Appendix 11.8

DOCK DEPOSIT DISTURBANCE

B U R O H A P P O L D E N G I N E E R I N G

Design Note

Project The People's Project

Subject Bramley-Moore Dock – Dock Deposit Disturbance Project no 0040026 Date 21 August 2020

Revision	Description	Issued by	Date	Approved
P01	For Discussion	JR	03/12/19	RF
P02	Revised to take into account the omission of the geotechnical membrane	JR	10/06/20	RF
P03	Revised to address consultee comments	JR	11/08/20	RF
P04	Revised to address consultee comments	JR	21/08/20	RF

This ES technical appendix relating to the Dock Infill Methodology has been reviewed against the following aspects and for each it has been confirmed that there are no amendments required to the content of the appendix:

- Baseline data validity: there have been no relevant changes to the baseline data, and it remains valid;
- Legislation/policy revisions: there have been no related updates to legislation/policy that have affected either the methodology or findings of this assessment;

However, due to the proposed development design changes, specifically omission of the geotechnical membrane during the dock infill, the information presented in this report varies from that submitted as part of the original application submission principally in Section 1.0 and the conclusions / discussion outlined in Section 5.0.

A planning application (LPA ref. 20F/0001) for the proposed scheme was submitted to Liverpool City Council (LCC) in December 2019 and has been subject to statutory consultation. There were limited statutory consultee comments received in relation to the information presented in this appendix, only comments received from Centre for Environment, Fisheries and Aquaculture Science (CEFAS) required a response. As such, this revision includes further detail on the physical sediment data as requested.

1 Introduction

The applicant's Design Team have developed a methodology for dock filling that removes the need to dredge the deposits that were encountered at the bottom of the dock basin during the Phase 1 and Phase 2 site specific ground investigation.

In addition to programme savings, by not dredging, the dock deposits will not require off-site disposal (excluding pile arisings) which is a sustainable approach. There is also a subsequent reduction in the volume of imported material required as Bramley-Moore Dock (BMD) is effectively partially filled.

The proposed development at BMD requires the dock to be infilled for the purposes of constructing the proposed new Everton Football Stadium over the area of BMD.

It is necessary to rake the dock deposits in advance of the dock infilling. The raking procedure will aim to recover metallic objects or obstructions that would otherwise disrupt the piling operations.

The rake will be dragged from the back of a purpose built boat and will systematically track across the dock, moving objects towards the western wharf of BMD.

The recovered objects will be lifted ashore and appropriately disposed of depending on what is encountered. If debris is encountered that cannot be moved by the raking procedure, these will be marked for removal with other equipment.

Following the raking procedure, the dock will be infilled with dredged sand. The dredged material will be fluidised in a hopper and hydraulically pumped via the pipeline over the River Mersey wall to a spreader pontoon within BMD, and hydraulically placed into the dock. The layers will be placed systematically to avoid 'mud waves' of the dock deposits using winches to move the spreader pontoon in the appropriate direction to achieve this. The proposed material to infill the dock is anticipated to be dredged approximately 25 nautical miles from BMD and transferred using a trailer dredger. The location is shown in Appendix A. The proposed dredging concession is Area 457 and covered by Government Permission MA 234 issued 19th May 2008. Area 457 has a valid Crown Estate Production Agreement allowing for up to 1,200,000 tonnes to be extracted annually to an end date of 13th July 2025. Vibrocoring campaigns in Area 457 have been completed in 1997, 2009 and 2011, and grab sampling for benthic and particle size distribution on a more frequent basis. A full suite of geotechnical tests of grab samples within the proposed dredge area are currently being undertaken with results available in December 2019. It is unusual for aggregate winning concessions to have chemical testing owing to the end product being used for the aggregate of concrete. However, in 2009 Area 457 was dredged for reclamation and beach recharge projects resulting in chemical testing being undertaken. The results are presented in Appendix B. Appendix B has also been supplemented with the physical data (as requested by CEFAS) of the infilled sand that was dredged for geotechnical sampling and interpretation by the design team in December 2017. Samples within Appendix B identified as Mix 2 are taken from the dredging location proposed for the infill of Bramley-Moore Dock.

Disturbance of the dock deposits during raking and the infilling procedure has the potential for mobilisation of contamination which could impact on the water quality of the wider Port of Liverpool Dock System.

2 Aims and Objectives

This Design Note has the aim of:

- Assessing the risk to water quality during the raking procedure;
- Assessing the risk to water quality during the infilling procedure.

The above aim will be met through the following objectives:

- Present the spacing of the dock deposit sampling on a site specific plan (Appendix C);
- Outline the number of samples taken from the dock deposits;
- Present the results of the contamination testing of the dock deposits (Appendix D);
- Assess and compare the contaminant levels against the current Cefas action levels (<u>https://www.gov.uk/guidance/marine-licensing-sediment-analysis-and-sample-plans</u>, accessed November 2019) to assess whether disturbance of the dock deposits during raking has the potential for mobilisation of contamination which could impact on the water quality of the wider Port of Liverpool Dock System;
- Undertake a gap analysis to compare what determinands have been tested against what is required by Cefas;
- Comment on the results, focusing on where Cefas levels are exceeded.

3 Relevant Works to Date

3.1 Sampling

Samples of dock deposits contained within Bramley-Moore Dock were obtained as part of a bathymetric survey, and later during a Phase 2 ground investigation. This sampling was undertaken during July 2017 and January 2018, respectively. This included:

- Bathymetric survey analysis of three grab samples; and
- Phase 2 analysis of 12 grab samples.

3.2 Analysis

The analysis undertaken and rationale for the adopted analysis suites are summarised in Table 1.

Table 1 - Analysis suites and rationale.

Sampling phase	Suite	Rationale
Bathymetric survey	Solid analysis: Asbestos screen, pH, CLEA metals suite, total cyanide, free cyanide, total mercury, phenol, glycols, speciated TPH including BTEX, VOCs, SVOCs, Soil Organic Matter, TBT.	Potential contaminants of concern identified in a Desk Study (BMD01- BHE-ZX-XX-RP-CG-0001)
Phase 2	Solid analysis: Asbestos screen, pH, CLEA metals suite, total cyanide, free cyanide, total mercury, phenol, glycols, speciated TPH including BTEX, Soil Organic Matter, organotin suite [dibutyltin, tributyltin, triphenyltin, tetrabutyltin], PAHs 16.	As above, plus proposed analysis for assessment of deposits contained within the adjacent Wellington Dock to:
investigation	Leachate analysis: CLEA metals suite, TPH total, tributyltin, PAHs 16.	 Demonstrate that the deposits were not considered Hazardous Waste; and Were suitable to be dredged and deposited at Frodsham Lagoon*.

*Note: dredging of Bramley-Moore Dock with deposition of dock deposits at Frodsham Lagoon was being considered as a potential engineering solution at the time of specifying the Phase 2 ground investigation.

4 Comparison with Cefas Guideline Action Levels

Concentrations of determinands analysed within the 15 grab samples of dock deposits were compared against Cefas Action Level 1 and Level 2 thresholds. The results are summarised in Table 2.

	Action Level 1 (no.	Action Level 2		Concentration	s
Determinand (no. samples)	exceedances)	(no. exceedances)	Min.	Max.	Mean
Arsenic (15)	20 (2)	100 (0)	2	31	11.4
Mercury (15)	0.3 (15)	3 (0)	0.39	2.88	1.4
Cadmium (15)	0.4 (13)	5 (0)	<0.2	2.6	1.2
Chromium (15)	40 (12)	400 (0)	15	90	59.2
Copper (15)	40 (15)	400 (0)	41	165	104.5
Nickel (15)	20 (12)	200 (0)	15	36	26.9
Lead (15)	50 (14)	500 (0)	46	500	152.7
Zinc (15)	130 (15)	800 (0)	137	549	312.5
Organotins: TBT, DBT, MBT (7)*	0.1 (1)	1 (0)	0.02	0.25	0.08
PCBs – sum of ICES 7 (0)	0.01	None	No	0.02 0.25 No analysis undertake	
PCBs – sum of 25 congeners (0)	0.02	0.2	No	analysis underte	aken
PAHs ⁺ (12)	0.1 (9)	None <0.08 16.4		16.4	2.0
DDT (0)	0.001		No	analysis undert	aken
Dieldrin (0)	0.005		No	analysis undert	aken

Table 2 - Comparison of dock deposit analysis against Cefas Guideline Action Levels.

*Comparison with sum of concentrations for tributyl tin, dibutyl tin, triphenyl tin and tetrabutyl tin.

⁺Comparison with Total USEPA 16 PAHs concentration.

In general, contaminant concentrations in dredged material below Action Level 1 are considered to be of no concern and are unlikely to influence the licensing decision by the MMO. Dredged material with contaminant concentrations above Action Level 2 are generally considered unsuitable for sea disposal, suggesting that disturbance of the dock deposits during raking has the potential for mobilisation of contamination leading to a potential adverse impact on the water quality of the wider Port of Liverpool Dock System.

For metals (except arsenic) and PAHs, the majority of concentrations in the samples exceeded their respective Action Level 1 thresholds. For metals, the mean concentration was generally not significantly elevated above Action Level 1 (between 1.35 times for nickel and 4.6 times for mercury). For PAHs, the mean concentration was 20 times Action Level 1. Occasional samples exceeded the Action Level 1 for arsenic and organotins; however, the mean concentrations were below their respective thresholds.

It was not considered necessary to undertake analysis for DDT or dieldrin as they are not considered contaminants of concern based on known historical uses of the dock and surrounding uses. Although PCBs are likely to have been historically used within one the outhouse structures on the wharf, the site walkover did not observe significant staining or cracking of the concrete floor slab suggesting risk of impact to underlying ground is low. Therefore, analysis of PCBs was also considered unnecessary.

In summary, following analysis of the 15 dock deposit samples, exceedances of Cefas Action Level 1 were reported for the determinands analysed; however, no exceedences were reported of Action Level 2.

5 Discussion

Discussions were undertaken between the MMO and BuroHappold on 17th November 2019 where it was agreed that exceedances above Action Level 2 would require a mitigation measure (such as a silt curtain). As shown in Table 2, the majority of determinands for which analysis has been undertaken recorded mean concentrations between Cefas Guideline Action Level 1 and Action Level 2 with no exceedances of Action Level 2.

Owing to no exceedances above Action Level 2, and the justification of why some determinands were not tested, it is not believed that mitigation measures are required in advance of the raking and the infilling procedure. This is supported further by the requirement of the dock infill contractor having to adhere to the requirement of *careful placement and specific construction methodology to reduce the risk of mud waves and mixing of deposits* which will form part of the project's contractual performance specification.

The summary of consultation responses to the planning application are outlined in Table 10.2 of the Ground Conditions and Contamination (Chapter 10) ES chapter alongside the associated commentary. This includes the CEFAS response that has been addressed in this document.

Appendix A: Sand Winning Area

420000N -53°40.000'N -

B Co-ords	WGS 84	Lat Lon
Northing	Latitude	Longitude
416453	53° 38.0060' N	3° 38.0800' W
416360	53° 38.0130' N	3° 33.8130' W
420051	53° 40 0100' N	3° 33 3470' W
/19919	53° 40 0060' N	3° 27 9590' W/
413310	52 ⁰ 20 // 20 ¹ N	20 20 60401 14
41/030	50 00 0100 N	2 ⁹ 20 10 0 W
416272	53° 38.0130' N	3° 30.1060' W
416220	53° 38.0130' N	3° 27.8300' W
413372	53° 36.4770' N	3° 27.8300' W
411621	53° 35.5150' N	3° 29.2590' W
411813	53° 35.5430' N	3° 35.1520' W
414612	53° 37.0130' N	3° 38.0790' W
+		53°37.500'N — 415000N —
- 3°25.009		53°35.000'N -
BOSKALIS SAND WIN Date: 20191004 ng Number: F_Area 2: 1: 50000	WESTMINSTI NING AREA 457_19-10-04a_001	ER

3°25.000'V

+

Appendix B: Sand Laboratory Results

ALcontrol Laboratories Analytical Services Sample Descriptions

Job Number:09/10790/02/01Client:BOSKALISClient Ref:

Grain sizes	
<0.063mm	Very Fine
0.1mm - 0.063mm	Fine
0.1mm - 2mm	Medium
2mm - 10mm	Coarse
>10mm	Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
VC 3	0.00-0.50	Light Brown	0.1mm - 2mm	Sand	1
VC 10	0.00-0.50	Light Brown	0.1mm - 2mm	Sand	1
VC 13	0.00-0.50	Light Brown	0.1mm - 2mm	Sand	1
VC 20A	0.00-0.50	Light Brown	0.1mm - 2mm	Sand	1
VC 21	0.14-0.50	Light Brown	0.1mm - 2mm	Sand with some Stones	1
VC 28	0.00-0.45	Light Brown	0.1mm - 2mm	Sand with some Stones	1
			NAMES OF THE OWNER OF		
				<u></u>	. worklinensch
	·	· States - and a state - and a state - a state of the state		THE RANGE AND	
		2m2+#*4/2+0004-00-000-000-000-000-00-00-00-00-00-0		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	<u> </u>
			18.000.000.000.000.000.000.000.000.000.0		
······································					
				and an	_
				ан ал ан	-
Carrier and an and a second to a first the second second	A				
	a a fair an				

* These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample. ¹ Sample Description supplied by client

dry weight basis. dry weight basis. dry weight basis. 000-0.50 0.00 Sample Identity VC 3 V Depth 0.00-0.50 0.00 Sample Type SOLID SC Sample Mate 1 SC Sample Vumber(s) 1 SC Sample Oate 01/10/2009 01/10 Sample Number(s) 1 SC Sample Oate 0.00-0.2 \$ Sample Oate 0.1/10/2009 01/10 Sample Oate 0.1/10/2009 01/10 Sample Oate 0.02 \$ Co.2 \$ \$ Co.3 \$ \$ Co.2 \$ \$ Co.3 \$ \$ SC \$	Right basis. CI ID VC 10 VC 13 dry weight basis. NC 10 VC 13 Sample Identity VC 3 VC 10 VC 13 Depth 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 Sample Identity VC 3 VC 10 VC 13 Depth 0.00-0.50 0.01/0/2009 0.1/10/2009 Sample Type SOLID SOLID SOLID Sample Type SOLID SOLID SOLID ple Received Date 0.1/10/2009 0.1/10/2009 0.1/10/2009 $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(3, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(2, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$ $(3, 2)$	dry weight basis. VC 10 VC 13 VC 20A dry weight basis. Depth 000-0.50 0.00-0.50 0.00-0.50 Sample Identity VC 3 VC 10 VC 13 VC 20A Bample Identity VC 3 VC 10 VC 13 VC 20A Sample Identity VC 3 VC 10 VC 3 VC 20A Basi 0.100-0.50 0.00-0.50 0.00-0.50 0.00-0.50 Sample Type SOLID SOLID SOLID SOLID Sample Type 0.101/2009 0.110/2009 0.110/2009 0.110/2009 Sample Number(s) 1 2 3 4 Sample Number(s) 1 2 3 4 Col < 0.2 < 0.2 < 0.2 < 0.2 Col < 0.2 < 0.2 < 0.2 < 0.2 Col < 0.4 < 0.4 < 0.4 < 0.4 Col < 0.2 < 0.2 < 0.2 < 0.2 Col < 0.4	dity weight basis. NC 10 VC 20A VC 21 dity weight basis. by VC 3 VC 10 VC 13 VC 20A Sample Identity VC 3 VC 10 VC 13 VC 20A VC 11 Bample Identity VC 3 VC 10 VC 13 VC 20A VC 21 Sample Identity VC 3 VC 10 VC 13 VC 20A VC 21 Batch 1 1 1 1 1 1 1 Sample Type SOLID SOLID SOLID SOLID SOLID SOLID SOLID Sample Type SOLID SOLID SOLID SOLID SOLID SOLID Sample Type SOLID SOLID SOLID SOLID SOLID SOLID Sample Type SOLID SOLID SOLID SOLID SOLID Sample Type SOLID SOLID SOLID SOLID SOLID Sample Outer 1 2 3 4 5 4 S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VC 3 VC 10 VC 13 VC 3 VC 10 VC 13 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.1/10/2009 01/10/2009 01/10/2000 01/10/2009 01/10/2009 01/10/2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 32 66 66 60 69 64 60 60 60 44.5 5.6 61 60 6 32 18 17 40 40.4 60.4 5.7 4.2 5.4 5.7 4.2 5.4 5.7 4.2 5.4 5.7 4.2 5.4 5.7 4.2 5.4 5.7 4.2 5.4 5.7 4.2 5.4 5.8 5.8 5.4 5.7 5.4 5.4 5.7 5.4 5.4 5.7 5.4 5.4 5.8 5.8 5.4 5.9 5.8 5.	VC3 VC 10 VC 13 VC 20A 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 0.00-0.50 SOLID SOLID SOLID SOLID 0.1/10/2009 01/10/2009 01/10/2009 01/10/2009 01/10/2009 01/10/2009 01/10/2009 01/10/2009 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 1 2 3 4 5 1 2 3 3 4 1 1 2 3 4 1 2 3 3 4 1 2 3 3 4 1 1 1 1 1 1 2 3 3 3 3 6 6 6 6 3 3	VC 3 VC 10 VC 13 VC 20A VC 21 VC 3 VC 10 VC 13 VC 20A VC 21 VC 3 VC 10 VC 13 VC 20A VC 21 VD-0:50 0:00-0:50 0:00-0:50 0:14-0:50 SOLID SOLID SOLID SOLID SOLID SOLID SOLID SOLID J1 1 1 1 1 J1 2 3 4 5 SOLD 60 6/t 11 9 9 6 8 6 11 1 1 1 1 1 9 6/9 6/4 5/6 5/6 5/7 6/0 5/7 4/2 5/4 5/4 9/4 5/7 6/0 6/0 6/0 6/0 6/0 6/0 6/0 6/0 6/0 7 23 3 3 3 6/0 6/0 6
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C10 VC13 VC20A 0.50 0.00-0.50 0.00-0.50 0.5009 0.1/10/2009 01/10/2009 0.1 1 1 2 5.6 5.6 6 6 6 6 6 6 6 6 6 10 10 10 10 10 10 10 10 10 2 5 5 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Total of 7 Congener PCBs	TM168	ug/kg	♡	Ø	\heartsuit	V	∇	\heartsuit	\heartsuit
PCB WHO 12 Congeners									
PCB congener 77	TM168	ug/kg	₽	Ŷ	Ø	Ŷ	Ø	Ø	Ŷ
PCB congener 81	TM168	ug/kg	Ø	8	٣	V	Q	Q	Ø
PCB congener 105	TM168	ug/kg	∇	٣	٣	Ŷ	Q	Ø	Ϋ́
PCB congener 114	TM168	ug/kg	∇	\$	Q	\$	₽	Q	Q
PCB congener 118	TM168	ug/kg	Ø	0	Q	٣	₽	Ø	Ø
PCB congener 123	TM168	ug/kg	Ø	Ø	Q	٣	Q	Ÿ	\$
PCB congener 126	TM168	ug/kg	Q	Ø	Q	٣	٣	Ŷ	Ŷ
PCB congener 156	TM168	ug/kg	Ŷ	Q	\Diamond	Q	Q	Q	₽
PCB congener 157	TM168	ug/kg	Q	0	Q	Ÿ	Q	٣	Ø
PCB congener 167	TM168	ug/kg	Ø	0	Q	Ŷ	ų	Ÿ	ų
PCB congener 169	TM168	ug/kg	₽	Ø	Ŷ	Ÿ	Ŷ	Q	Ŷ
PCB congener 189	TM168	ug/kg	Q	\$	ŝ	Ÿ	ŝ	ŝ	ŝ
Tributyl Tin*		mg/kg		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Triphenyl Tin*		mg/kg		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibutyl Tin*		mg/kg		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
								100 cm	
OCP									
Tecnazene	TM144	ug/kg	7	7	7	1	71	7	√1
Trifluralin	TM144	ug/kg	4	⊽	7	₽	7	⊽	√1
Alpha-BHC (Lindane)	TM144	ug/kg		⊽	7	1~	7	7	<1
Hexachlorobenzene	TM144	ug/kg	4	₽	7	1	7	⊽	4
Beta-BHC (Lindane)	TM144	ug/kg	1>	1	<1>	<1	<1	√	<1
Gamma-BHC (Lindane)	TM144	ug/kg	<1	√1	<1	7	1	7	4
Quintozene (PCNB)	TM144	ug/kg	<1	<1	<1	<1	√1	√	√
Triallate	TM144	ug/kg	<1	√]	7	₹	₽	7	4
Chlorothalonil	TM144	ug/kg	<1	⊲1	<1	<1	1>	7	√1
Heptachlor	TM144	ug/kg	<1	<1	₽	<1	₽	<1	4
Aldrin	TM144	ug/kg	<1	7	<1	<1	1>	~1	7
Triadimefon	TM144	ug/kg	<1	41	7	<1	<1	7	7
Telodrin	TM144	ug/kg	<1	<1>	<1	<1>	1	√ V	7
Isodrin	TM144	ug/kg	<1	<1	7	⊲1	7	4	₽
Pendimethalin	TM144	ug/kg	4	<1	1	<1	7	Ţ	71
Heptachlor Epoxide	TM144	ug/kg	<1	<1	<1	<1	7	<1	7
trans-Chlordane	TM144	ug/kg	<1	⊲1	1	<1	<1	<1	7
o,p'-DDE	TM144	ug/kg	1	<1	1	<1	~1	<1	7
Endosulphan I	TM144	ug/kg	⊲1	⊽	4	₽	₽	7	7
cis-Chlordane	TM144	ug/kg	4	-	7	₽	4	4	-1

		I							
		Х. 2				a fina			
o,p'-DDE	TM144	ug/kg	⊽	۲	7	Ā	₽	17	√
Dieldrin	TM144	ug/kg	4	√	1>	!>	1>	⊲1	1>
p,p'-TDE(DDD)	TM144	ug/kg	7	7	1>	1>	1>	⊲1	<1>
Endrin	TM144	ug/kg	Þ	1>	۲	1>	<1	<1	<1
Endosulphan II	TM144	ug/kg	5	۲>	₽ I	1>	<1	<1	ī>
0,p'-TDE(DDD)	TM144	ug/kg	⊽	7	<1	<1	⊲1	⊲1	<1
o,p'-DDT	TM144	ug/kg	4	7	7	I>	<1>	₽	1⊳
p,p'-DDT	TM144	ug/kg	4	7	<1	1>	1>	1>	<1
Endosulphan sulphate	TM144	ug/kg	<1	5	<1	<1	1>	1>	7
o,p'-Methoxychlor	TM144	ug/kg	[>	1>	7	7	₽	4	4
p.p'-Methoxychlor	TM144	ug/kg	₽	<1	7	1∼	<1	7	4
Permethrin I	TM144	ug/kg	<1	₽	√1	<1	₽	7	.∆
Permethrin II	TM144	ug/kg	<1	1	₽	√	Ţ.	√	√1

Validated Preliminary

ALcontrol Laboratories Analytical Services " ISO 17025 accredited **Table Of Results**

- M MCERTS accredited
- * Subcontracted test

» Shown on prev. report

Job Number: **Client: Client Ref. No.:**

 \checkmark

09/10790/02/01 BOSKALIS

SOLID Matrix: Location: MARINE SAMPLES Client Contact: Ian Taylor

Sample Identity	VC 3	VC 10	VC 13	VC 20A	VC 21	VC 28					
Denth (m)	0.00-0.50	0.00-0.50	0.00-0.50	0.00-0.50	0.14-0.50	0.00-0.45				3	L
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID				leth	LoD
Sampled Date	1944 - A								-* ·	od(ŊŪ ⁿ
Counts Dessived De4-	01 10 00	A1 10.00	01 10 00	01 10 00	01 10 00	01 10 00		· · · · ·		Code	uits
sample Received Date	01.10.09 1	01.10.09	01.10.09 1	1	1	1		··· · .		Ű	
Batch Somple Number()		1 	3		1 5	6					
Sample Number(s)	1 Q	6	J R	4		12			 	TM120 [#]	3.0 ma//a
Cadmium	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				TM129	<0.2 mg/kg
Chromium	69	<4.5	5.6	5.6	9.7	9.0				TM129 [#]	<4.5 mg/kg
Copper	<6	<6	<6	<6	<6	<6			· ··	тм129 [#] .	<6 mg/kg
Lcad	13	6		- 11	. ' 9	12	n, 1,		a a constant	™ TM129 [#] √	<2 mg/kg
Mercury	<0,4	<0.4	<0.4	⊲0.4	<0.4	<0.4			i	TM129 [®]	<0.4 mg/kg
Nickel	5.7	4.2	5.4	5.4	9.4	8.3		÷.		тм129 [#] м	<0.9 mg/kg
Selenium	_⊲	3	⊲ .	 ⊲3	3	3				TM129 [#] M	<3 mg/kg
Zinc	32	18	17	23	31	31				TM129 [*] _M	<2.5 mg/kg
Total Organic Carbon	<0.2	<0.2	⊲0.2	<0.2	<0.2	<0.2		1		TM132 [#] M	<0.2 %
ТРН С6-40	<10	<10	<10	<10	<10	<10		· ·		TM154 [#]	<10 mg/kg
and the second											
PCB 7 Congeners											
PCB congener 28	3	3	3	4	⊲	<3				TM168*	<3 ug/kg
PCB congener 52	3	3	3	3	3	<3				TM168 [#]	<3 ug/kg
PCB congener 101	3	3	3	3	4	3				TM168 [#]	<3 ug/kg
PCB congener 118	3	3	3	3	3	3				TM168 [#]	<3 ug/kg
PCB congener 153	3	3	3	3	<	3	1 M A 1 A			TM168 [#]	<3 ug/kg
PCB congener 138	3	3	3	⊲	3	3				TM168 [#]	<3 ug/kg
PCB congener 180	⊲ .	3	3	3	⊲ .	_ ⊲				TM168 [#]	<3 ug/kg
Total of 7 Congener PCBs	3	3	3	3	3	3				TM168 [#]	<3 ug/kg
and a second state of the second			17 - 215 5825 - 114 - 11	and the state of an Oracle		·	$p_{\rm eff}(x,t) = (x,t) \cdot (y,t) \cdot (y_t)$	an a	10.000 (10.000) (10.000)		
ana ana amin'ny tanàna mandritra dia kaominina					·						
we could also be a second of the second of	2002002222-012202-000-01	····· 2··D =	· . ·				and the second	5			
and model and the state of the			1				ايو ويست	· • · · · · · · · · · · · · · · · · · ·		N - 197 2 - 100 - 111	
anteres de la composition de la composi	and so the design		an a						·	ur na sense na r	n and an an arrange
n								, ,			
		·									·····
a na mana any amin' na kaominina mandritra mana amin' na mana amin' na mana amin' ao amin' ao amin' ao amin' a Ny INSEE dia mampikambana amin' am		an an tha an	19.40 - 19.40 - 19.440 - 19.440 - 19.			State Carlos Sale	ana ang santa sa sanga	a i san shara na masa		an a	1999 Aug 19, 1995 19, 1996 1997 197
	uran ana a sa c			a ang pananan sa sa	v • seve • . v. •	····-					
	l	L			L			I			

All results expressed on a dry weight basis.

1

03.11.2009 Date

Validated 🗸 Preliminary	ALc	ontro	l Labo T	orator 'able (ies Ar Of Res	alytic sults	al Ser	vices	 ISO 17 MCER Subcor 	025 accred TS accred itracted tes	lited ited st
Job Number: Client: Client Ref. No.:	09/1079 BOSKA	90/02/01 ALIS	-		Matrix Locatio Client (: on: Contact	SOLID MARIN Ian Tay	NE SAM lor	» Shown	on prev. r	eport
Sample Identity	VC 3	VC 10	VC 13	VC 20A	VC 21	VC 28					
Depth (m)	0.00-0.50	0.00-0.50	0.00-0.50	0.00-0.50	0.14-0.50	0.00-0.45				M	I
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID				ethod	₀D/U
Sampled Date	01.10.09	01.10.09	01.10.09	01.10.09	01.10.09	01.10.09		- , - , , , , ,	на, на калан Сталарана Сталарана	Code	nits
Batch	1		1 1	1	 1	1			an a		
Sample Number(s)	1	2	3	4	5	6	ļ				
PCB WHO 12 Conger	ners										
PCB congener 77	⊲	⊲3		<3	<3	<				TM168	<3 ug/kg
PCB congener 81	3	_ ⊲	3	3	3	3				TM168 [#]	<3 ug/kg
PCB congener 105	3	<	<3 	3	<3	4				TM168*	<3 ug/kg
PCB congener 114	3	⊲	⊲ • • • •	<	3	3				TM168*	<3 ug/kg
PCB congener 118	3		্ব	3	. 3	3				TM168 ⁴	<3 ug/kg
PCB congener 123	<3	<3	<3	. ⊲	3	3				TM168 ⁴	<3 ug/kg
PCB congener 126	3	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</th <th>3</th> <th><3</th> <th>3</th> <th> <3 </th> <th></th> <th></th> <th></th> <th>TM168[#]</th> <th>⊲ ug/kg</th>	3	<3	3	 <3 				TM168 [#]	⊲ ug/kg
PCB congener 156	3	3	<3	ব	ব	<3				TM168 [#]	⊲ ug/kg
PCB congener 157	3	3	3	3	3	4				TM168 [#]	<3 ug/kg
PCB congener 167	3	<3	3	<3	ব	3				TM168 [#]	<3 ug/kg
PCB congener 169	<3	<3	ব	ব	<3	<3				TM168 [#]	<3 ug/kg
PCB congener 189	3	<3	3	4	3	3				TM168 [#]	⊲ ug/kg
unana a suite anti-		·		· .							
Tributyl Tin*	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05					mg/kg
Triphenyl Tin*	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			a a seconda e terra da se		mg/kg
Dibutyl Tin*	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			,, .,		mg/kg
- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199				. 2							
											······································
								5			
						,					
										an an an an an taraiste	and the state of the state of the state
3. And Market and M. C. and M. W. C. Stranger, M. P. Market, M. P. Market, M. M. Market, Market Market, Market Market, 2010.							1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1				
here a substantia and the substantian and the substantian substantian substantiants and substantiants											
1999-94	- 1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		a						C 1. 0		
			*** ** *** ***************************							t mat stada oo oo ahaat	
				······		1					
a for an annual search ann ann ann ann ann ann ann ann ann an			1, 11, 19, 19, 19, 19, 19, 19, 19, 19, 1				1	a da da e conserva de portes		na an ann an Anna an Anna An	
	an a sa s				· · · · · · · · · · · · · · · · · · ·	· · · ///		· · · · · · · · · · · · · · · · · · ·			
	<u> </u>			-	-						

All results expressed on a dry weight basis.

(

Date 03.11.2009

Validated 🗸 Preliminary 🗌	ALc	ontro	l Labo T	orator able (ies Ar Of Res	alytic sults	al Ser	vices	[#] ISO 17 ^M MCER * Subcor	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test » Shown on prev. report 			
Job Number: Client: Client Ref. No.:	09/1079 BOSKA	90/02/01 ALIS			Matrix Locatio Client (: m: Contact	SOLID MARIN Ian Tay	₩ SAM lor	» Shown IPLES				
Sample Identity	VC 3	VC 10	VC 13	VC 20A	VC 21	VC 28							
Donth (m)	0.00-0.50	0.00-0.50	0.00-0.50	0.00-0.50	0.14-0.50	0.00-0.45				7			
Samule Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID				ſeth	L0I		
Sample Type										od ()/Ur		
							•			Cod	nits		
Sample Received Date	01.10.09	01.10.09	01.10.09	01.10.09	01.10.09	01.10.09		,		e			
Batch	1	1 	1 	1	. I								
Sample Number(s)	1	4	3	4	2	U							
OCP				-1		~1					<1 nafka		
lecnazene	<1	L> 	<u>~1</u> 	<i </i 	 ∠1	~1				111144 Thataa	<1 ug/kg		
Inituralin	<i </i 	< <u>1</u>	<u>د</u> د								<1 ug/kg		
Alpha-BHC (Lindanc)	<1	> 	< <u>1</u>	<1 						TM144	<1 ug/kg		
Hexachlorobenzene	<1 	<1	<1	<1	<1	<1		· . ·		1M144	<1 ug/kg		
Beta-BHC (Lindane)	<1	<1	<1 **	<1	<1 · ·	<1				1M144	<1 ug/kg		
Gamma-BHC (Lindane)	<1	<1	<1	<1	<	<1				1M144	<1 ug/kg		
Quintozene (PCNB)	<1	<1	 <1 ×1 ×1 	<1	<1 · · ·	<1				1M144	<1 ug/kg		
Triallate	<1	<1	<1 • • • • • • • •	< <u>1</u>	<1	<1	· · · .			1MI44	<1 ug/kg		
Chlorothalonil	<Ⅰ	<1	<1	<1	<1	<1				IMI44	<1 ug/kg		
Heptachlor	<1	<1	<1	<1	<1	<1				1M144	<l kg<="" th="" ug=""></l>		
Aldrin	<1	<1	<1	<1	<1 ·					1M144	<1 ug/kg		
Triadimefon	<1	<1	<1	<1	<1	<1 •		an an an an Arban		1M144	<1 ug/kg		
Telodrin	<1	<1	<1	<1	<1	<1				1MI44	<1 ug/kg		
Isođrin 1997 - State St	<1	<1	<1	<1	<1	<1				1MI44	<i kg<="" th="" ug=""></i>		
Pendimethalin	<1	<1	<1	<1	<1 	<1 		···· ·····		TM144	<1 ug/kg		
Heptachlor Epoxide	<1	ব	<1	<1	<1	<1		1	a mer i sarrisme	TM144	<1 ug/kg		
trans-Chlordane	<1	<1	<1	<1 	<1 	<1		a an instantia		TM144	<1 ug/kg		
o,p'-DDE	4	<1	<1	<1	<1	 <1 <1 <1 <1 				TM144	<1 ug/kg		
Endosulphan I		<1	<1	<1	<1	<1			· · · · · · · · ·	TM144	<1 ug/kg		
cis-Chlordane	<1	<1	<1	<1	< <u> </u>	<1		era e e	:	TM144	<1 ug/kg		
p,p'-DDE	<1	<1	<1	<1	<1 ,	<u></u>		uners a ser a s		TM144	<l kg<="" th="" ug=""></l>		
Dieldrin	<1	<1	<1	<1	<1	4				TM144	<1 ug/kg		
p,p'-TDE(DDD)	< 1	<1	<1	<1	<1	<1				TM144	<1 ug/kg		
Endrin	<1	<1	<1	<1	<1	<1	a -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			TM144	<1 ug/kg		
Endosulphan II	<1	<1	<1	<1	<1	<1				TM144	<l kg<="" th="" ug=""></l>		
o,p'-TDE(DDD)	<1	<1	<1	<1	<1	<1				TM144	<1 ug/kg		
o,p'-DDT	<1	<1	<1	<1	<1	<1			. .	TM144	<1 ug/kg		
p,p'-DDT	<1	<1	<1	<1	<1	4		· · · · · · · · · · · · · · · · · · ·		TM144	<1 ug/kg		
Endosulphan sulphate	<1	<1	<1	4	<1	<1			1 2.0.72 C. (**1 0800	TM144	<1 ug/kg		
o,p'-Methoxychlor	<1	<1	<1	<1	<1	<1				TM144	<1 ug/kg		

All results expressed on a dry weight basis.

Date 03.11.2009

Validated 🗹 Preliminary	ALc	ontro	 ISO 17 M MCER Subcon Shown 	 ISO 17025 accredited MCERTS accredited Subcontracted test Shown on prev report 							
Job Number: Client: Client Ref. No.:	09/1079 BOSK/	90/02/01 ALIS			Matrix Locatio Client	: on: Contact	SOLID MARIN Ian Tay	JE SAM lor	» shown	on prev. r	eport
Sample Identity	VC 3	VC 10	VC 13	VC 20A	VC 21	VC 28					
Depth (m) Sample Type Sampled Date	0.00-0.50 SOLID	0.00-0.50 SOLID	0.00-0.50 SOLID	0.00-0.50 SOLID	0.14-0.50 SOLID	0.00-0.45 SOLID				Method (LoD/Un
Sample Received Date Batch	01.10.09 1	01.10.09 1	01.10.09 1	01.10.09 1	01.10.09 1	01.10.09 1				Sode	its
Sample Number(s)	1	2	3	4	5	6					
OCP (cont) p,p'-Methoxychlor Permethrin I	্য ব	 <1 <1 <1 <1 <1 	্য ব	<1 <1	<1 <1	<1. <1				TM144 TM144	<1 ug/kg <1 ug/kg
Permethrin II	<1 	<1	<1	. <1	<1	<1				TM144	<1 ug/kg
	· · · ·										
· · · · · · · · · · · · · · · · · · ·	··· ·· · · · · · · · · · · · · · · · ·				 						-
		- · -									
	· .										
· · · · · · · · · · · · ·				· . · · · ·							
· · · · · · · · · · · · · · · · · · ·	11.11.11.11.11.11.11.11.11.11.11.11.11.	······	x	· · · · · · · · · · · · · · · · · · ·	·····	n an			,	· ·	· · · · · ·
·····	· · · · · · · · · · · · · · · · · · ·	· · · -·		۰. سر ۱۰ ۲۰۰۰	na an a	 				· ··· ·	
······	·····	11				· <u></u> · · · · · ·		· · · · ·			
			an a shekara wan na				· · · · · · · · · ·	a to the second second		··· ·····	- ·
		·····			17						
	· · · · · · · · · · · · · · · · · · ·	 ••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·		1, 91, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	. '. '. '	,		· · · · · · · · · · · · · · · · · · ·	
	1.000 (1770) - 1.12 (1770) (1770)					,	,				··· ···
					<u> </u>			L	······	<u>.</u>	

All results expressed on a dry weight

Date 03.11.2009

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number: Client: Client Ref. No.: 09/10790/02/01 BOSKALIS

<u>Report Key :</u>

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

Acc Acc

- NDPNo Determination PossibleACMAsbestos Containing Materia#ISO 17025 accredited
- Subcontracted test
- Result previously reported (Incremental reports only)
- M MCERTS Accredited
- EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

*

»

Summary of Method Codes contained within report :

Method	Reference	Description	1702 redite	ERT	t/Dry nple	rogat recte
No.	Method 3120B, AWWA/APHA, 20th		ይਯ	Ъ. S		<u>д</u> ж
TM129	Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY	
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	~	√	DRY	
TM132	In - house Method	ELTRA CS800 Operators Guide	~	~	DRY	-
TM144	Modified: US EPA Method 8081A	Organochlorine pesticides by GC-MS			DRY	iy mpina may gamm
TM154	In - house Method	Determination of Petroleum Hydrocarbons by EZ Flash GC-FID in the Carbon range C6- C40	~		WET	
TM168		Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils	~		DRY	FERTERSTOP

¹Applies to Solid samples only. **DRY** indicates samples have been dried at 35°C. **NA** = not applicable. **WET** indicates samples analysed as submitted.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 09/10790/02/01

 Client:
 BOSKALIS

 Client Ref. No.:
 Client

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	14.8
200 - 20 - 10 July Mar. 200 20 20 20 20 20 20 20 20 20 20 20 20	
And a function of the second se	
and a start provide the start of the start o	

1)

2 Shaftesbury Industrial Centre, Icknield Way, Letchworth, Hertfordshire SG6 1HE

T +44 (0)1462 480400 F +44 (0)1462 480403 E rpsmh@rpsgroup.com W www.mountainheath.com

Analytical Report

For the attention of: Martin Cotterell	By email	
	Page:	1 of 1
Flintshire, CH5 3US	Date Issued:	19/10/2009
Hawarden, Deeside	Date Tested:	13/10/2009 to 19/10/2009
Unit7-8, Hawarden Business Park Manor Road (off Manor Lane)	Date Received:	07/10/2009
ALcontrol Geochem	Report No:	09-15024/1

6 soil samples received from ALcontrol Geochem (O/N: 125837; Project: 09/10796b1) in plastic sample bags were analysed as shown below. Analytical methods employed are available on request. Results are reported on an as received basis unless otherwise specified.

Laboratory reference	Client reference	Other reference	dibutyltin mg/kg Sn 1002-53-5	tributyltin mg/kg Sn 56573-85-4	triphenyltin mg/kg Sn 668-34-8
158785	1	n/a	< 0.05	< 0.05	< 0.05
158786	2	n/a	< 0.05	< 0.05	< 0.05
158787	3	n/a	< 0.05	< 0.05	< 0.05
158788	4	n/a	< 0.05	< 0.05	< 0.05
158789	5	n/a	< 0.05	< 0.05	< 0.05
158790	6	n/a	< 0.05	< 0.05	< 0.05

NW

Robin T R Macdonald Director

27050.XLSM		BS1377: Part 2:1990 / BS EN ISO 17892-3 : 2015 PARTICLE DENSITY										
1128 - Particle Density Summary -	Borehole / Trial Pit	Depth m	Sample Ref	Sample Type	Description	Parti Den:	icle sity	Test Method				
	Mix 1 - 1			В	Greyish brown SAND with shell fragments and rare fine to medium gravel.	2.6	57	2				
	Mix 1 - 2			в	Greyish brown SAND with shell fragments and rare fine to medium gravel	2.6	57	2				
	Mix 2 - 1			В	Greyish brown SAND with shell fragments.	2.6	8	2				
	Mix 2 - 2		2.6	57	2							
	Mix 3 - 1			В	Brown SAND with occasional shell fragments.	2.6	67	2				
	Mix 3 - 2			В	Greyish brown SAND with shell fragments and rare fine gravel.	2.6	6	2				
	Notes				Test Metho	od						
2/1899					1. Gas jar : 8.2 2. Pvcnom	: BS1377 : I eter : BS EN	Part 2 : 199	90 Clause 12-3:2015				
1.00 - 30/1	Checked and $G \mathcal{B}$	Approved by:	Project	Number:	GEO / 27050		GEO	APE				
GL:Version	S Burke - Senior Technician 22/02/2018 Project Name: Burke - Senior Technician 22/02/2018 40026											

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : Buro Happold, Camden Mill, Lower Bristol Road, Bath, BA2 3DQ

BS EN ISO 17892-4 : 2016

PARTICLE SIZE DISTRIBUTION

Description

BH / TP No. Sample Type

Mix 2 - 1 B Greyish brown SAND with shell fragments.

1262 - PSD Mix 2 - 1 B - 27050-504232.XLSM

GL:Version 1.85 - 02/02/2018

Client : Buro Happold, Camden Mill, Lower Bristol Road, Bath, BA2 3DQ

BS EN ISO 17892-4 : 2016

PARTICLE SIZE DISTRIBUTION

Description

BH / TP No. Sample Type

Mix 2 - 2 B Brown slightly SAND with shell fragments.

1262 - PSD Mix 2 - 2 B - 27050-504233 XLSM

Client : Buro Happold, Camden Mill, Lower Bristol Road, Bath, BA2 3DQ

GL:Version 1.85 - 02/02/2018

BS EN ISO 17892-4 : 2016

PARTICLE SIZE DISTRIBUTION

Description

BH / TP No. Sample Type

Mix 2 - 3 B Greyish brown SAND with shell fragments.

1262 - PSD Mix 2 - 3 B - 27050-504234.XLSM

GL:Version 1.85 - 02/02/2018

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : Buro Happold, Camden Mill, Lower Bristol Road, Bath, BA2 3DQ Appendix C: Dock Deposit Sampling Plan

Appendix D: Dock Deposit Contamination Results

Peter Woolley Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 **f:** 01452 729 314

e: peter.woolley@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 17-54291

Project / Site name:	Project Blue	Samples received on:	13/07/2017
Your job number:	33138	Samples instructed on:	13/07/2017
Your order number:	33138-PW	Analysis completed by:	20/07/2017
Report Issue Number:	1	Report issued on:	20/07/2017
Samples Analysed:	1 soil sample		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number	782023					
Sample Reference				6		
Sample Number				1		
Depth (m)				None Supplied		
Date Sampled				Deviating		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1		
Moisture Content	%	N/A	NONE	44		
Total mass of sample received	kg	0.001	NONE	0.47		
			·		 	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected		
General Inorganics			-			
pH - Automated	pH Units	N/A	MCERTS	8.2	 	
Total Cyanide	mg/kg	1	MCERTS	< 1		
Free Cyanide	mg/kg	1	MCERTS	< 1		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	5500		
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	5000		
Fauivalent)	ma/l	1 25	MCEPTS	2480		
Water Soluble Chloride (2:1) (leachate equivalent)	ma/l	0.5	MCERTS	13000		
Total Sulphur	ma/ka	50	MCEDTS	7200	-	
Ammonium as NH₄	ma/ka	0.5	MCERTS	3.8		
Ammonium as NH ₄ (leachate equivalent)	ma/l	0.05	MCERTS	0.4		
Organic Matter	%	0.1	MCERTS	4.2		
Water Soluble Nitrate $(2:1)$ as NO ₂	ma/ka	2	NONE	< 2.0		
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0		
Total Phenois				1.0		
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0		
Heavy Metals / Metalloids						
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	31		
Boron (water soluble)	ma/ka	0.2	MCERTS	17		
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	1.1		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	82		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	140		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	150		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	2.1		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	36		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	440		
Magnesium (water soluble)	mg/kg	5	NONE	1100		
Magnesium (leachate equivalent)	mg/l	2.5	NONE	570		

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number	782023					
Sample Reference				6		
Sample Number				1		
Depth (m)				None Supplied		
Date Sampled				Deviating		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics	-	-	-			
Benzene	ug/kg	1	MCERTS	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	24		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	86		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	270		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	380		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	22		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	140		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	540		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	710		

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number 782023 Sample Reference 6 Sample Number Depth (m) None Supplied Date Sampled Deviating Time Taken None Supplied Accreditation Status Limit of detection Analytical Parameter Units (Soil Analysis) VOCs Chloromethane µg/kg ISO 17025 < 1.0 1 Chloroethane µg/kg 1 NONE < 1.0 Bromomethane 1 ISO 17025 < 1.0 µg/kg < 1.0 Vinyl Chloride NONE µg/kg 1 1 NONE < 1.0 Trichlorofluoromethane µg/kg 1 NONE < 1.0 1,1-Dichloroethene µg/kg 1,1,2-Trichloro 1,2,2-Trifluoroethane IS<u>O 17025</u> < 1.0 µg/kg 1 Cis-1.2-dichloroethene µg/kg 1 MCERTS < 1.0MTBE (Methyl Tertiary Butyl Ether) 1 MCERTS µg/kg < 1.0 1,1-Dichloroethane µg/kg 1 MCERTS < 1.0 2,2-Dichloropropane µg/kg 1 MCERTS < 1.0 1 MCERTS < 1.0 Trichloromethane µg/kg 1,1,1-Trichloroethane µg/kg 1 MCERTS < 1.0 MCERTS 1,2-Dichloroethane 1 < 1.0 µg/kg 1 MCERTS < 1.0 1,1-Dichloropropene µg/kg Trans-1,2-dichloroethene 1 NONE < 1.0 µg/kg Benzene µg/kg 1 MCERTS < 1.0 1 Tetrachloromethane µg/kg MCERTS < 1.0 1,2-Dichloropropane µg/kg 1 MCERTS < 1.0 Trichloroethene MCERTS < 1.0 µg/kg 1 Dibromomethane µg/kg 1 MCERTS < 1.0 Bromodichloromethane 1 MCERTS < 1.0 µg/kg ISO 17025 1 < 1.0 Cis-1,3-dichloropropene µg/kg ISO 17025 Trans-1,3-dichloropropene µg/kg 1 < 1.0 1 MCERTS Toluene µg/kg < 1.0 1,1,2-Trichloroethane µg/kg 1 MCERTS < 1.0 1,3-Dichloropropane µg/kg 1 ISO 17025 < 1.0 Dibromochloromethane µg/kg 1 ISO 17025 < 1.0 NONE < 1.0 Tetrachloroethene µg/kg 1 ISO 17025 1,2-Dibromoethane 1 < 1.0 µg/kg 1 MCERTS < 1.0 Chlorobenzene µg/kg 1,1,1,2-Tetrachloroethane 1 µg/kg MCERTS < 1.0 Ethylbenzene µg/kg 1 MCERTS < 1.0 p & m-Xylene µg/kg 1 MCERTS < 1.0 Styrene 1 MCERTS < 1.0 µg/kg Tribromomethane µg/kg 1 NONE < 1.0 1 MCERTS < 1.0 o-Xylene µg/kg 1,1,2,2-Tetrachloroethane MCERTS < 1.0 1 µg/kg 1 MCERTS < 1.0 Isopropylbenzene µg/kg Bromobenzene µg/kg 1 MCERTS < 1.0 n-Propylbenzene µg/kg 1 ISO 17025 < 1.0 2-Chlorotoluene µg/kg 1 MCERTS < 1.0 4-Chlorotoluene 1 MCERTS < 1.0 µg/kg < 1.0 1,3,5-Trimethylbenzene µg/kg 1 ISO 17025 tert-Butylbenzene 1 MCERTS < 1.0 µg/kg 1 < 1.0 1,2,4-Trimethylbenzene ISO 17025 µg/kg MCERTS < 1.0 sec-Butylbenzene µg/kg 1 < 1.0 1,3-Dichlorobenzene µg/kg 1 ISO 17025 p-Isopropyltoluene µg/kg 1 ISO 17025 < 1.0 1,2-Dichlorobenzene µg/kg 1 MCERTS < 1.0 1,4-Dichlorobenzene µg/kg 1 MCERTS < 1.0 MCERTS < 1.0 Butylbenzene µg/kg 1 ISO 17025 < 1.0 1,2-Dibromo-3-chloropropane µg/kg 1 1,2,4-Trichlorobenzene MCERTS < 1.0 µg/kg 1 MCERTS < 1.0 Hexachlorobutadiene µg/kg < 1.0 1,2,3-Trichlorobenzene 1 ISO 17025 µg/kg

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number 782023 Sample Reference 6 Sample Number None Supplied Depth (m) Date Sampled Deviating Time Taken None Supplied Accreditation Status Limit of detection Analytical Parameter Units (Soil Analysis) SVOCs Aniline mg/kg 0.1 NONE < 0.1 Phenol 0.2 ISO 17025 < 0.2 mg/kg MCERTS 0.1 < 0.1 2-Chlorophenol mg/kg MCERTS 0.2 < 0.2 Bis(2-chloroethyl)ether mg/kg 0.2 MCERTS < 0.2 1,3-Dichlorobenzene mg/kg 0.1 MCERTS < 0.1 1,2-Dichlorobenzene mg/kg 1,4-Dichlorobenzene mg/kg 0.2 MCERTS < 0.2Bis(2-chloroisopropyl)ether mg/kg 0.1 MCERTS < 0.12-Methylphenol mg/kg 0.3 MCERTS < 0.3 Hexachloroethane mg/kg 0.05 MCERTS < 0.05 MCERTS Nitrobenzene mg/kg 0.3 < 0.3 4-Methylphenol 0.2 NONE < 0.2 mg/kg 0.2 MCERTS < 0.2 Isophorone mg/kg 0.3 MCERTS < 0.3 2-Nitrophenol mg/kg 2,4-Dimethylphenol mg/kg 0.3 MCERTS < 0.3 0.3 Bis(2-chloroethoxy)methane mg/kg MCERTS < 0.3 1,2,4-Trichlorobenzene mg/kg 0.3 MCERTS < 0.3 Naphthalene mg/kg 0.05 MCERTS 0.17 2,4-Dichlorophenol 0.3 MCERTS < 0.3 mg/kg 4-Chloroaniline 0.1 NONE < 0.1 mg/kg 0.1 MCERTS < 0.1 Hexachlorobutadiene mg/kg 0.1 NONE < 0.1 4-Chloro-3-methylphenol mg/kg 0.1 < 0.1 2,4,6-Trichlorophenol mg/kg MCERTS 2,4,5-Trichlorophenol mg/kg 0.2 MCERTS < 0.2 2-Methylnaphthalene mg/kg 0.1 NONE < 0.1 2-Chloronaphthalene mg/kg 0.1 MCERTS < 0.1 Dimethylphthalate mg/kg 0.1 MCERTS < 0.1 0.1 MCERTS < 0.1 2,6-Dinitrotoluene mg/kg MCERTS 0.24 Acenaphthylene 0.05 mg/kg 0.05 Acenaphthene MCERTS 0.14 mg/kg MCERTS 2,4-Dinitrotoluene ma/ka 0.2 < 0.2 Dibenzofuran mg/kg 0.2 MCERTS < 0.2 4-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 < 0.3 Diethyl phthalate mg/kg 0.2 MCERTS < 0.2 4-Nitroaniline mg/kg 0.2 MCERTS < 0.2 MCERTS Fluorene mg/kg 0.05 0.29 0.3 MCERTS < 0.3 Azobenzene mg/kg 0.2 MCERTS < 0.2 Bromophenyl phenyl ether mg/kg 0.3 MCERTS Hexachlorobenzene < 0.3 ma/ka Phenanthrene mg/kg 0.05 MCERTS 0.62 Anthracene mg/kg 0.05 MCERTS 0.33 Carbazole mg/kg 0.3 MCERTS < 0.3 Dibutyl phthalate 0.2 MCERTS < 0.2 mg/kg 0.3 MCERTS < 0.3 Anthraquinone mg/kg Fluoranthene mg/kg 0.05 MCERTS 1.2 0.05 1.6 MCERTS Pyrene mg/kg Butyl benzyl phthalate ISO 17025 < 0.3 mg/kg 0.3 0.05 0.85 Benzo(a)anthracene mg/kg MCERTS Chrvsene mg/kg 0.05 MCERTS 0.81 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.6 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.62 0.05 MCERTS 1.4 Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene 0.05 MCERTS 0.77 mg/kg Dibenz(a,h)anthracene 0.05 MCERTS < 0.05 mg/kg MCERTS 0.84 Benzo(ghi)perylene 0.05 mg/kg

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number				782023		
Sample Reference				6		
Sample Number				1		
Depth (m)				None Supplied		
Date Sampled				Deviating		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			

Organotins					 -	-
Tributyl Tin	µg/kg	10	NONE	< 10		
Dibutyl Tin	µg/kg	10	NONE	U/S**		
Tetrabutyl Tin	µg/kg	10	NONE	U/S**		
Triphenyl Tin	µg/kg	10	NONE	< 10		

Environmental Forensics

Glycols						
Ethylene Glycol	mg/kg	10	NONE	< 10		
Triethylene Glycol	mg/kg	10	NONE	U/S		
1,2-Propanediol	mg/kg	10	NONE	< 10		
1,3-Propanediol	mg/kg	10	NONE	< 10		
1,2-Butanediol	mg/kg	10	NONE	< 10		
1,3-Butanediol	mg/kg	10	NONE	< 10		
1,4-Butanediol	mg/kg	10	NONE	< 10		
1,5-Pentanediol	mg/kg	10	NONE	< 10		

**Unsuitable due to matrix interferance.

Project / Site name: Project Blue

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
782023	6	1	None Supplied	Brown clay.

Project / Site name: Project Blue

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
EF - Organotins by GC-MS/MS in soil	Organotins by GC-MS/MS	In-house method	UK	W	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests''''	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil by Gallery 16hr	Determination of water soluble Sulphate by discrete analyser (precipitation method).	In house method based on BS1377-3: 1990.	L082B-PL	D	MCERTS

Iss No 17-54291-1 Project Blue 33138

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Project Blue

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TO - Glycols in Soil	Determination of glycols by GC-MS.	In-house method		W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
6	1	S	17-54291	782023	a			

Peter Woolley Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 **f:** 01452 729 314

e: peter.woolley@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 17-54285

Project / Site name:	Project Blue	Samples received on:	12/07/2017
Your job number:	33138	Samples instructed on:	12/07/2017
Your order number:	33138-PW	Analysis completed by:	19/07/2017
Report Issue Number:	1	Report issued on:	19/07/2017
Samples Analysed:	2 soil samples		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number		781972	781973					
Sample Reference				1	3			
Sample Number				1	1			
Depth (m)				None Supplied	None Supplied			
Date Sampled				Deviating	Deviating			
Time Taken				None Supplied	None Supplied			
			A					
	_	de	<u>ه ۹</u>					
Analytical Parameter	Uni	te mi	ëdi					
(Soil Analysis)	ts	tiof	:us tat					
			<u>B</u>					
Stone Content	%	0.1	NONE	< 0.1	< 0.1			
Moisture Content	%	N/A	NONE	57	50			
Total mass of sample received	kg	0.001	NONE	0.48	0.50			
						-		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected			
General Inorganics							1	
pH - Automated	pH Units	N/A	MCERTS	7.9	8.2			
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1			
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1			
Total Sulphate as SO ₄	mg/kg	50	MCERTS	3900	3700			
Water Soluble Sulphate as SO_4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	3300	3400			
Water Soluble SO4 16hr extraction (2:1 Leachate	ma/l	1 25	MCEDTC	1620	1690			
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCEDTS	11000	5700			
Total Sulphur	ma/ka	50	MCEDTS	3600	3000			
Ammonium as NH ₄	ma/ka	0.5	MCERTS	35	19			
Ammonium as NH ₄ (leachate equivalent)	ma/l	0.05	MCERTS	3.5	1.9			
Organic Matter	0/6	0.1	MCERTS	3.6	33			
Water Soluble Nitrate $(2:1)$ as NO ₃	ma/ka	2	NONE	4.9	5.7			
Water Soluble Nitrate (2:1) as NO ₂ (leachate equivalent)	ma/l	5	NONE	< 5.0	< 5.0			
	<u>,</u>							
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0			
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	15			
Boron (water soluble)	mg/kg	0.2	MCERTS	17	18			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	55	44			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	100	99			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	8/	100			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.0	0.9			
Nickei (aqua regia extractable)	mg/kg 	1	MCERTS	26	25			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	250	220			
Magnosium (water soluble)	mallin	F		1200	1100		I	[]
Magnesium (leachate equivalent)	mg/Kg	25	NONE	1300	570		1	
magnesium (leachate equivalent)	mg/i	2.5	NONE	UCO	5/0		l	

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number				781972	781973		
Sample Reference				1	3		
Sample Number				1	1		
Depth (m)	None Supplied	None Supplied					
Date Sampled				Deviating	Deviating		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)							
Monoaromatics			-				
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene µg/kg 1 MCERTS		< 1.0	< 1.0				
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	2.9	7.1		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	27	34		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	130	160		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	160	200		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	16	11		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	86	74		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	100	85		

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number 781972 781973 Sample Reference 1 Sample Number 1 None Supplied None Supplied Depth (m) Date Sampled Deviating Deviating Time Taken None Supplied None Supplied Accreditation Status Limit of detection Analytical Parameter Units (Soil Analysis) VOCs Chloromethane µg/kg ISO 17025 < 1.0 < 1.0 1 Chloroethane µg/kg 1 NONE < 1.0 < 1.0 Bromomethane 1 ISO 17025 < 1.0 µg/kg < 1.0 < 1.0 Vinyl Chloride NONE µg/kg < 1.0 1 1 NONE < 1.0 Trichlorofluoromethane µg/kg < 1.0 1 NONE < 1.0 1,1-Dichloroethene µg/kg < 1.0 1,1,2-Trichloro 1,2,2-Trifluoroethane < 1.0 µg/kg 1 ISO 17025 < 1.0 Cis-1.2-dichloroethene µg/kg 1 MCERTS < 1.0< 1.0 MTBE (Methyl Tertiary Butyl Ether) 1 MCERTS µg/kg < 1.0 < 1.0 1,1-Dichloroethane µg/kg 1 MCERTS < 1.0 < 1.0 2,2-Dichloropropane µg/kg 1 MCERTS < 1.0 < 1.0 1 MCERTS < 1.0 Trichloromethane µg/kg < 1.0 1,1,1-Trichloroethane µg/kg 1 MCERTS < 1.0 < 1.0 MCERTS 1,2-Dichloroethane 1 < 1.0 µg/kg < 1.0 1 MCERTS < 1.0 1,1-Dichloropropene µg/kg < 1.0 Trans-1,2-dichloroethene 1 NONE < 1.0 µg/kg < 1.0 Benzene µg/kg 1 MCERTS < 1.0 < 1.0 1 Tetrachloromethane µg/kg MCERTS < 1.0 < 10 1,2-Dichloropropane µg/kg 1 MCERTS < 1.0 < 1.0 Trichloroethene MCERTS < 1.0 µg/kg 1 < 1.0 Dibromomethane µg/kg 1 MCERTS < 1.0 < 1.0 Bromodichloromethane 1 MCERTS < 1.0 µg/kg < 1.0 1 ISO 17025 < 1.0 Cis-1,3-dichloropropene µg/kg < 1.0ISO 17025 Trans-1,3-dichloropropene µg/kg 1 < 1.0 < 1.0 1 MCERTS Toluene µg/kg < 1.0 < 1.0 1,1,2-Trichloroethane µg/kg 1 MCERTS < 1.0 < 1.0 1,3-Dichloropropane µg/kg 1 ISO 17025 < 1.0 < 1.0 1 ISO 17025 < 1.0 Dibromochloromethane µg/kg < 1.0 NONE Tetrachloroethene µg/kg 1 < 1.0 < 1.0 ISO 17025 1 < 1.0 1,2-Dibromoethane µg/kg < 1.0 1 MCERTS < 1.0 Chlorobenzene µg/kg < 1.0 1,1,1,2-Tetrachloroethane 1 µg/kg MCERTS < 1.0 < 1.0Ethylbenzene µg/kg 1 MCERTS < 1.0 < 1.0 p & m-Xylene µg/kg 1 MCERTS < 1.0 < 1.0 Styrene 1 MCERTS < 1.0 < 1.0 µg/kg Tribromomethane µg/kg 1 NONE < 1.0 < 1.0 1 MCERTS < 1.0 < 1.0 o-Xylene µg/kg 1,1,2,2-Tetrachloroethane MCERTS < 1.0 1 < 1.0 µq/kq 1 < 1.0 MCERTS < 1.0 Isopropylbenzene µg/kg Bromobenzene µg/kg 1 MCERTS < 1.0 < 1.0 n-Propylbenzene µg/kg 1 ISO 17025 < 1.0 < 1.0 2-Chlorotoluene µg/kg 1 MCERTS < 1.0 < 1.0 4-Chlorotoluene 1 MCERTS < 1.0 < 1.0 µg/kg < 1.0 < 1.0 1,3,5-Trimethylbenzene µg/kg 1 ISO 17025 tert-Butylbenzene 1 MCERTS < 1.0 < 1.0 µg/kg 1 1,2,4-Trimethylbenzene ISO 17025 < 1.0 < 1.0 µg/kg MCERTS < 1.0 sec-Butylbenzene µg/kg 1 < 1.0 < 1.0 1,3-Dichlorobenzene µg/kg 1 ISO 17025 < 1.0p-Isopropyltoluene µg/kg 1 ISO 17025 < 1.0 < 1.0 1,2-Dichlorobenzene µg/kg 1 MCERTS < 1.0 < 1.0 1,4-Dichlorobenzene µg/kg 1 MCERTS < 1.0 < 1.0 MCERTS < 1.0 < 1.0 Butylbenzene µg/kg 1 ISO 17025 < 1.0 1,2-Dibromo-3-chloropropane µg/kg 1 < 1.0 1,2,4-Trichlorobenzene MCERTS < 1.0 < 1.0 µg/kg 1 MCERTS < 1.0 < 1.0 Hexachlorobutadiene µg/kg 1,2,3-Trichlorobenzene 1 ISO 17025 < 1.0 < 1.0 µg/kg

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number 781972 781973 Sample Reference 1 Sample Number 1 None Supplied None Supplied Depth (m) Date Sampled Deviating Deviating Time Taken None Supplied None Supplied Accreditation Status Limit of detection Analytical Parameter Units (Soil Analysis) SVOCs Aniline mg/kg 0.1 NONE < 0.1 < 0.1 Phenol ISO 17025 < 0.2 < 0.2 mg/kg 0.2 0.1 < 0.1 2-Chlorophenol mg/kg MCERTS < 0.1 MCERTS 0.2 < 0.2 < 0.2 Bis(2-chloroethyl)ether mg/kg 0.2 MCERTS < 0.2 1,3-Dichlorobenzene < 0.2 mg/kg 0.1 MCERTS < 0.1 1,2-Dichlorobenzene mg/kg < 0.1 1,4-Dichlorobenzene mg/kg 0.2 MCERTS < 0.2< 0.2Bis(2-chloroisopropyl)ether mg/kg 0.1 MCERTS < 0.1< 0.1 2-Methylphenol mg/kg 0.3 MCERTS < 0.3 < 0.3 mg/kg 0.05 MCERTS < 0.05 < 0.05 Hexachloroethane Nitrobenzene mg/kg 0.3 MCERTS < 0.3 < 0.3 4-Methylphenol 0.2 NONE < 0.2 < 0.2 mg/kg 0.2 MCERTS < 0.2 < 0.2 Isophorone mg/kg 0.3 MCERTS < 0.3 < 0.3 2-Nitrophenol mg/kg 2,4-Dimethylphenol mg/kg 0.3 MCERTS < 0.3 < 0.3 0.3 Bis(2-chloroethoxy)methane mg/kg MCERTS < 0.3 < 0.3 1,2,4-Trichlorobenzene mg/kg 0.3 MCERTS < 0.3< 0.3 Naphthalene mg/kg 0.05 MCERTS < 0.05 < 0.05 2,4-Dichloropheno 0.3 MCERTS < 0.3 < 0.3 mg/kg 4-Chloroaniline 0.1 NONE mg/kg < 0.1 < 0.1 0.1 MCERTS < 0.1 Hexachlorobutadiene < 0.1 mg/kg 0.1 NONE < 0.1 < 0.1 4-Chloro-3-methylphenol mg/kg 0.1 < 0.1 2,4,6-Trichlorophenol mg/kg MCERTS < 0.12,4,5-Trichlorophenol mg/kg 0.2 MCERTS < 0.2 < 0.2 2-Methylnaphthalene mg/kg 0.1 NONE < 0.1 < 0.1 2-Chloronaphthalene 0.1 MCERTS < 0.1 < 0.1 mg/kg Dimethylphthalate mg/kg 0.1 MCERTS < 0.1 < 0.1 0.1 MCERTS 2,6-Dinitrotoluene mg/kg < 0.1 < 0.1 MCERTS Acenaphthylene 0.05 < 0.05 < 0.05 mg/kg 0.05 Acenaphthene MCERTS < 0.05 < 0.05 mg/kg MCERTS 2,4-Dinitrotoluene ma/ka 0.2 < 0.2 < 0.2 Dibenzofuran mg/kg 0.2 MCERTS < 0.2 < 0.24-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 < 0.3 < 0.3 Diethyl phthalate mg/kg 0.2 MCERTS < 0.2 < 0.2 4-Nitroaniline 0.2 MCERTS < 0.2 < 0.2 mg/kg MCERTS Fluorene mg/kg 0.05 < 0.05 < 0.05 0.3 MCERTS < 0.3 < 0.3 Azobenzene mg/kg 0.2 MCERTS < 0.2 Bromophenyl phenyl ether < 0.2 mg/kg < 0.3 Hexachlorobenzene 0.3 MCERTS < 0.3 ma/ka 0.19 Phenanthrene mg/kg 0.05 MCERTS 0.23 Anthracene mg/kg 0.05 MCERTS < 0.05 < 0.05 Carbazole mg/kg 0.3 MCERTS < 0.3 < 0.3 Dibutyl phthalate 0.2 MCERTS < 0.2 < 0.2 mg/kg 0.3 MCERTS < 0.3 < 0.3 Anthraquinone mg/kg Fluoranthene mg/kg 0.05 MCERTS 0.39 0.48 0.05 0.46 0.54 MCERTS Pyrene mg/kg Butyl benzyl phthalate ISO 17025 mg/kg 0.3 < 0.3 < 0.3 0.05 0.23 Benzo(a)anthracene mg/kg MCERTS 0.32 Chrvsene mg/kg 0.05 MCERTS 0.28 0.30 Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.52 0.64 Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.29 0.30 0.05 MCERTS 0.41 0.48 Benzo(a)pyrene mg/kg Indeno(1,2,3-cd)pyrene 0.05 MCERTS 0.28 0.29 mg/kg 0.05 MCERTS < 0.05 < 0.05 Dibenz(a,h)anthracene mg/kg MCERTS 0.33 Benzo(ghi)perylene 0.05 0.33 mg/kg

Project / Site name: Project Blue Your Order No: 33138-PW

Lab Sample Number	ab Sample Number				781973		
Sample Reference	1	3					
Sample Number				1	1		
Depth (m)				None Supplied	None Supplied		
Date Sampled				Deviating	Deviating		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				

Organotins							
Tributyl Tin	µg/kg	10	NONE	< 10	16		
Dibutyl Tin	µg/kg	10	NONE	U/S**	U/S**		
Triphenyl Tin	µg/kg	10	NONE	< 10	< 10		

Environmental Forensics

Glycols							
Ethylene Glycol	mg/kg	10	NONE	< 10	< 10		
Triethylene Glycol	mg/kg	10	NONE	< 10	< 10		
1,2-Propanediol	mg/kg	10	NONE	< 10	< 10		
1,3-Propanediol	mg/kg	10	NONE	< 10	< 10		
1,2-Butanediol	mg/kg	10	NONE	< 10	< 10		
1,3-Butanediol	mg/kg	10	NONE	< 10	< 10		
1,4-Butanediol	mg/kg	10	NONE	< 10	< 10		
1,5-Pentanediol	mg/kg	10	NONE	< 10	< 10		

**Unsuitable due to matrix interferance.

Project / Site name: Project Blue

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
781972	1	1	None Supplied	Brown clay.
781973	3	1	None Supplied	Brown clay.

Project / Site name: Project Blue

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
EF - Organotins by GC-MS/MS in soil	Organotins by GC-MS/MS	In-house method	UK	W	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests'''	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil by Gallery 16hr	Determination of water soluble Sulphate by discrete analyser (precipitation method).	In house method based on BS1377-3: 1990.	L082B-PL	D	MCERTS

Iss No 17-54285-1 Project Blue 33138

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Project Blue

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TO - Glycols in Soil	Determination of glycols by GC-MS.	In-house method		W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_I	Sample Ty	/pe Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
1		1 S	17-54285	781972	a			
3		1 S	17-54285	781973	a			

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

18/00300 1

Date: 26 January, 2018

Client:

Structural Soils Limited (Castleford) The Potteries Pottery Street Castleford West Yorkshire UK WF10 1NJ

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Alex Jones/Philip Rowlay Project Blue 764393 N/A 19/12/17 16/01/18 25/01/18

Prepared by:

Nanshall

Melanie Marshall Laboratory Coordinator Approved by:

FIERD

Danielle Brierley Client Manager

Client Project Name: Project Blue

Lab Sample ID	18/00300/1	18/00300/3	18/00300/4	18/00300/5	18/00300/7	18/00300/8	18/00300/9	18/00300/11		
Client Sample No	101				101	101	101	101		
Client Sample ID	PAC01A	PAC02A	PAC02B	PAC03A	PAC04A	PAC04B	PAC05A	PAC06A		
Depth to Top	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Depth To Bottom										
Date Sampled	10-Jan-18	11-Jan-18		ž						
Sample Type	Solid		od re							
Sample Matrix Code	7	7	7	7	7	7	7	7	Units	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	A-T-044
pH _D	7.56	7.69	7.78	7.85	8.11	8.18	7.97	7.75	рН	A-T-031s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Organic matter _D ^{M#}	1.7	3.9	4.6	3.7	1.3	1.3	3.3	4.8	% w/w	A-T-032 OM
Arsenic ^{D^{M#}}	2	8	8	9	5	5	5	9	mg/kg	A-T-024s
Barium _D	69	183	174	169	88	74	162	172	mg/kg	A-T-024s
Beryllium _p #	<0.5	1.0	1.0	0.8	<0.5	<0.5	0.7	0.6	mg/kg	A-T-024s
Boron (water soluble) _D ^{M#}	7.7	18.5	16.7	12.2	8.8	7.8	13.7	14.6	mg/kg	A-T-027s
Cadmium _p ^{M#}	0.6	1.6	1.6	1.4	0.6	0.5	1.3	1.6	mg/kg	A-T-024s
Copper _D ^{M#}	41	118	118	93	55	47	125	120	mg/kg	A-T-024s
Chromium _D ^{M#}	27	63	67	60	34	28	76	68	mg/kg	A-T-024s
Lead _D ^{M#}	46	124	128	135	64	54	122	232	mg/kg	A-T-024s
Mercury _D	0.39	1.19	1.46	1.58	0.80	0.51	1.17	1.43	mg/kg	A-T-024s
Nickel ^{"M#}	15	34	34	27	18	15	28	27	mg/kg	A-T-024s
Selenium _D ^{M#}	<1	2	2	1	<1	1	2	2	mg/kg	A-T-024s
Vanadium _D ^{M#}	23	52	51	45	30	24	47	47	mg/kg	A-T-024s
Zinc _D ^{M#}	144	337	344	318	160	137	315	365	mg/kg	A-T-024s

Client Project Name: Project Blue

Lab Sample ID	18/00300/1	18/00300/3	18/00300/4	18/00300/5	18/00300/7	18/00300/8	18/00300/9	18/00300/11		
Client Sample No	101				101	101	101	101		
Client Sample ID	PAC01A	PAC02A	PAC02B	PAC03A	PAC04A	PAC04B	PAC05A	PAC06A		
Depth to Top	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Depth To Bottom										
Date Sampled	10-Jan-18	10-Jan-18	10-Jan-18	10-Jan-18	10-Jan-18	10-Jan-18	10-Jan-18	11-Jan-18		f
Sample Type	Solid	Solid	Solid	Solid	Solid	Solid	Solid	Solid		od re
Sample Matrix Code	7	7	7	7	7	7	7	7	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A [#]	Chrysotile	NAD		A-T-045						
Asbestos Matrix (microscope) _A	Loose Fibres	-	-	-	-	-	-	-		A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Glycol Suite 1										
1,2-Butanediol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
1,2-Propylene glycol (1,2-propanediol) _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
1,3-Butanediol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
1,3-Propylene glycol (1,3-propanediol) _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
1,4-Butanediol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
1,5-Pentanediol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
Diethylene glycol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
Ethylene glycol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
Triethylene glycol _A	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	mg/kg	Subcon
Organotin Suite										
Dibutyltin _A	<10	14	-	-	<10	-	<10	-	µg/kg	Subcon
Tributyltin _A	10	14	-	-	27	-	220	-	µg/kg	Subcon
Triphenyltin _A	<10	<10	-	-	<10	-	<10	-	µg/kg	Subcon
Tetrabutyltin _A	<10	<10	-	-	<10	-	<10	-	µg/kg	Subcon

Client Project Name: Project Blue

Lab Sample ID	18/00300/1	18/00300/3	18/00300/4	18/00300/5	18/00300/7	18/00300/8	18/00300/9	18/00300/11		
Client Sample No	101				101	101	101	101		
Client Sample ID	PAC01A	PAC02A	PAC02B	PAC03A	PAC04A	PAC04B	PAC05A	PAC06A		
Depth to Top	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Depth To Bottom										
Date Sampled	10-Jan-18	11-Jan-18		Į.						
Sample Type	Solid		od re							
Sample Matrix Code	7	7	7	7	7	7	7	7	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	<0.01	<0.01	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.18	<0.04	0.16	0.16	0.15	0.12	0.16	<0.04	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.18	<0.05	0.14	0.14	0.11	0.10	0.14	<0.05	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.16	<0.05	0.14	0.14	0.13	0.10	0.14	<0.05	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	0.03	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.21	<0.03	0.19	0.19	0.16	0.13	0.16	0.10	mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.09	<0.03	0.16	<0.03	<0.03	0.05	0.07	<0.03	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.18	<0.07	<0.07	<0.07	<0.07	<0.07	0.23	<0.07	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.98	<0.08	0.90	0.65	0.55	0.51	0.94	<0.08	mg/kg	A-T-019s

Client Project Name: Project Blue

Lab Sample ID	18/00300/1	18/00300/3	18/00300/4	18/00300/5	18/00300/7	18/00300/8	18/00300/9	18/00300/11		
Client Sample No	101				101	101	101	101		
Client Sample ID	PAC01A	PAC02A	PAC02B	PAC03A	PAC04A	PAC04B	PAC05A	PAC06A		
Depth to Top	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Depth To Bottom										
Date Sampled	10-Jan-18	11-Jan-18		ų						
Sample Type	Solid		od re							
Sample Matrix Code	7	7	7	7	7	7	7	7	Units	Meth
TPH CWG										
Ali >C5-C6 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	9.8	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	22.0	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.5	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	72.4	<0.1	mg/kg	A-T-023s
Aro >C5-C7 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.4	7.3	mg/kg	A-T-023s
Aro >C16-C21 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	18.3	29.5	mg/kg	A-T-023s
Aro >C21-C35 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	12.3	35.6	56.7	mg/kg	A-T-023s
Total Aromatics _A	<0.1	<0.1	<0.1	<0.1	<0.1	12.3	55.3	93.5	mg/kg	A-T-023s
TPH (Ali & Aro) _A	<0.1	<0.1	<0.1	<0.1	<0.1	12.3	128	93.5	mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	A-T-022s

Client Project Name: Project Blue

Lab Sample ID	18/00300/12	18/00300/13	18/00300/15	18/00300/16				
Client Sample No	101	101	101	101				
Client Sample ID	PAC06B	PAC07A	PAC08A	PAC08B				
Depth to Top	0.00	0.00	0.00	0.00				
Depth To Bottom								
Date Sampled	11-Jan-18	11-Jan-18	11-Jan-18	11-Jan-18				
Sample Type	Solid	Solid	Solid	Solid				oq re
Sample Matrix Code	7	7	7	7			Units	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1			% w/w	A-T-044
рН _D	7.93	8.03	8.05	8.09			pН	A-T-031s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1			mg/kg	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1	<1	<1	<1			mg/kg	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2			mg/kg	A-T-050s
Organic matter _D ^{M#}	3.9	6.3	4.5	5.6			% w/w	A-T-032 OM
Arsenic ^{D^{M#}}	24	9	6	16			mg/kg	A-T-024s
Barium₀	201	132	328	247			mg/kg	A-T-024s
Beryllium₀ [#]	0.7	0.5	0.6	0.8			mg/kg	A-T-024s
Boron (water soluble) _D ^{M#}	11.4	14.4	10.0	12.0			mg/kg	A-T-027s
Cadmium _p ^{M#}	2.4	1.0	1.6	2.6			mg/kg	A-T-024s
Copper _D ^{M#}	122	87	138	165			mg/kg	A-T-024s
Chromium _D ^{M#}	83	52	59	90			mg/kg	A-T-024s
Lead _D ^{M#}	248	107	500	193			mg/kg	A-T-024s
Mercury _D	2.48	0.93	1.43	2.88			mg/kg	A-T-024s
Nickel _D ^{M#}	32	25	27	34			mg/kg	A-T-024s
Selenium _D ^{M#}	2	2	2	2			mg/kg	A-T-024s
Vanadium _D ^{M#}	51	39	52	53			mg/kg	A-T-024s
Zinc _D ^{M#}	520	249	340	549			mg/kg	A-T-024s

Client Project Name: Project Blue

Lab Sample ID	18/00300/12	18/00300/13	18/00300/15	18/00300/16				
Client Sample No	101	101	101	101				
Client Sample ID	PAC06B	PAC07A	PAC08A	PAC08B				
Depth to Top	0.00	0.00	0.00	0.00				
Depth To Bottom								
Date Sampled	11-Jan-18	11-Jan-18	11-Jan-18	11-Jan-18				Ŧ
Sample Type	Solid	Solid	Solid	Solid				od re
Sample Matrix Code	7	7	7	7			Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A [#]	NAD	NAD	NAD	NAD				A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A				
Glycol Suite 1								
1,2-Butanediol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
1,2-Propylene glycol (1,2-propanediol) _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
1,3-Butanediol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
1,3-Propylene glycol (1,3-propanediol) _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
1,4-Butanediol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
1,5-Pentanediol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
Diethylene glycol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
Ethylene glycol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
Triethylene glycol _A	<10.0	<10.0	<10.0	<10.0			mg/kg	Subcon
Organotin Suite								
Dibutyltin _A	-	<10	<10	-			µg/kg	Subcon
Tributyltin _A	-	16	34	-			µg/kg	Subcon
Triphenyltin _A	-	<10	<10	-			µg/kg	Subcon
Tetrabutyltin _A	-	<10	<10	-			µg/kg	Subcon

Client Project Name: Project Blue

Lab Sample ID	18/00300/12	18/00300/13	18/00300/15	18/00300/16				
Client Sample No	101	101	101	101				
Client Sample ID	PAC06B	PAC07A	PAC08A	PAC08B				
Depth to Top	0.00	0.00	0.00	0.00				
Depth To Bottom								
Date Sampled	11-Jan-18	11-Jan-18	11-Jan-18	11-Jan-18				od ref
Sample Type	Solid	Solid	Solid	Solid				
Sample Matrix Code	7	7	7	7			Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	<0.01	<0.01	0.11	0.02			mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	0.09	0.05			mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	0.29	0.05			mg/kg	A-T-019s
Benzo(a)anthracene ^{A^{M#}}	<0.04	<0.04	1.23	0.17			mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.11	<0.04	1.43	0.45			mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	1.12	0.41			mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	1.34	0.33			mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	0.46	<0.07			mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	1.41	0.24			mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	0.26	<0.04			mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	3.77	0.36			mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	0.11	0.02			mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.09	<0.03	1.63	0.41			mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	<0.03	0.18	<0.03			mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	0.37	0.12			mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	2.60	0.48			mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	0.19	<0.08	16.4	3.13			mg/kg	A-T-019s

Client Project Name: Project Blue

Lab Sample ID	18/00300/12	18/00300/13	18/00300/15	18/00300/16				
Client Sample No	101	101	101	101				
Client Sample ID	PAC06B	PAC07A	PAC08A	PAC08B				
Depth to Top	0.00	0.00	0.00	0.00				
Depth To Bottom								
Date Sampled	11-Jan-18	11-Jan-18	11-Jan-18	11-Jan-18				f
Sample Type	Solid	Solid	Solid	Solid				od re
Sample Matrix Code	7	7	7	7			Units	Meth
трн сwg								
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C6-C8 ₄ [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C8-C10 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	<0.1	7.0	<0.1			mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	<0.1	70.7	<0.1			mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1	77.8	<0.1			mg/kg	A-T-023s
Aro >C5-C7 [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C9-C10 _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
Aro >C10-C12 _A [#]	<0.1	<0.1	<0.1	<0.1			mg/kg	A-T-023s
Aro >C12-C16 _A [#]	1.7	<0.1	3.3	<0.1			mg/kg	A-T-023s
Aro >C16-C21 _A [#]	7.6	0.7	26.9	4.5			mg/kg	A-T-023s
Aro >C21-C35 _A [#]	5.0	1.6	77.5	6.5			mg/kg	A-T-023s
Total Aromatics _A	14.3	2.5	108	11.0			mg/kg	A-T-023s
TPH (Ali & Aro) _A	14.3	2.5	185	11.0			mg/kg	A-T-023s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - Ethyl Benzene [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01			mg/kg	A-T-022s

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.