the drainage scheme. Table 6 below shows the maintenance requirements of the proposed SuDS elements.

SuDS Element	Maintenance Task		Recommended Frequency
	- Brushing and vacuuming	-	Every 12 months
	- Weed removal	-	Every 12 months
Pervious surfaces	 Rehabilitation of surface and upper substructure 	-	As required
	 Remediation of depressions and cracked blocks 	-	As required
	- Remediation of landscaping.	-	As required
	- Remove debris from catchment surface	-	Every 12 months
Underground attenuation	 Remove sediment from pre-treatment structures 	-	Every 12 months
attenuation tank	- Inspect inlets and outlets	-	Every 12 months
	- Survey inside of the tank	-	Every 5 years

Table 6 - Maintenance tasks and frequency required

Suitable adoption and maintenance regimes for SuDS should be submitted in support of future reserved matters submissions.

7.0 Foul Drainage

7.1 Post-Development Foul Flows

The anticipated foul flow generated by the residential aspects of the proposed development is estimated as 8.0 l/s based upon Sewers for Adoption¹⁴ guidance of 4000 l/dwelling/day and 173 units (outline application proposes up to 173 residential units). This flow rate may be higher given the other proposed land uses including residential institution and health care. The exact peak foul flow rate should be calculated at the detailed design stage once the proposed end users are known.

7.2 Proposed Foul Drainage Strategy

It is proposed to connect foul drainage from the application site to the public combined sewer, as per the proposed surface water drainage proposals, either via existing connections, where possible, or via new connections.

7.3 United Utilities

A pre-development enquiry was submitted to United Utilities and they have confirmed that the foul drainage will be allowed to drain to the public combined sewer network at an unrestricted rate. The exact points of connection are subject to detailed design and will be agreed with United Utilities at a later date.

The pre-development enquiry response from United Utilities is contained within Appendix D.

¹⁴ WRc Plc (August 2012), *Sewers for Adoption (7th edition)*

8.0 Consents Required

8.1 Section 106

Where a new connection is to be made to the public sewer network, an application will be required to United Utilities for the new outfall and connection under Section 106 of the Water Industry Act 1991. The application should be made following completion of the detailed drainage design.

8.2 Section 104

If any sewers on the development site are to be adopted an application will be required to United Utilities under Section 104 of the Water Industry Act 1991. The application should be made following completion of the detailed drainage design.

8.3 Works Affecting Public Sewers on Site

Permission will be required from United Utilities for works over or within 3m of the centreline of the public combined sewers. Any proposed abandonment or diversions of the sewers in the south of the application site will also require permission.

9.0 Conclusions and Recommendations

This FRDA has been produced in support of an outline planning application for the redevelopment of Goodison Park in Liverpool.

The FRDA has been undertaken in accordance with the NPPF (Chapter 14), PPG (Flood Risk and Coastal Change), the Liverpool City Council Unitary Development Plan and Environment Agency guidance.

This assessment has identified that the proposed development can be implemented in accordance with national and local planning policies relating to flood risk and drainage.

9.1 Conclusions

This assessment has made the following conclusions.

Flood Risk

- The application site extends to 3.39 ha and falls entirely within Flood Zone 1. The nearest Main River to the application site is the tidal River Mersey located 2.7km away. Stanley Park Lake is located 40m to the south of the application site, but there is no known drainage link between the pond and the application site. The risk of tidal and fluvial flooding is low.
- 2. The risk of flooding from all other sources is low or not present.

Surface Water Drainage

- The existing site drains unattenuated and unrestricted to the public combined sewer network via 10 separate outfalls around the application site. Based on the information available to date it is anticipated that infiltration drainage is not deemed viable and there are no watercourses within proximity to the application site, therefore it is proposed to discharge surface water runoff from the application site to the public combined sewer network.
- 2. The proposed development incorporates areas of soft landscaping, thereby providing a net increase in permeable area and betterment to the existing drainage situation. In addition, it is proposed to further reduce runoff from the proposed development by restricting discharge from each of the proposed 6 outfalls to the greenfield (Qbar) rate of 7.4 l/s during all storm events. The total runoff rate from the proposed development is estimated as 44.4 l/s and will be a significant reduction from the existing discharge rates.

The proposed post-development discharge rate has been agreed with United Utilities and LCC as LLFA.

- 3. Where possible, existing connections will be maintained. If the use of existing connections is not considered practicable, these will be infilled and new connections made, subject to detailed design and approval from United Utilities.
- 4. It is proposed to attenuate up to and including the 1 in 100 year storm event plus 40% allowance for climate change on site. It is proposed to utilise geo-cellular storage below ground, with permeable paving providing additional storage as well as water quality benefits. Other SuDS elements that could be incorporated into final design include water butts, rainwater harvesting, rain gardens, bioretention systems and detention basins, subject to further design.
- 5. Responsibility for the maintenance of the new surface water drainage system on site will be undertaken by an assigned management company, which potentially could be funded by the residents with a legal responsibility written into the deeds of each property. Full details of the maintenance requirements will be set out within a building maintenance file. Suitable adoption and maintenance regimes for SuDS should be submitted in support of future reserved matters submissions.

Foul Drainage

1. It is proposed to connect foul drainage from the application site to the public combined sewer, as per the proposed surface water drainage proposals, either via existing connections, if possible, or via new connections. This has been agreed with United Utilities.

9.2 Recommendations

This assessment has made the following recommendations.

- A detailed drainage strategy for the application site should be the subject of a planning condition. The detailed design should agree exact discharge rates and points of connection with United Utilities.
- In order to verify if infiltration techniques are viable, site specific permeability testing to BRE 365 and groundwater monitoring should be undertaken, and the results used to develop the detailed surface water drainage strategy.

- 3. In developing the detailed site layout, due consideration should be given to maximising the use of SuDS techniques.
- 4. The use of SuDS techniques should also be maximised to improve the water quality of the surface water runoff and where necessary oil/petrol interceptors should be incorporated into the drainage of the car parking areas.
- 5. Permission should be sought from United Utilities for works over or within 3m of the public combined sewers located in the southern area of the application site.
- 6. A Section 106 application should be made to United Utilities following completion of the detailed drainage design where a new connection is to be made to the public sewer network.
- 7. The invert levels of the proposed foul and surface water connections shall be surveyed prior to commencing the detailed drainage design.
- 8. A detailed inspection and maintenance surface water management plan shall be provided, and this management plan shall be implemented and monitored on a regular basis.
- 9. It is recommended that proposed external ground levels across the application site fall away from the proposed buildings so as not to create low points where water might collect.
- 10. Further liaison shall be undertaken with Liverpool City Council in respect of the option to drain the surface water runoff from the whole site into Stanley Park Lake as this will enable the proposed attenuation volume of 886m³ to be provided within the lake rather than within the application site.

Appendices

Appendix A – Indicative Proposed Site Layout

()

Appendix B – United Utilities Sewer Records

White Young Green

Arndale Court Headingley Leeds LS6 2UJ

FAO: Tom Beavis

United Utilites Water Limited

Property Searches Ground Floor Grasmere House Lingley Mere Business Park Great Sankey Warrington WA5 3LP

Telephone 0370 751 0101

Property.searches@uuplc.co.uk

 Your Ref:
 TOM BEAVIS A100795-1

 Our Ref:
 1324539

 Date:
 11/9/201'

Dear Sirs

Location: EVERTON F C GOODISON ROAD LIVERPOOL L4 4EL

lacknowledge with thanks your request dated 08/09/17 for information on the location of our services.

Please find enclosed plansshowing the approximate position of our apparatus known to be in the vicinity of this site.

The enclosed plans are being provided to you subject to the United Utilities terms and conditions for both the wastewater and water distribution plans which are shown attached.

If you are planning worksanywhere in the North West, please read ouraccess statement before you start work to check how it will affect our network. http://www.unitedutilities.com/work-near-asset.aspx.

I trust the above meets with you requirements and look forward to hearing from you should you need anything further.

If you have any queries regarding this matter please telephone uson 03707510101.

Yours Faithfully,

nad

Karen McCormack Property Searches Manager

OS Sheet No: SJ3694SW

Refno 0002 0005 0006 0012 0013 0017 0018 0023 0024	Cover 40.01	Func CO CO CO CO CO CO CO CO CO	Invert 37.53	Size.x 225	Size.y	Shape CI	VC	Length 61.03	Grad 6103	Refno 0421 0423 1016 1114 1115 1116 1118 1209 1212	Cover	Func CO CO CO CO CO CO SW CO	Invert	Size.xS	Size.yShapeN
0028 0033 0101 0102 0103			0	300		CI	VC	41.18		1214 1215 1217 1310 1405			12.65	1200	CI (
0104 0105 0106 0108 0109 0111	40.15		0 0	225 375		CI CI	VC VC	19.65 55.66		1410 1411 2420 2422 2425 3411			0	100 0	
0112 0113 0202 0203 0204		CO CO CO CO CO	0 0 0	225 225 300		CI CI CI	VC VC VC	22.19 22.14 21.19		3412 4406 4407 4408 4410		CO CO CO CO CO	0	525	U.
0205 0206 0207 0212 0219			0 0	225 225		CI CI	VC VC	23.09 22.14		4411 0001 0004 0010 0022		CO CO CO CO CO			
0223 0301 0302 0303	40.35		38.28	225		CI	VC	19.92		0029 0034 0107 0120		CO CO CO CO			
0304 0305 0306	39.34	CO CO CO	37.26	225		СІ	VC	16.76		0201 0208 0209			0	225	CI V
0308 0309 0312		SW CO CO	0	225		CI	VC	90.09		0210 0211 0217					
0317 0323 0401	39.96	CO CO CO								0224 0310 0315		CO CO CO			
0402 0403 0404 0405 0409	39.67		37.24 0 0	225 225 150		CI CI CI	VC VC VC	6 19.03 21.1		0316 0319 0321 0327 0406					
0409 0410 0411 1001	40 34		0	225		CI	VC	20.4		0400 0407 0408 0412					
1001 1002 1003	40.02									0412 0413 0416 0418					
1004 1005 1006	40.02		0	550			~~~	17.40		0418 0424 1010					
1007 1009 1014	40.13 40.09		0 31.91 37.91	550 500 300	750	EG CI	BR VC	17.46 109.84 21.02	64	1011 1012 1013					
1101 1102 1103	40.11 40.22	CO CO CO								1015 1106 1107		CO SW SW	0	550	CI
1104 1105 1109 1111 1113	40 40.13		37.04 38	225 300		CI CI	VC VC	16.76 10.77	154	1108 1110 1117 1201 1203					
1202 1205 1206	38.95 39.41 39.64									1203 1204 1208 1213					
1200 1207 1210	39.62		05.75	005			VC	50.00		1302 1303					
1301 1304 1305	37.93	CO CO	35.75	225			vc	52.03		1309 1314 1316					
1306 1307 1308	38.4	CO CO CO	0	225		CI	VC	22.8		1317 1407 1408		CO CO CO			
1311 1312 1318	38.09 37.69 39.4	CO CO CO								2305 2307 2308		CO CO CO			
1319 1401	37.34	CO CO	0 0	225 225		CI CI	VC VC	22.14 20.22		2309 2405 2408			0	225	CI
1402 1403 1404	36.36		34.43 0	225 225		CI CI	VC VC	19.42 40.26		2408 2409 2414					
1406 1409 1412	37.14	CO FO								2415 2418 2419		CO CO CO			
1413 1415 2201		FO FO CO	0	100 600	925	CI EG	VC BR	6.9 81.84		2423 2424 3402		CO CO CO			
2301 2302 2303	35.06		0	600 450	925	EG CI	BR VC	30.89 39.3		3405 3406 3410		CO CO CO	0	375	CL
2304 2306 2401	36.51	CO CO	Ū	100		0.		00.0		4403 4409			Ū	0.0	0.
2401 2402 2403	35.1		0	300		CI	VC	29.57		0103 0109					
2404 2406 2410	34.02	CO CO CO	0 31.07	300 600		CI CI	VC VC	8.06 79.57		0110 0111 1005		CO CO CO			
2411 2412 2413	34 33		0	450		CI	VC	71.06							
2416 2421 3401	0	CO CO	0	225 100 375		CI CI	VC VC	17.72 11.97							
3401 3403 3404	33.44 33.81		29.89	525		CI	VC	41.77	464						
4401 4402 4404 4405 0003	33.33	CO CO CO CO CO	0 0	225 225		CI CI	VC VC	20.22 21.63							
0008 0009 0011		CO CO CO													
0016		CO CO													
0021 0025 0026															
0027 0030 0031		SW CO CO													
0032		SW CO													
0116		CO CO		100		CI	VC	1.47							
0119 0213 0214		CO CO CO													
0215 0216 0221		CO SW CO	0	300		СІ	VC	26.71							
0222															
0318		CO CO													
0324 0325 0326		CO CO CO													
0414 0417 0419				150		CI	VC	3.33							
0420		00													

WASTE WATER SYMBOLOGY

Foul	Surface	Combined	Overflow
•	•	•	
•	•	—	•
— — –	— — —	— — —	
		b	
b			

WW Site Termination

Foul Surface Combined

🎳 🎳 ě Air Valve

0

0

Manhole Manhole,Side Entry MainSewer, Public MainSewer, Private MainSewer, S104 Rising Main, Public Rising Main, Private Rising Main, S104 Highway Drain, Private

Sludge Main, Public

— 🛌 · Sludge Main, Private

---- Sludge Main, S104

	CA CA	CA	CA .	Ca	scade			Sludge Main, S104
	NRV	NRV	NRV	No	on Return ∨alve			
	ES	es	• ^{ES}	Ex	tent of Survey			MainSewer
	FM	FM	FM	Flo	ow Meter		<u> </u>	Rising Main
	GU	GU	GU	Gu	illey		→	Highway Drain
	HA	на	HA	На	tch Box		<u> </u>	Sludge Main
	HS	HS	HS	He	ad of System			
Matl Length Grad	HY	HY	HY	Ην	, drobrake / Vortex			
	IN	IN	IN	Inl	et .			
	IC	IC	IC	In	spection Chamber			
	- m			Bif	iurcation			
			₩ (A)	Ca	tehnit			
		ő	\sim		interninated Surface	Wator		
CO 40.72				w	W Pumping Station	. mater		
VC 7.78	Ā			Slu	udge Pumping Statio	on		
7.13 VC 27.89			→ [†] →	Se	wer Overflow			
	凸	西	A	ТJ	unction/Saddle			
	LH	LH	ЦН	La	mpHole			
		0		01	lintercentor			
	PE	PE	PE	Po	unStock			
				Pu	Instock			
	RE	RE	RE	Po	unip uddingTuo			
VC 82.86	•	• 50		RO	akaway			
	SM	SM	SM	So	akaway			
	VA	VA	VA	Su	nimit.			
				Va	ive			
	(VC) WO	(vc) wo	_wo	Va	iive Chamber			
		•	•	W	ashout Chamber			
	WVTW	•		Dr	opShaft			
				W	W Treatment Works	5		
	ST		ST	Se	pticTank			
	T.	T	.	Ve	nt Column			
VC 17.72				Ne	twork Storage Tank			
	•	°.	ě	Ori	fice Plate			
	0	0	0	Vo	rtex Chamber			
			▣	Pe	nstock Chamber			
	0	0	0	Bli	nd Manhole			
	Fours	urrace C	ombined U	remow III	Savaan Chambar			CK. Control Kinsk
	•	•	•	 ●P	Screen Chamber Discharge Point			
	+(→ –<	+(-	H	Outfall			Unspecified
					LEGEN	ח		
VC 20.4	MAN		UNCTION					
	FO	Foul						
	CO SW	Combir	e Water ned					
	OV	Overflo	W					
	SEW		PE	TD	T			
VC 16.65		Circular			Irapezoidal			
	OV	⊏yy Oval		BA	Barrel			
	FT	Flat Top		НО	HorseShoe			
	RE	Rectang	gular	UN	Unspecified			
	SQ	Square						
	SEWE	ER MATE	RIAL					
	AC	Asbes	tos Cemen	it		DI	Ductile Iron	bloride
		Brick	hvlene			г vC	Cast Iron	
	RP	Reinfo	orced Plasti	c Mati	ix	SI	Spun Iron	
	со	Concre	ete			ST	Steel	
	CSB	Concre	ete Segmer	nt Bolt	ed	VC	Vitrified Cla	ау
	CSU	Concre	ete Segmer	nt Unb	olted	PP	Polypropyl	ene
	СС	Concre	ete Box Cu	lverted	t	PF	Pitch Fibre	
	PSC	Plastic	:/Steel Con	nposite	9	MAC	Masonry, C	Coursed
	GRC	Glass	Reinforced	Conc	rete	MAR	Masonry, R	andom
	GRP The positi	Glass			ic d apparatus showr	U on thi	Unspecified	n and is given in
	accordance	ce with	the best i	nform	ation currently ava	ilable.	United Utili	ties Water will not accept liability
	copyright	and dat	amage o abase rigi	auseo hts [20	0 by the actual po 016] Ordnance Sur	vey 100	being αίπε 0022432.	rent from those shown. Crown
			-	-	-	-		
			(າຕ	Shoot No	C	13604	S/W
			C	50		י. כי -	10094	
				Sca	le: 1:1250	Da	ate: 11/	09/2017
					253	3 No	odes	
					Sheet	1	of 1	
						Un	ited	
						IIFi	lition	

OS Sheet No: SJ3593NE

Refno	Cover Func	Invert	Size.x	Size.y Sha	ape Matl	Length	Grad	Refno	Cover Func	Invert	Size.x	Size.y8	Shape	N
5508	FO FO	31.91	220			30.6		9901	40.13 CO	36 54	375		CI	
5603	36.62 CO	51.01	300	C	,	39.0		9903	40.17 CO 40.13 CO	36.68	375		CI	
5604 5701	35.06 CO							9904 9905	40.07 CO 40.21 CO					
5702 5703	CO 35.44 CO	0 31.23	550 550	900 E 750 E	G VC G BR	12.17 14.14	1	9906 5501	40.19 CO CO	32.03	300		CI	
5704	CO	0	560	860 E	G BR	7	220	5509	FO	02.00	000		0.	
5801 5802	35.19 CO 35.14 CO	30.16	700	1050 E	G VC	86.34	320	5510 5511	FO					
5803 5805	34.81 CO							5512 5709	CO	0	860		CI	
5807	CO							5710	co	14.93	300		CI	
5814 5816	34.33 CO CO	0	150	C	co	11.43		5711 5804	CO CO	13.49	560	860	EG	
5902	35.66 CO	33.15	450	1000 5	VC	62		5806	co	0	650	1100	EG	
5903 5904	35.42 CO 36.13 CO	31.25	700 375	1060 E	S CO	41.77	60	5810	co	0	750		CI	
5911 5912	35.31 CO	٥	225	0		8 87		5817 5810	CO	0	680	900	EG	
5916	CO	Ő	225	Ċ	VC	13.68		5901	CO					
5919 5923	34.11 CO 34.49 CO	32.21 30 72	225 300			33.14 25.37	19	5907 5913	CO	0	450		CI	
6501	41.72 CO	00.72	000			20.07		5918	čõ	ŏ	225		či	
6502 6507	29.15 CO							6500	co	0	1500		CI	
6509	40.65 CO	37.03	225	C		5.66	29	6503	CO	0	910		CI	
6512	40.8 CO	57.0	225	C		20.4	20	6505	co	0	1500		či	
6515 6516	42.01 FO 41.89 FO	39.33	150	C	U VC	11.4	25	6520 6528	CO CO					
6517	42.03 SW	40.08	150	Ċ	VC	6.32		6607	co		150		CI	
6522	co							6715	sw					
6524 6525	FO FO	0	150	C	I VC	18.42		6716 6718	FO SW					
6526	ŚŴ	0	525	C	CO I	15.62		6807	CO	31.5	710	1060	EG	
6527 6601	40.88 CO							6808 6809	SW	0	900	1120	EG	
6602 6603	39.4 CO	34.74	550	900 E	G BR	10.05		6903 6918	CO					
6604	37.57 CO	33.86	300	C	VC	44.55	43	6919	CO					
6605 6608	40.5 CO CO	38.42 0	225 550	900 F	U VC G BR	33.54 18.11	55	6920 7509	CO FO					
6609	40.08 SW	20 4	225		1 1/0	24.4	70	7723	SW	0	150		0	
6611	40.7 SW	39.21	225 150	C		20.1	27	7815	SW	0	150			
6612 6701	41.15 CO 37.65 CO	36.99	225	C	VC	16.28		7908 7909	CO					
6702	37.59 CO	35.91	300	Ç	VC	21.21	9	7910	çõ					
6703 6705	37.76 CO 39.07 CO	36.31 35.74	225 550	900 F	JI VC G VC	30.35 52	91	7911 7912	FO CO					
6706	co		100	Ċ	VČ	5.54		8805	čõ	0	225		CI	
6708	co		100		I VC	5.32 4.11		8908	co	0	375 225		CI	
6710 6711	CO		100	C		4 21		9804 5502	CO					
6713	čõ		100			7.21		5503	cõ					
6714 6801	CO 38.73 CO		100	C	I VC	3.43		5505 5506	CO					
6802	36.92 CO	30.44	690	1020 E	G BR	31.78	45	5507	co		150		CI	
6804	39.05 CO	31.45	690	1000 E	G BR	55.79	00	5513	FO		150		CI	
6805 6901	38.48 SW 38.12 SW	36.56	150	C	I VC	35.17	26	5700 5707	CO					
6902	CO							5712	cõ					
6904 6905	38.01 CO							5808	co	0	225		CI	
6906 6907	37.33 CO	34.57	300	C	I VC	21.27	33	5811 5813	CO	0	650 750	750	EG	
6908	35.84 CO							5906	co	Ő	675	1050	EG	
6909 6910	36.26 CO 38.06 CO							5908 5909	CO	0	675 300	1050	EG Cl	
6911 6912	36.45 CO	34.07	300	C	VC IV	21.84		5910	CO	0	700	1060	EG	
6913	39.1 CO							5917	co					
6914 6915	39.35 CO 39.28 CO	36 81	300	C	u vc	42 95	33	5920 6506	CO	0	1500		CI	
6916	38.35 CO	00.01	000			42.00	00	6508	čõ	Ŭ	1000		01	
7502 7503	43.24 CO 42.46 CO							6511 6513	CO					
7504	41.89 SW	40.7	150	C	VC	15.52	27	6514	co					
7505	42.13 FO 42.66 SW	40.75	150	C		40.4	47	6528	co					
7508 7510	43.13 SW FO	41.67	150	C	VC IV	47.07	71	6606 6613	CO	0	550	900	EG	
7601	42.18 CO							6614	cõ					
7602	42.06 SW 42.06 SW	40.62	225	C	U VC	16.28	51	6704	co	0	300		CI	
7605	42.23 SW	30 76	150	C		15 3	55	6712 6717	CO					
7607	41.74 FO	00.70	100			10.0	00	6917	co	0	1050		CI	
7608 7610	41.53 FO 41.59 SW	0	225	C	I VC	3		6921 7501	CO					
7613	41.16 FO	39.31	150	C	VC IV	36.35	51	7507	SW					
7615	40.47 SW							7612	co					
7616 7617	40.57 SW 41.05 SW	39.63	150	C	u vc	21.1	47	7619 7707	FO CO					
7618	42.25 SW	20.07	150			10.15	04	7708	CO					
7702	40.15 SW 40.52 FO	30.07	150	C		13.15	94	7719	CO	0	150		CI	
7703 7704	40.56 FO 40.8 FO	39 32	150	C	u vc	13 04	18	7722 7803	CO SW					
7705	40.76 SW	00.02						7804	co					
7709	41.2 CO							7812	CO					
7710	41.33 CO 41.12 CO	38 94	150	ſ		6.32	63	7904	CO					
7713	41.81 FO	40.29	150	ç	i vc	30.27	50	8811	čõ	0	375		CI	
7714 7715	41.83 SW 41.61 SW	39.66 40.09	225 150		I VC	38.33 21.38	41 76	8903 8906	CO					
7716	40.08 CO	2.00						9803	čŏ	0	375		CI	
7718	41.19 CO 41.39 SW	38.65	150	C	U VC	5.83		9900 5604	co					
7720 7721	FO 39.92 SW	38.09	225	C		5 39		5605	CO					
7725	FO	00.00	220			0.00								
7801 7802	39.8 CO 40.06 CO	32.59	500	800 E	G BR	30.89	281							
7805	40.27 SW	37.56	225	C		4.47	21							
7807	39.49 SW	38.07	150	Ċ	i vč	15.52	11							
7808 7809	39.67 SW 39.46 SW	38.16	150	C	I VC	18.68	9							
7810	39.44 SW	0	375	675 5		120 65								
7901	40.24 CO	0	515	073 E		120.00								
7902 7905	40.21 CO 39.91 CO	37.48	300	C	VC I	55.39	115							
7907	39.9 CO	37.26	225	C	VC IV	52.95	106							
7913 8701	CO		150	C	U VC	25.29								
8801 8802	40.85 CO 41.15 CO	32 60	375	ſ		10 44	32							
8803	40.94 CO	32.66	375	C	VC	70.52								
8804 8806	40.89 CO 40.49 CO	32.74	900	C	I CO	22.47	51							
8807	40.18 CO	35.31	375	ç	VC	29.12	10							
8809	40.68 CO	51.95	220	Ċ	, vc	20.44	42							
8810 8813	40.86 CO CO	0	225	ſ		79.08								
8901	40.27 CO	37 74	200	~		25 74	117							
8902	40.2 CO	0	300 225	C		20.71 11.18	117							
8905 8907	40.42 CO	0	225	C		27 45								
9801	41.02 ČŎ	32.81	375	Ċ	i vč	28.44	284							

WASTE WATER SYMBOLOGY

Foul	Surface	Combined	Overflow
•	•	•	
•	•	—	•
			-
	— -		
	b		

Foul Surface Combined

Manhole Manhole,Side Entry MainSewer, Public MainSewer, Private MainSewer, S104 Rising Main, Public Rising Main, Private Rising Main, S104 Highway Drain, Private

					0	0	0	W	V Site Termination)	_	Sludge Main Public
					AV	AV	AV	Air	·∨alve			Sludge Main, Private
					CA	CA	CA	Cas	scade			Sludge Main, S104
					NRV	NRV	NRV	No	n Return Valve			
					ES	ES	ES	Fvt	ent of Survey		ABANDO	ONED PIPE
					FM	FM	FM		ent of Salvey			MainSewer
					GU	GU	GU	FIU	www.eter		<u> </u>	Rising Main
					на	на	на	Gu	ney			Highway Drain
					•	• HS	e HS	Hat	tch Box		<u> </u>	Sludge Main
Size.xSize.	yShape	Matl	Length	Grad	. HY	•	•	He	ad of System			
	,		U.S.		•	• HY	• HY	Hy	drobrake∕Vortex			
375 375	CI CI	VC VC	23.37 20.88	779 149	•	• ^{IN}	• ^{IN}	Inl	et			
								Ins	pection Chamber			
300	CI	VC	9.49	43	\square	\oplus	\square	Bif	urcation			
					(CA)	(CA)	(CA)	Cat	tchpit			
860	CI	BR	7.21			ő		Co	ntaminated Surfac	e Water		
560 860) EG	BR	12.37 15.13					Ŵ	N Pumping Station	1		
650 110	0 EG	BR	4					Slu	idge Pumping Stati	ion		
750 680 900	CI EG	BR BR	5.39 24.74				<u> </u>	Set	wer Overflow			
					西	æ	- C	т.	ungtion/Saddle			
450 225	CI CI	VC VC	6.71 4		цн	Цн	ц	1.0	unctiony sadule			
1500	CI	со	8.73		0	0	_0	Lar	прноге			
910 100	CI	BR VC	14.93 32.58		•	• DF	PE	Oil	Interceptor			
1500	CI	BK	39.17		•	•	•	Pe	nStock			
150	CI	VC	16.12		A			Pu	mp			
					RE	e RE	RE .	Ro	ddingEye			
710 106	0 EG	BR	7.28	182		. so	e ^{so}	So	akaway			
900 112	0 EG	BK	5		SM	SM	SM	Sui	mmit			
					-VA	VA	VA	∨a	lve			
						(vo)	6	Va	lve Chamber			
150	CI	VC	15.82		wo	wo	wo		shout Chamber			
					DS	DS	DS	vv a	ashout champer			
					NVTW.	•	No.TW	Dro	opShaft			
225	CI	VC	13.78				H	W١	W Treatment Work	S		
375 225	CI CI	VC VC	1.41 57.66		ST		ST	Sej	pticTank			
					-		Π.	Ver	nt Column			
								Net	twork Storage Tank			
150	CI	VC	4.62		OP .	• ^{OP}	● ^{OP}	Ori	fice Plate			
					٢	0	0	Vor	tex Chamber			
					0			Per	nstock Chamber			
225 650 750	CI EG	VC BR	29.61 24.74		0	0	0	Blir	nd Manhole			
750 675 105	CI 0 EG		24.74 14.47		Foul	Surface	Combined	Overflow				
675 105 300 700 106	0 EG CI		21.1 23.54					III 8	Screen Chamber			CK Control Kiosk
700 100	U EG	00	57		DP .	. DP	•**	•	Discharge Point			Unspecified
1500	CI	VC	18.25		+(→ –(+(→ -(o	Dutfall			
									LEGEN	D		
					MAN	HOLE I		N				
550 900) EG	BR	13.15		FO	Foul						
						Comb	ined					
300	CI	VC	29.43		OV	Overfl	ow					
1050	CI	BR	4.47		SEW	ER SHA	PE					
	0.	2.11			CI	Circula	r	TR	Trapezoidal			
					EG	Egg		AR	Arch			
					OV	Oval		BA	Barrel			
						Flat Io	p	HO	HorseShoe			
150	CI	VC	5		RE	Rectar	igular	UN	Unspecified			
					SQ	Square						
					SEW		ERIAL	ant		וח	Ductile Iron	
375	CI	VC	3.16			Rrick				PVC	Polyvinyl C	hloride
					PF	Polve	ethylene			CI	Cast Iron	
375	CI	VC	58.83		RP	Reint	orced Plas	stic Matri	ix	SI	Spun Iron	
					со	Conc	rete			ST	Steel	
					CSB	Conc	rete Segm	ent Bolte	ed	VC	Vitrified Cla	y
					CSU	Conc	rete Segm	ent Unbo	olted	PP	Polypropyle	ene
					сс	Conc	rete Box C	ulverted		PF	Pitch Fibre	
					PSC	Plast	ic/Steel Co	omposite)	MAC	Masonry, C	coursed
					GRC	Glass	Reinforce	ed Concr	rete	MAR	Masonry, R	andom
					GRP	Glass	Reinforce	ed Plasti	с	U	Unspecified	l
					The posit	tion of	the unde	rground	apparatus show	n on thi	s plan is a	pproximate only and is given ir
					for any lo	ce with oss or	the best	caused	ation currently ava by the actual p	ailable. l	Jnited Utilit beina differ	ies Water will not accept liability ent from those shown. Crowr
					copyright	and da	tabase ri	ghts [20	016] Ordnance Su	rvey 100	0022432.	
									Charth		10500	
								05	Sheet NO	J. SJ	13283	
								Scal	le: 1:1250	Da	te: 11/	09/2017
									0e	7 1.	dee	
									20	<i>i</i> INC		
									Sheet	1	of 1	
										11-	itad	1
										UN	neo	
										Uti	lities	
									elpin use	flow s	mooth	
									ing life		- 511	V

SEWER RECORDS

OS Sheet No: SJ3594SE

Refno Cov 5001	ver Func CO	Invert	Size.x Si 150	ize.y Shape Cl	Matl VC	Length 21.08	Grad	Refno 8006	Cover Func 40.42 CO	Invert	Size.xSize.y	Shape	Matl	Length
5002 37.1 5003 36. 5004 37. 5004 37.	01 CO 77 CO .9 CO 01 CO	34.34 36.66 34.93	225 225 375	CI CI CI	VC VC VC	5.95 28.69 72.01	12 58	8101 8102 8103 8104	40.41 CO 40.44 CO 40.42 CO 40.49 CO	36.53	450	CI	VC	29.07
5006 38.0 5007 38.0 5008 5013	04 CO 18 CO CO CO	35.67 0	225 300	CI	VC VC	66.93 21.36		8105 8106 8107 8108	CO 40.32 CO 40.28 CO 40.37 CO	36.74 37.33	300 300	CI CI	VC VC	24.35 30.36
5101 38.0 5103 40.0 5104 5109	02 CO 63 CO SW CO	37.85 0	225 225	CI CI	VC VC	5.39 25		8114 8118 8122 8123 8124	CO CO 40.49 CO 40.49 CO	36.72	450	CI	VC	15.23
5111 5112 5113 5116 5201 403								8124 8133 8201 8202 8203	40.35 CO 40.5 CO 40.36 CO 40.4 CO					
5201 40. 5202 41. 5203	13 CO SW	0	225	CI	vc	38.33		8203 8204 8205	40.4 CO 40.37 CO 40.53 CO					
5204 41. 5205 42.0 5206	.5 CO 01 CO SW	38.35 0	300 225	CI CI	VC VC	53.6 57.28	50	8206 8207 8210	40.54 CO 40.64 CO CO	36.91 38.51	450 300	CI CI	VC VC	8.94 30.42
5207 41. 5208 42.	15 CO 71 CO	37.72	300	CI	VC	25.73	70	8212 8213	40.45 CO 40.45 CO	0	225	0	VC	2
5301 41. 5302	18 CO SW	38.57	225	CI	VC	11.83	30	8215 8216 8217	40.59 CO CO	38.41 0	225 300 225	CI CI	VC VC VC	20 62.09
5303 40. 5305 42 5308 40. 5310	74 CO .5 CO 35 CO SW							8218 8220 8228 8291	40.5 CO 40.54 CO CO 40.39 CO	36.72 38.51	450 225	CI	VC VC	11.42 41.01
5311 5312 6003 37.9 6004 38.4	CO CO 98 CO 48 CO	35.19	375	CI	BR	11.98	133	8292 8293 8301 8302	40.42 CO 40.4 CO 40.37 CO 40.4 CO	38.19 38.35 37.53 37.61	300 300 450 450	CI CI CI	VC VC VC VC	22.02 18.03 35.13 15.03
6005 383 6006 39.4 6007 38 6012	42 CO 42 CO .9 CO CO	36.02	300	CI	VC	48.13	107	8303 8304 8305 8306	40.39 CO 40.35 CO 40.49 CO 40.46 CO	38.37 38.16	225 300	CI CI	VC VC	18 21.02
6014 6017 6101 39. 6102 39.0	CO CO 76 CO 67 SW	36.18	375	CI	VC	79.08	68	8307 8308 8309 8312	40.77 SW 40.48 CO 40.68 CO CO					
6103 39 6104 40.1 6105 40 6106 40.1	.9 CO 21 CO .3 CO 69 CO	27 50	200	CI	VC	40.02	120	8323 8324 8391 8392	40.45 CO CO 40.50 CO					
6107 40. 6109 40 6111 40. 6112 40.	.7 CO 82 CO 77 CO	37.50	300	CI	vc	49.03	120	8401 8402 8403 8404 8406	40.59 CO 40.52 CO 40.88 CO 40.66 CO	37.33	225	CI	VC	48.68
6122 6123 6124 6201 40	CO CO CO 74 CO							8417 9001 9002 9003	40.23 CO 40.23 CO 40.23 CO 40.13 CO	36.8 38.71 37.67	300 225 225			47.76 65.46 62.3
6202 40.9 6203 40.9 6204 40.9 6205 40	93 CO 84 CO 97 CO 7 CO							9101 9102 9103 9104	40.29 CO 40.04 CO	38.01	225	CI	VC	62.94
6203 40. 6207 41. 6208 40. 6210 40.0	.7 CO 18 CO .9 CO 68 CO	37.73 37.18	225 375	CI	VC VC	16.79 70	636	9120 9201 9202	40.54 CO 40.57 CO 40.64 CO 40.78 CO	0	225	CI	VC	92.35
6211 40.9 6214	58 CO CO	37.18	375	Ċi	VČ	14.04		9203 9209	40.77 CO CO	0	150	CI	VC	7.79
6215 40.0 6301 40.0 6302 40	5 CO 5 CO 5 CO	37.92	225 225	CI	vc	16.76	134	9301 9302 9304	40.71 CO 40.72 CO 40.99 CO	0	225	CI	VC	73.05
6303 40. 6304 40. 6305	38 CO 25 CO CO	37.28	375	CI	VC	57	1140	9305 9306 9307	CO 40.99 CO 40.56 CO					
6402 40. 6403 39.3 6404	.4 CO 88 CO CO	0	450	CI	VC	13	100	9309 9311 9317	CO 40.6 CO 40.56 CO	0 38.66	225 225	CI CI	VC VC	16 18
6406 40.0 6409 39.0 6410 39.0	02 CO 72 CO .8 CO	37.87 36.83 36.86	225 225 225	CI CI CI	VC VC VC	32.56 4.12 16.28	102 543	9319 9403 9404	40.93 CO 40.76 CO CO					
6411 6412 39.0 6416 39.0	CO 62 CO 66 CO	36.99	300	CI	VC	18.25		9405 9407 0213	40.32 CO 40.73 CO CO	36.9 0	300 450	CI CI	VC VC	113.23 48.42
6418 39. 6486 39.	76 SW 82 CO	38.82 37.48	225 225 200	CI	VC VC	280.22	163 120	7816 5008	CO CO	Ō	225	CI	VC	14.37
7002 39.9 7003 40.4	96 CO 42 CO	37.49 37.95	300 300	CI	VC VC	42.3	57 91	5012 5018 5100	co co	0	225 225 225	CI	VC VC	13.22
7004 40.0 7005 40.0 7006 40.0	25 CO 09 CO	37.09	300	CI	vC	40.34	130	5105 5106 5108	co co	0	300 300 300	CI CI	VC VC VC	5.39 17.9 11.22
7007 39.5 7008 39.5 7009 40.4	57 CO 92 CO 44 CO	36.9 37.13 38.11	450 375 225	CI CI CI	VC VC	20.4 20.07 44 72	185 167 106	5114 5209 5209		0	100 225 150	CI CI CI	VC VC	1.94 14.02 6.21
7015 7021	CO	00.11	220	0.			100	5210 5300	co co	0000	300 225	CI	VC VC	18.35
71023 7101 40.0 7102 40.5	61 CO 59 CO	38.48 38.53	300 300	CI CI	VC VC	35.9 36.88	57 115	5307 5309 5309	co co	38.17 0	300	CI	VC	12.37
7103 40. 7104 40. 7105 40.	71 CO 63 CO 57 CO	38.32 38.36 37.91	300 300 300	CI CI CI	VC VC VC	41.98 34.72 35.8	86 79 85	5313 5314 5405	SW SW CO					
7106 40.0 7107 40.0 7108 40.0	61 CO 37 CO 54 CO							5408 5411 5412	CO CO CO	0 0	450 225	CI CI	co vc	19.04 54.54
7109 40. 7112 7114	72 CO CO CO	37.83	300 100	CI	VC VC	20.27	101	5413 6000 6002		0 0 35 1	300 300 375	CI CI CI	VC VC	26.65 13.62 12.76
7122 7201 40.0 7202 40	CO 89 CO 6 CO	38.53 38.47	300 300	CI	VC	36.88 37.66	97 105	6010 6013 6015		00.1	010	01		12.70
7202 40. 7203 40. 7204 40.	44 CO 45 CO	37.29	375	Ci	VC	1.64	105	6013 6018 6110		00.0	075			00.45
7205 40.9 7206 40. 7207	.5 CO .5 CO CO	38.39 38.29 0	300 225 300	CI CI CI	VC VC VC	68.78 37.85 41.77	86 252	6114 6117 6118		36.6 0 0	375 300 375	CI CI CI	VC VC VC	30.15 14.19 13.86
7208 40.0 7209 40.4 7210 40.5	61 CO 46 CO 59 CO	38.25	300	CI	VC	29.61	114	6121 6200 6206	CO CO CO	0	300	CI	VC	5.09
7211 40.4 7216 7219	46 CO CO							6209 6212 6216		0	300	CI	VC	21.38
7301 40. 7302 40.	75 CO 57 CO	38.51 38.32	300 225	CI	VC VC	68.91 34.71	103 158	6218 6219	co co	0	225	CI	VC	2
7306 40.9 7308 40.4 7311	44 CO CO	38.41 37.71	300 225	CI	VC	58.19 3.9	119	6220 6221 6300	CO CO CO	0	300	CI	VC	14.45 17.38
7312 40. 7313 40. 7314 40	54 CO 56 CO 19 CO	38.41 38.3	300 225	CI	VC VC	25.15 15.3	126 109	6307 6308 6310	CO CO CO	0	225	CI	VC	2.24
7315 40.4 7316 7221 40.4	48 ČŎ CO 31 CO	37 70	300	0		2.2		6312 6313	ČŎ FO					
7322 40.3 7324 7324	25 CO CO	37.85	300	CI	VC	3.3 16.28	326	6314 6316 6317	CO SW					
7332 7339 7401 40.5	CO CO 56 CO							6400 7000 7010	CO CO CO	0	300	CI	VC	14.71
7402 40 7404 7405 404	0 CO CO	0	225	CI	VC	34.37		7011 7012 7016		37.01	450 100	CI	VC	20.4 4 21
7406 40.0 7410		37.93	225	CI	VC	30.81	770	7020 7022	CO SW		100		vC	7.21
7411 7415 7417	CO CO		225	CI	VC	8.93		7024 7100 7108	C0 C0 C0	0	225 100	CI CI	VC VC	14.19 4.21
7418 8000 40.4 8001 40.4	CO 44 CO 42 CO	36.07	450	CI	VC	51.16	284	7110 7111 7115	CO CO SW	37.63 38.11	225 225 100	CI CI CI	VC VC VC	19.56 36.55 5.87
8002 40. 8004 40 8005 40	43 CO .5 CO 44 CO		-		-	,		7120 7121 7200		0	300	CI	VC	10.28
														-

WASTE WATER SYMBOLOGY

Foul	Surface	Combined	Overflow
•	•	•	•
T	•	—	•
			-
— - -	— - -	— — —	
	_		
b	b		

Manhole Manhole, Side Entry MainSewer, Public MainSewer, Private MainSewer, S104 Rising Main, Public Rising Main, Private Rising Main, S104 Highway Drain, Private

	Foul	Surface	Combino	4					
		o		, wu	V Site Termination				
		AV	AV	Δir	Valve		- - - -	Sludge Main, Pu Sludge Main, Pr	i blic ivate
	CA	CA	CA	 Cas	cade			Sludge Main, S1	04
	NRV	NRV	NRV	No	n Return Valve				
	ES	ES	ES	Fxt	ent of Survey		ABANDO		
	FM	FM	FM	Flo	w Meter			MainSewer	
	GU	GU	GU	Gul	llev		→	Rising Main	
	на	НА	на	Hat	rch Box		<u> </u>	Sludge Main	
	HS	HS	HS	He	ad of System			oldage Main	
Grad	HY	HY	HY	Hv	drobrake / Vortex				
291	N	IN	IN	Inle	et				
	IC	IC	IC	Ins	pection Chamber				
116 101	Ð	Ð	Ф	Bif	urcation				
	(CA)	(CA)	(A)	Cat	chpit				
69		ő	Ŭ	Сог	ntaminated Surface	Water			
				WV	V Pumping Station				
	A		-	Slu	idge Pumping Statio	on			
224			→↔	Sev	wer Overflow				
380	西	酉	A	ТJ	unction/Saddle				
	LH	LH	LH	Lar	npHole				
	e	•	e	Oil	Interceptor				
273	PE	PE	PE	Pe	nStock				
22				Pu	mp				
139 220 188	RE	RE	RE	Ro	ddingEye				
56	-	so	so	Soa	akaway				
33	SM	SM	SM	Sur	nmit				
	eVA	VA	VA	Val	ve				
	(vc)	(vc)	(vc)	∨al	ve Chamber				
	wo	wo	wo	Wa	shout Chamber				
070	DS	DS	DS	Dro	opShaft				
270	WVTW H			w	' V Treatment Works	5			
398	ST		ST	Sei	otic Tank				
102 189				Ver	at Column				
102				0.0	werde Sterre en Tarak				
		 P		Orit	work Storage Tank				
			ā	Vor	tev Chamber				
			0	Por	stock Chamber				
		•	•	Plin	d Maphole				
	Foul	Surface C	ombined Over	flow	iu Marinore				
	=	=	⊞ ⊞	5	Screen Chamber			CK Control K	iosk
	• ^{DP}	DP	•	P)ischarge Point			• Unspecifi	ed
46	→ -(→ –<	+(+	- (Dutfall			enepeen	
					LEGENI	D			
		NHOLE F	UNCTION						
	sw	Surface	e Water						
	со	Combir	ned						
	OV	Overflo	w						
	CI	/ER SHA I Circular	PE	TR	Trapezoidal				
31	EG	Egg		AR	Arch				
	ov	Oval		BA	Barrel				
	FT	Flat Top)	НО	HorseShoe				
	RE	Rectan	gular	UN	Unspecified				
142	SQ	Square							
	SEW						Ductile Iron		
	AC	Asbes	los Cement			PVC		hloride	
74	PE	Polvet	thylene			CI	Cast Iron		
	RP	Reinfo	orced Plastic	Matri	x	SI	Spun Iron		
	со	Concre	ete			ST	Steel		
	CSB	Concre	ete Segment	Bolte	ed	VC	Vitrified Cla	ау	
	CSU	Concre	ete Segment	Unbo	blted	PP	Polypropyle	ene	
	CC	Concre	ete Box Culv	erted		PF	Pitch Fibre		
	PSC	Plastic	c/Steel Comp	osite		MAC	Masonry, C	Coursed	
	GRC	Glass	Reinforced (Concr	ete	MAR	Masonry, R	andom	
	GRP The posi	tion of t			c Lannaratus shown	U on thi	Unspecified	n Innrovimate only ar	nd is aiven
	accordan	ice with	the best inf	forma	ation currently ava	ilable.	United Utilit	ties Water will not a	iccept liabi
185	copyright	oss or o t and dat	amage ca abase right	usec s [20	1 by the actual po 16] Ordnance Sur	vey 100	being differ 0022432.	rent from those sh	own. Cro
			-	-	-	-			
02									
104			~	0	Chect NI-		12504	<u>ег</u>	
			Ŭ	3	Sheet INC	J. 3J	13594	JE	
			S	cal	e: 1:1250	Da	ate: 11/	09/2017	
					∆ 70		odes		
						איי <i>ב</i> א			
	<u> </u>				Sheet	1	01 2		
							ited	1	
							litico		
					50	U	uues		
	1				VII.	CLOUNT C	mooti.		

·'6 ··· 1 SEWER RECORDS

OS Sheet No: SJ3594SE

Refno 7212 7214	Cover Func SW CO	Invert	Size.x Size	.y Shape	Matl	Length	Grad	Refno 8221 8223	Cover	Func SW CO	Invert	Size.xSize.	y Shape	Matl	Length	Grad
7217 7218 7219	CO CO CO	0	225	CI	VC	11.26		8227 8310 8311								
7220 7221 7300	CO CO SW	0	225	CI	VC	56.84		8313 8315 8320		CO SW CO	0	450	CI	VC	34.06	
7303 7304 7305 7207		0 38.21 38.16	375 225 300	CI	VC VC VC	20.33 24.38 15.52	116 111	8321 8411 8413								
7307 7309 7310		0 0	225 300 225	CI CI	VC VC VC	11.5 11.95 15.19		9204 9205 9206								
7318 7323 7326	SW CO		150	CI	VC	1.27		9308 9310 9312								
7328 7329 7330	SW SW SW							9314 9318 9320		CO CO						
7333 7335 7336								9406 9409 9412	40.00	SW SW CO						
7337 7338 7341	CO SW	0	150	CI	VC	3.92		8105 8120 8121	40.33							
7400 7403 7407	SW SW	0	300	CI	vc	12.13		9101 9121		CO SW						
7408 7413 7421	CO CO CO															
7422 8003 8007						40 70										
8008 8010 8011		0000	300 300 225	CI	VC VC VC	13.78 13.95 11.48										
8100 8105 8109		0	300	CI	VC	11.3										
8110 8111 8113	CO CO CO															
8116 8200 8219	CO CO CO		100	CI	VC	4.8										
8222 8224 8225	SW CO CO	39.36	225 150	CI	VC VC	20.02 5.27	16									
8226 8229 8314		~~~~	005			~~~~										
8316 8317 8319	CO CO	39.68 38.57	225 225	CI	VC	26.02 27.02	24 96									
8322 8325 8405	CO CO CO		100	CI	VC	4.21										
8407 8408 8409	CO CO	38.67	225	CI	VC	37.05	161									
8410 8412 8414																
8416 8418 9200	CO CO SW	0	225	CI	VC	37.36										
9207 9210 9211	CO CO CO	0	225	CI	VC	19.02										
9212 9213 9214	CO CO SW	0 0	225 150 225	CI	VC VC VC	18.97 15.81 37.38										
9215 9303 9313	CO CO CO	38.96	300 100	CI	VC VC	30.02 5.15	273									
9313 9321 9401 9402	CO CO CO	0	225	CI	vc	14.75										
9402 9408 9410 9413		0 0	225 225	CI CI	VC VC	22.68 13.35										
9414 9619 0214		0	225	CI		15.54 10.46										
0215 0508 5000		000	225 300 225	CI CI CI	VC VC VC	15.01 74.53 21.76										
5011 5016 5017	CO CO CO	Ū		0.												
5107 5115 5210	CO CO CO															
5304 5306 5315	CO CO SW	38.57	300	CI	VC	24.74	36									
5316 5402 5404	CO CO CO															
5406 5407 5414	CO CO CO															
6008 6011 6016	CO CO CO															
6019 6115 6116	CO CO CO															
6119 6120 6206	CO CO CO															
6213 6217 6306	CO CO CO	0	300	CI	VC	2.48										
6311 6315 6350	CO CO CO															
6415 6419 7014	CO CO CO	0	375	CI	VC	50										
7017 7019 7116																
7213 7215																
7222 7310 7317 7220		0	275	CI	VC	19.09										
7325 7331 7334	000000000000000000000000000000000000000	U	515	U	vC	10.00										
7340 7414	000000000000000000000000000000000000000															
7420 8112 8117	CO CO															
8125 8127 8128		0	450	CI	VC	18.36										
8131 8208 8209		5		01												
8211 8214	CO CO															

WASTE WATER SYMBOLOGY

Foul	Surface	Combined	Overflow
•	•	-	
T	T	T	Π.
		-	
	-		
	b		

Foul Surface Combined

Manhole Manhole, Side Entry MainSewer, Public MainSewer, Private MainSewer, S104 Rising Main, Public Rising Main, Private Rising Main, S104 Highway Drain, Private

~	0	0	WW Sit	e Termination				
AV	AV	AV	AirMole	e reminación			Sludge Main, Public Sludge Main, Private	
CA	CA	CA	An var				Sludge Main, S104	
• NEW	• NEW		Cascade	2				
•	• NRV	•	Non Re	turn Valve		ABANDO	ONED PIPE	
•	•	•	Extent	of Survey		→	MainSewer	
e M	• M	FM	Flow M	eter		<u> </u>	Rising Main	
•	•	eu	Gulley			→	Highway Drain	
e HA	•HA	HA •	Hatch B	OX		<u> </u>	Sludge Main	
HS	HS	HS •	Head of	fSystem				
e HY	e HY	eHY e	Hydrob	rake/Vortex				
•	• ^{IN}	e ^{IN}	Inlet					
IC	C		Inspect	ion Chamber				
\square	\square	Ð	Bifurcat	tion				
(CA)	(GA)	Â	Catchpi	t				
\sim	ő	\sim	Contar	- vinated Surface	Wator			
	¥.			mping Station	mater			
Ā			Sludge	Pumping Static	n			
		<u> </u>	Sewer	Overflow				
ക	m		Thurst	on/Coddlo				
ЦН	цн		i Juncu					
0	0	_01	LampH	DIE				
•	• DE	• PF	OilInte	rceptor				
•	•	•	PenSto	ck				
▲		A	Pump					
e RE	RE	,RE	Roddin	gEye				
		eso	Soakaw	/ay				
SM	SM	SM	Summi	t				
VA	VA	VA	Valve					
(VC)	(vc)	(vc)	Valve 0	hamber				
wo	wo	wo	Washo	ut Chamber				
DS	DS	DS	DropSh	oft				
W/TW	•	WwTW	www.r.	alt.				
			www.in	eatment works 				
51	_	51	Septic	lank				
T	т	Ţ	Vent Co	lumn				
			Networ	k Storage Tank				
, e	ě	- Č	Orifice F	Plate				
0	0	0	Vortex (Chamber				
			Penstoo	k Chamber				
0	0	0	Blind M	anhole				
Foul	Surface Co	mbined UM	eniow The second				CZ Control Kingk	
•	P	(Discha	rae Point			Control Klosk	
÷	→-< -	⊢(→	-C Outfall				Unspecified	
					`			
МАК				LEGENL	,			
FO	Foul	Nonon						
SW	Surface	Water						
	Overflov	ed v						
SEW	ER SHAP	E						
CI	Circular		TR Tra	apezoidal				
EG	Egg		AR Arc	ch				
OV	Oval		BA Ba	rrel				
FT	Flat Top		HO Ho	rseShoe				
RE	Rectang	ular		specified				
SQ	Square							
AC	Asbest	os Cement	t		DI	Ductile Iron	1	
BR	Brick				PVC	Polyvinyl C	Chloride	
PE	Polyeth	iylene			CI	Cast Iron		
RP	Reinfor	ced Plastic	c Matrix		SI	Spun Iron		
CO	Concre	te			ST	Steel		
CSB	Concret	e Segmen	t Bolted		VC	Vitrified Cla	ау	
CSU	Concret	e Segmen	t Unbolted		PP	Polypropyle	ene	
CC	Concre	te Box Cul	verted		PF	Pitch Fibre		
PSC	Plastic	Steel Com	nposite		MAC	Masonry, C	Coursed	
GRC	Glass F	Reinforced	Concrete		MAR	Masonry, R	andom	
GRP	Glass F	Reinforced	Plastic		U	Unspecified		
accordan for any le copyright	ce with th oss or d and data	he best ir amage ca abase righ	nformation aused by hts [2016]	the actual po Ordnance Sun	ilable. Isition vey 100	United Utilit being differ 0022432.	rent from those shown. C	ability rowr
		C	DS SI	neet No	: S.	13594	SE	
		с С		1.1250		11/	- <u> </u>	
		C	JUDIC.	1.1400				

479 Nodes Sheet 2 of 2 Jelping life flow smoothly

SEWER RECORDS

WASTE WATER SYMBOLOGY

Foul	Su	urface	Combined	Overflow				Overflow	N	Foul	Surface	Combin	ned		
	+				Manhole Manhole, Sid MainSewer, MainSewer, MainSewer, Rising Main,	de Ent Public Privat S104 Public	ry : :e	Abando	v Sludge Main, Public Sludge Main, Private Sludge Main, S104 ned Pipe MainSewer Bising Main		■ □ ● ◎	ST T ST	Septic Tan Vent Colur Network S Orifice Plat Vortex Cha	nn Iorage T Ie mber	ank
	-				Rising Main,	S104	te	→	Highway Drain		0		Penstock C	hambei	
	_				Highway Dra	nin, Pr	ivate	-	Sludge Main	0	0	0	Blind Man	ole	
Foul :	Surface	Combin	ned			Foul	Surface	e Combine	d	Foul	Surface	Combi	ned Overflow		
AV ev	0 **	0 AV	WW Sit	te Termina ve	tion	A		→ ⁱ →	Sludge Pumping Station Sewer Overflow	*	•*	•••		Screer Discha	n Chamber Irge Point
CA O	CA .	CA	Cascade	e		百	i di	-	T Junction/Saddle	+(→ –<	+(+-(Outfa	I
.NRV	.NRV	.NRV	Non Re	turn Valve		EH.	LH.		LampHole				175	Contra	al Kiosk
•ES	• 55	•55	Extent	of Survey		•	•	•	OilInterceptor				•	Unspe	cified
•	•	•	Flow M	leter		e	e	•	PenStock	Lege	nd			onspe	enicu
eu		eu	Gulley						Pump	FO F	OLE FUNCTI oul urface Water		SEWER SHAPE CI Circular EG Egg	TR	Trapezoidal Arch
•	•	•	Hatch B	Box		RE		RE	RoddingEye	co c ov o	ombined verflow		OV Oval FT Flat Top	BA	Barrel HorseShoe
•	•	•	Head of	f System					Soakaway				RE Rectangular SQ Square	UN	Unspecified
•	•	•	Hydrob	rake / Vor	tex	• ^{5M}	•544		Summit	AC A	R MATERIAL sbestos Cen	nent I	DI Ductile Iron		
•	•	•	Inlet			•VA	•	-	Valve	BR B CO C	rick oncrete	ľ	VC Vitrified Clay PP Polypropylene		
		-	Inspect	ion Chamb	ber	(VO)	vo	(c)	Valve Chamber	CSB C	oncrete Seg oncrete Seg	ment l ment l	PF Pitched Fibre MA Masonry, Cours	ed	
	\square	\square	Bifurcat	tion		010		. WO	Washout Chamber	CC C	oncrete Box lastic / Steel	Culverted I	MA Masonry, Rand RP Reinforced Plas	tic	
Ø	(CA)		Catchpi	it		D 5	os		DropShaft	GR G GRP G	lass Reinfor	ced d ced d	Cl Cast Iron Si Spun Iron		
	A		WW Pu	imping Sta	tion	Ĥ		ĚĤ	WW Treatment Works	PE P	olyethylene	l l	J Unspecified		

CLEAN WATER SYMBOLOGY

PIPE WORK

Live	Proposed	
		Trunk Main - PressurisedMain
		Raw Water Aqueduct - PressurisedMain
		Raw Water Aqueduct - GravityMain
		LDTM Raw Water Distribution - PressurisedMain
		LDTM Raw Water Distribution - GravityMain
		LDTM Treated Water Distribution - PressurisedMain
		LDTM Treated Water Distribution - GravityMain
		Private Pipe - LateralLine
		Distribution Main - PressurisedMain
-		Comms Pipe - LateralLine
		Concessionary Service - LateralLine

ABANDONED PIPE

 Trunk Main
 Raw Water Aqueduct
 LDTM Raw Water Distribution
 LDTM Treated Water Distribution
 Private Pipe
 Distribution Main
 Comms Pipe
 Concessionary Service

PROPERTY TYPES

Live	Proposed	
¢	**	Condition Report
1	<u> </u>	Pipe Bridges
-Ľr		Tunnels (non carrier)
\triangle	\triangle	Pumping Station
Ħ		Water Treatment Works
-6	E E	Private Treatment Works

NODES/FURNITURES

Live	Proposed		Live	Proposed	
E	E	End Cap	PEH		Private Fire Hydrant
-	-	CC Valve	-0-	-0-	Pump
		AC valve	•	0	Site Termination
•		Air Valve	•	0	Service Start
X	I	Sluice Valve	•	0	Service End
	-	Non Return Valve	PM	PM	Process Meter
•	By	Pressure Management Valve	*		Stop Tap
∇	\bigtriangledown	Change of Characterstic	-	-	Monitor Location
<u>_</u>	17	Anode	SP	SP	Strainer Point
-	•	Chlorination Point	AP	AP	Access Point
•		Bore Hole	HB-	-	Hatch Box
iniet O	Donest O	Inlet Point		-	IP Point
\oplus	Ð	Bulk Supply Point	RM		Route Marker
FH	***	Fire Hydrant	SPT	SPT	Sampling Station
-		Hydrant	LB	1.8	Logger Box

Live Proposed

Valve House Water Tower Service Reservoir Supply Reservoir Abstraction Point Domestic meter Commercial meter Telemetry Outstation

MAT	ERIAL TYPES	LINI	NG TYPES
AC	ASBESTOS CEMENT	CL	CEMENT LINING
CI	CAST IRON	TB	TAR OR BITUMEN
CU	COPPER	ERL	EPOXY RESIN
co	CONCRETE		
DI	DUCTILE IRON	INSE	ERTION TYPES
GI	GALVANISED IRON		
GR	GREY IRON	DD	DIE DRAWN
OT	OTHERS	DR	DIRECTIONAL DRILLING
PB	LEAD	MO	MOLING
PV	uPVC	PI	PIPELINE
51	SPUN IRON	SL	SLIP LINED
ST	STEEL		
UN	UNKONWN		
PE	POLYETHYLENE		

TERMS AND CONDITIONS - WASTERWATER & WATER DISTRIBUTION PLANS

These provisions apply to the public sewerage, water distribution and telemetry systems (including sewers which are the subject of an agreement under Section 104 of the Water Industry Act 1991 and mains installed in accordance with the agreement for the self-construction of water mains) (UUWL apparatus) of United Utilities Water Limited "(UUWL)".

TERMS AND CONDITIONS:

- 1. This Map and any information supplied with it is issued subject to the provisions contained below, to the exclusion of all others and no party relies upon any representation, warranty, collateral contract or other assurance of any person (whether party to this agreement or not) that is not set out in this agreement or the documents referred to in it.
- 2. This Map and any information supplied with it is provided for general guidance only and no representation, undertaking or warranty as to its accuracy, completeness or being up to date is given or implied.
- 3. In particular, the position and depth of any UUWL apparatus shown on the Map are approximate only and given in accordance with the best information available. The nature of the relevant system and/or its actual position may be different from that shown on the plan and UUWL is not liable for any damage caused by incorrect information provided save as stated in section 199 of the Water Industry Act 1991. UUWL strongly recommends that a comprehensive survey is undertaken in addition to reviewing this Map to determine and ensure the precise location of any UUWL apparatus. The exact location, positions and depths should be obtained by excavation trial holes.
- 4. The location and position of private drains, private sewers and service pipes to properties are not normally shown on this Map but their presence must be anticipated and accounted for and you are strongly advised to carry out your own further enquiries and investigations in order to locate the same.
- 5. The position and depth of UUWL apparatus is subject to change and therefore this Map is issued subject to any removal or change in location of the same. The onus is entirely upon you to confirm whether any changes to the Map have been made subsequent to issue and prior to any works being carried out.
- 6. This Map and any information shown on it or provided with it must not be relied upon in the event of any development, construction or other works (including but not limited to any excavations) in the vicinity of UUWL apparatus or for the purpose of determining the suitability of a point of connection to the sew erage or other distribution systems.
- 7. No person or legal entity, including any company shall be relieved from any liability howsoever and whensoever arising for any damage caused to UUWL apparatus by reason of the actual position and/or depths of UUWL apparatus being different from those shown on the Map and any information supplied with it.
- 8. If any provision contained herein is or becomes legally invalid or unenforceable, it will be taken to be severed from the remaining provisions which shall be unaffected and continue in full force and affect.
- 9. This agreement shall be governed by English law and all parties submit to the exclusive jurisdiction of the English courts, save that nothing will prevent UUWL from bringing proceedings in any other competent jurisdiction, whether concurrently or otherwise.

Appendix C – Liverpool City Council Pre-Development Enquiry

ross.armstrong

From:	ross.armstrong
Sent:	09 January 2020 15:18
To:	christina.williams@liverpool.gov.uk
Cc:	Jackson, Dave
Subject:	RE: GOODISON ROAD, GOODISON PARK

Hi Christina,

To confirm, as per our conversation just now, that you approve in principle to a surface water discharge from the proposed residential development of Goodison Park to Stanley Park Lake subject to the following conditions:

- 1. Parks and Greenspaces approval to discharge into the lake.
- 2. Highways approval to run new drainage infrastructure through Walton Lane.
- 3. Parks and Greenspaces approval of the long-term management of the discharge and outfall into Stanley Park Lake, the long-term management of which would be the responsibility of the Developer.

We will include this as a potential viable option in our Flood Risk & Drainage Assessment Report to support the outline planning application by Everton Stadium Development Ltd, being sure to highlight the conditions.

I note that, contrary to the content of my original enquiry, the lake receives inflows from a self-regulated borehole and surface water drainage.

Kind regards, Ross

Ross Armstrong

Senior Engineer

WYG

3 Sovereign Square, Sovereign Street, Leeds, West Yorkshire, LS1 4ER Tel: +44 113 219 2558

www.wyg.com

WYG Engineering Limited. Registered in England number: 1959704. Registered Office: 3 Sovereign Square, Sovereign Street, Leeds LS1 4ER VAT No: 431-0326-08.

From: Jackson, Dave <Dave.Jackson@liverpool.gov.uk>
Sent: 03 January 2020 09:33
To: ross.armstrong <ross.armstrong@wyg.com>
Subject: GOODISON ROAD, GOODISON PARK [Filed 03 Jan 2020 14:25]

Further to you enquiry regarding the proposed drainage for the site I would comment as follows

- I can confirm the proposed maximum surface water discharge of 44.4 l/s will be acceptable.
- I have discussed the possible discharge to Stanley Park Lake and this is something in principle that the Parks and Greenspaces team would be interested to discuss further. The best contact for this is Christina Williams (Streetscene Manager Parks and Greenspaces) 0151 233 0829 - <u>christina.williams@liverpool.gov.uk</u>

I hope this is of assistance

Thanks

Dave Jackson I Engineer

Liverpool City Council I Cunard Building I Water Street I Liverpool I L3 1AH

T: 0151 233 0927 | M: 0754 8145562 | E: <u>dave.jackson@liverpool.gov.uk</u>

Postal address:

Liverpool City Council I Cunard Building I Water Street I Liverpool I L3 1AH

From: Planning
Sent: 17 December 2019 11:35
To: Planning DC North <<u>Planning.DCNorth@liverpool.gov.uk</u>>
Subject: FW: Contact us: Planning and building control

From: donotreply@liverpool.gov.uk [mailto:donotreply@liverpool.gov.uk]
Sent: 17 December 2019 11:28
To: Planning
Subject: Contact us: Planning and building control

Name:

Ross Armstrong, WYG Engineering Ltd

Email:

ross.armstrong@wyg.com

Address of property your enquiry relates to:

Goodison Park, Goodison Road, Liverpool, L4 4EL

Application reference number:

NVA

Message:

Dear SirVMadam, We are undertaking a Flood Risk & Drainage Assessment on behalf of Everton Stadium Ltd in support of outline planning for proposed mixed use development of Goodison Park. The site is located within Flood Zone 1 and the flood risk from other sources has been assessed as low. The total site area is 3.39 ha and comprises the stadium and hard standing. The entire site including the pitch drains unattenuated and unrestricted to the public combined sewer network, with multiple connections on all sides of the site. The proposed development incorporates areas of soft landscaping, thereby providing a betterment to the existing surface water runoff rate from the site

through masterplanning. Nevertheless, we propose to further reduce runoff from the developed site by attenuating up to and including the 1 in 100 year storm plus 40% allowance for climate change on site and restricting discharge from each outfall to the Greenfield (Obar) rate of 7.4 IVs during all storms. There is no indication that infiltration drainage is a feasible option and there is no nearby watercourse. Given the size of the site, the minimal topographic fall across the site and the proposed site layout, we propose to maintain several existing connections to sewer, where possible, or have new connections. At this preliminary stage we envisage up to six outfalls to sewer, which would total 44.4 IVs of runoff from the site. This is still significantly less than the existing runoff rate from the site, which is approximately 471 IVs, based on the Modified Rational Method (2.78 * 50 mm/hr * 3.39 ha). We intend to submit a pre-development enquiry to United Utilities to determine their allowable runoff rate from the site. We propose to incorporate SuDS features on site to provide storage, water quality treatment, biodiversity and amenity benefits. Any remaining deficit in storage is likely to be made up by using geo-cellular storage tanks below ground. We believe that this strategy in principle adheres to Liverpool Unitary Development Plan Policies EP12 and EP13. As LLFA, could you please confirm acceptance in principle of this strategy and/or provide any sitespecific requirements regarding surface water drainage. In addition, could you please provide your opinion on potential discharge from the site to Stanley Lake Pond to the south of Walton Lane. We believe that this pond is purely recreationalVornamental, with no inflows or outfalls. Would the Council's Parks Maintenance team allow such a discharge from the site? Kind regards, Ross

DISCLAIMER:

The information in this email is confidential and may be read, copied or used only by the intended recipient(s). If you have received it in error please contact the sender immediately by replying to the email or by telephoning a number contained in the body of the email and please then delete the email without disclosing its contents elsewhere. No responsibility is accepted for loss or damage arising from viruses or changes made to this message after it was sent. The views contained in this email are those of the author and not necessarily those of the author's employer.

This email has been automatically scanned for viruses and malicious content by Symantec Cloud Security for your protection, but this is no guarantee of safety.

Liverpool City Council's privacy notice can be found here: https://liverpool.gov.uk/privacy-notice/

Appendix D – United Utilities Pre-Development Enquiry

ross.armstrong

From: Sent: To: Cc: Subject:	Jack, Andy <andy.jack@uuplc.co.uk> 23 December 2019 10:12 ross.armstrong Wastewater Developer Services Pre Development Enquiry for Goodison Park Road L4 4EL - Our ref - 4200029596 [Filed 24 Dec 2019 10:54]</andy.jack@uuplc.co.uk>
Importance:	High
Follow Up Flag: Flag Status:	Follow up Completed

Dear Ross,

We have carried out an assessment of your application which is based on the information provided; this pre development advice will be valid for 12 months. As per your email before the ground is demolished you will needed to carry out a full CCTV survey of the existing connections showing the impermeable areas that are draining to the surrounding combined Sewers, if this exercise is carried out we can look at the submitted flow rates and betterment rates so we are in support of this, but you must discount and prove that you cannot infiltrate or get to a SW body. A possible meeting to discuss further might be needed.

<u>Foul</u>

Foul will be allowed to drain to the public combined sewer network at Unrestricted rate. Our preferred point of discharge would be to the you chosen existing connection you have mentioned to utilise we just need to have a plan to see where these are so we can agree on the discharge points.

Surface Water

Surface water from this site must drain to soak away or some other form of infiltration system you also may want to consider the local SW ponds in Stanley park, but if ground conditions confirm that this is not a viable solution all Surface water can drain to the combined sewer, this rate will need to be determined as per the figures in your email after a full FRA is carried out. Please see the above to see full response.

Connection Application

Although we may discuss and agree discharge points & rates in principle, please be aware that you will have to apply for a formal sewer connection. This is so that we can assess the method of construction, Health & Safety requirements and to ultimately inspect the connection when it is made. Details of the application process and the form itself can be obtained from our website by following the link below

http://www.unitedutilities.com/connecting-public-sewer.aspx

Sewer Adoption Agreement

You may wish to offer the proposed new sewers for adoption. United Utilities assess adoption application based on Sewers adoption 6th Edition and for any pumping stations our company addenda document. Please refer to link below to obtain further guidance and application pack:

http://www.unitedutilities.com/sewer-adoption.aspx

Trade Effluent

If you intend to discharge trade effluent to the public sewer you will require a trade effluent permit. Please see United Utilities' website for details.

http://www.unitedutilities.com/trade-effluent-faqs.aspx

Existing Sewers Crossing the Site

A public sewer crosses this site and we will require unrestricted access to the sewer for maintenance purposes, we would ask that you maintain a minimum clearance of (225m refer to table 2.1 SFA) which is measured 3m from the centre line of the pipe. If you cannot achieve this then you may wish to consider diverting the public sewer or abandoning them .

Please refer to the link below to obtain full details of the processes involved in sewer diversion.

http://www.unitedutilities.com/sewer-diversion.aspx

Please be aware that on site drainage must be designed in accordance with Building Regulations, National Planning Policy, and local flood authority guidelines, we would recommend that you speak and make suitable agreements with the relevant statutory bodies.

Please note, if you intend to put forward your wastewater assets for adoption by United Utilities, the proposed detail design will be subject to a technical appraisal by an Adoption Engineer as we need to be sure that the proposals meets the requirements of Sewers for adoption and United Utilities Asset Standards. The proposed design should give consideration to long term operability and give United Utilities a cost effective proposal for the life of the assets. Therefore, further to this enquiry should you wish to progress a Section 104 agreement, we strongly recommend that no construction commences until the detailed drainage design, submitted as part of the Section 104 agreement, has been assessed and accepted in writing by United Utilities. Any works carried out prior to the technical assessment being approved is done entirely at the developers own risk and could be subject to change.

Regards

Andy Jack Developer Engineer Developer Services & Metering Customer Services T: 01925 679412(679412) unitedutilities.com

If you have received a great service today why not tell us? Visit: <u>unitedutilities.com/wow</u>

EMGateway3.uuplc.co.uk made the following annotations

The information contained in this e-mail is intended only for the individual to whom it is addressed. It may contain legally privileged or confidential information or otherwise be exempt from disclosure. If you have received this Message in error or there are any problems, please notify the sender immediately and delete the message from your computer. You must not use, disclose, copy or alter this message for any unauthorised purpose. Neither United Utilities Group PLC nor any of its subsidiaries will be liable for any direct, special, indirect or consequential damages as a result of any virus being passed on, or arising from the alteration of the contents of this message by a third party.

United Utilities Group PLC, Haweswater House, Lingley Mere Business Park, Lingley Green Avenue, Great Sankey, Warrington, WA5 3LP Registered in England and Wales. Registered No 6559020

www.unitedutilities.com www.unitedutilities.com/subsidiaries

Appendix E – Greenfield Runoff Calculations

Ross Armstrong

Goodison Park

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and

the basis for setting consents for the drainage of surface water runoff from sites.

the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

Liverpool

Calculated by:

Site name:

be

Site location:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	53.43877° N
Longitude:	2.96621° W
Reference:	1201743933
Date:	Nov 27 2019 12:01

Runoff estimation approach		IH124			
Site characteristics				Notes	
Total site area (ha):		3.39		(1) Is $Q_{\text{pap}} \leq 2.0 \text{ I/s/ha}$?	
Methodology					
Q _{BAR} estimation method:	Calculate fro	om SPR and SAAR		When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.	
SPR estimation method:	Calculate fro	om SOIL type			
Soil characteristics		Default	Edited		
SOIL type:		2	2	(2) Are flow rates < 5.0 I/s?	
HOST class:		N/A	N/A	Where flow rates are less than 5.0 l/s consent for discharge is	
SPR/SPRHOST:		0.3	0.3	usually set at 5.0 l/s if blockage from vegetation and other	
Hydrological characte	ristics	Default	Edited	the blockage risk is addressed by using appropriate drainage elements.	
SAAR (mm):		820	820		
Hydrological region:		10	10		
Growth curve factor 1 year:		0.87	0.87	Where groundwater levels are low enough the use of soakaways	
Growth curve factor 30 years:		1.7	1.7	to avoid discharge offsite would normally be preferred for disposal of surface water runoff.	
Growth curve factor 100 years:		2.08	2.08		
Growth curve factor 200 years:		2.37	2.37	Ĵ [

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	7.43	7.43
1 in 1 year (l/s):	6.47	6.47
1 in 30 years (l/s):	12.64	12.64
1 in 100 year (l/s):	15.46	15.46
1 in 200 years (l/s):	17.62	17.62

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix F – Quick Storage Estimates

🖌 Quick Storage	Estimate			
	Variables			
Micro Drainage	FSR Rainfall ~ Return Period (years) 100	Cv (Summer) Cv (Winter)	0.750	
Variables	Region England and Wales 🗸	Impermeable Area (ha)	0.410	
Results Design Overview 2D Overview 3D	Map M5-60 (mm) 18.800 Ratio R 0.399	Maximum Allowable Discharge (l/s) Infiltration Coefficient (m/hr) Safety Factor Climate Change (%)	7.7 0.00000 2.0 40	
Vt				
Analyse OK Cancel Help				
	Enter Climate Chang	e between -100 and 600		

🗸 Quick Storage	Estimate
	Results
Micro Drainage	Global Variables require approximate storage of between 167 m ³ and 238 m ³ .
Variables	These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Climate Change between -100 and 600

🖌 Quick Storage	Estimate		
	Variables		
Micro Drainage	FSR Rainfall ~ Return Period (years) 100	Cv (Summer) Cv (Winter)	0.750
Variables	Region England and Wales 🗸	Impermeable Area (ha)	0.350
Results	Map M5-60 (mm) 18.800	Maximum Allowable Discharge (I/s)	6.6
Design	Ratio R 0.399	Infiltration Coefficient (m/hr)	0.00000
Overview 2D		Safety Factor	2.0
Overview 3D			
Vt			
		Analyse OK	Cancel Help
	Enter Maximum Allowable Dis	charge between 0.0 and 999999.0	

🖌 Quick Storage	Estimate
	Results
Micro Drainage	Global Variables require approximate storage of between 143 m ³ and 203 m ³ .
Variables	mese values are estimates only and should hot be used for design purposes.
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

🕖 Quick Storage	Estimate		- • •
	Variables		
Micro Drainage	FSR Rainfall Return Period (years) 100	Cv (Summer)	0.750
Variables	Region England and Wales	Impermeable Area (ha)	0.380
Results	Map M5-60 (mm) 18.800) Maximum Allowable Discharge (1/s)	8.4
Design	Ratio R 0.399	Infiltration Coefficient (m/hr)	0.00000
Overview 2D		Safety Factor	2.0
Overview 3D		Climate Change (%)	40
Vt			
		Analyse OK	Cancel Help
	Enter Maximum Allowa	able Discharge between 0.0 and 999999.0	

🗸 Quick Storage	Estimate
	Results
Micro Drainage	Global Variables require approximate storage of between 147 m ³ and 211 m ³ .
Variables	These values are estimates only and should not be used for design purposes.
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

🖌 Quick Storage	Estimate			
	Variables			
Micro Drainage	FSR Rainfa Return Perio	d (vears)	Cv (Summer)	0.750
Variables	Region	England and Wales V	Cv (Winter) Impermeable Area (ha)	0.290
Results	Мар	M5-60 (mm) 18.800	Maximum Allowable Discharge (I/s)	6.3
Design	-	Ratio R 0.399	Infiltration Coefficient (m/hr)	0.00000
Overview 2D			Safety Factor	2.0
Overriew 2D			Climate Change (%)	40
Vt Vt				
	-		Analyse OK	Cancel Help
		Enter Maximum Allowable Di	ischarge between 0.0 and 999999.0	

🖌 Quick Storage	Estimate
	Results
Micro Drainage	Global Variables require approximate storage of between 113 m ³ and 162 m ³ .
	These values are estimates only and should not be used for design purposes.
Variables	
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

🖌 Quick Storage	Estimate		
	Variables		
Micro Drainage	FSR Rainfall V Return Period (years) 100	Cv (Summer) Cv (Winter)	0.750
Variables	Region England and Wales \checkmark	Impermeable Area (ha)	0.410
Results Design Overview 2D Overview 3D Vt	Map M5-60 (mm) 18.800 Ratio R 0.399	Maximum Allowable Discharge (I/s) Infiltration Coefficient (m/hr) Safety Factor Climate Change (%)	9.1 0.00000 2.0 40
		Analyse OK	Cancel Help
	Enter Maximum Allowable Disc	harge between 0.0 and 999999.0	

🗸 Quick Storage	Estimate
	Results
Micro Drainage	Global Variables require approximate storage of between 158 m ³ and 228 m ³ .
Variables	These values are estimates only and should not be used for design purposes.
Results	
Design	
Overview 2D	
Overview 3D	
Vt	
	Analyse OK Cancel Help
	Enter Maximum Allowable Discharge between 0.0 and 999999.0

Appendix G – Indicative Surface Water Drainage Strategy Plan

