

National Consultancy, Locally Delivered

AIR QUALITY ASSESSMENT PARK AVENUE, LIVERPOOL

REC REFERENCE: 34127R2

REPORT PREPARED FOR: REDROW HOMES LIMITED

DATE: 9TH DECEMBER 2014

REPORT ISSUE

Issue/revision	Issue 1	Revision 2	Revision 3
Remarks	-	-	
Date	15 th October 2014	9 th December 2014	
Prepared by	Jonathan Ashcroft	Jethro Redmore	
Signature	Hair	M	
Position	Graduate Air Quality Consultant	Associate Director	
Checked by	Sarah Naylor	Sarah Naylor	
Signature	SN29	SN29	
Position	Senior Air Quality Consultant	Senior Air Quality Consultant	
Verified by	Jethro Redmore	Jethro Redmore	
Signature	M	M	
Position	Associate Director	Associate Director	
Project number	34127	34127	

Osprey House, Pacific Quay, Broadway, Manchester, M50 2UE Tel – 0161 868 1300 Fax – 0161 868 1301 www.recltd.co.uk

EXECUTIVE SUMMARY

Resource and Environmental Consultants Ltd was commissioned by Redrow Homes Limited to undertake an Air Quality Assessment in support of a planning application for a residential development on land at Park Avenue, Liverpool.

The proposals comprise 34 residential units and associated infrastructure.

The site is located in an area identified by Liverpool City Council as experiencing elevated pollutant concentrations and subsequently there are concerns that the proposals will introduce future users into an area of poor air quality. Additionally, the development has the potential to cause air quality impacts at sensitive locations. These may include fugitive dust emissions from construction works and road vehicle exhaust emissions associated with traffic generated by the site during the operational phase. As such, an Air Quality Assessment was required to quantify pollution levels across the site, consider its suitability for the proposed use and assess potential impacts as a result of the development.

Potential construction phase air quality impacts from fugitive dust emissions were assessed as a result earthworks, construction and trackout activities. It is considered that the use of good practice control measures would provide suitable mitigation for a development of this size and nature and reduce potential impacts to an acceptable level.

Dispersion modelling was undertaken in order to quantify existing pollutant concentrations at the site and predict air quality impacts as a result of road vehicle exhaust emissions associated with traffic generated by the development.

The dispersion modelling assessment indicated pollution levels at the development were below the relevant air quality standards and the location is considered suitable for residential use without the inclusion of mitigation methods. Additionally, the dispersion modelling concluded that impacts on pollutant levels as a result of operational phase vehicle exhaust emissions were not predicted to be significant at any sensitive location in the vicinity of the site. The use of robust assumptions, where necessary, was considered to provide sufficient results confidence for an assessment of this nature.

Based on the assessment results, air quality issues are not considered a constraint to planning consent for the development.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Background	1
1.2	Site Location and Context	1
1.3	3 Limitations	1
2.0	LEGISLATION AND POLICY	2
2.1	European Legislation	2
2.2	2 UK Legislation	2
2.3	B Local Air Quality Management	4
2.4	Dust	4
2.5	6 National Planning Policy	5
4	2.5.1 National Planning Policy Framework	5
26	Local Planning Policy	5
2.0		-
3.0	METHODOLOGY	7
3.1	Construction Phase Assessment	7
3	3.1.1 Step 1	7
3	3.1.2 Step 2	7
: 	3.1.3 Step 3	12
3.2		13
4.0	BASELINE	16
4.1	Local Air Quality Management	16
4.2	Air Quality Monitoring	16
4.3	Background Pollutant Concentrations	17
4.4	Sensitive Receptors	17
2	4.4.1 Construction Phase Sensitive Receptors	10
		15
5.0	ASSESSIVIENT	23
5.1	Construction Phase Assessment	23
	5.1.1 Step 1	23
	5.1.2 Step 2	23
	5.1.3 Step 3	25
52	2 Onerational Phase Assessment	20
<u> </u>	5.2.1 Nitrogen Dioxide	20
[5.2.2 Particulate Matter	30
ļ,	5.2.3 Impact Significance	33
6.0	CONCLUSION	34
7.0	ABBREVIATIONS	35

APPENDICES

Appendix I Figures Appendix II Assessment Input Data Appendix III Assessors Curriculum Vitae

1.0 INTRODUCTION

1.1 Background

Resource and Environmental Consultants (REC) Ltd was commissioned by Redrow Homes Limited to undertake an Air Quality Assessment in support of a planning application for a residential development on land at Park Avenue, Liverpool.

The site is located in an area identified by Liverpool City Council (LCC) as experiencing elevated pollutant concentrations and subsequently there are concerns that the proposals will introduce future users into an area of poor air quality. Additionally, the development has the potential to cause air quality impacts at sensitive locations. As such, an Air Quality Assessment was required to quantify potential effects in the vicinity of the site.

1.2 Site Location and Context

The site is located on land at Park Avenue, Liverpool, at approximate National Grid Reference (NGR): 338197, 387410. Reference should be made to Figure 1 for a location plan and Figure 2 for a site layout plan.

The proposals comprise 34 residential units and associated infrastructure.

The development is located within an Air Quality Management Area (AQMA), declared by LCC due to exceedences of the Air Quality Objectives (AQOs) for nitrogen dioxide (NO₂). As such, there are concerns that the proposals could expose future site users to elevated pollution levels. Additionally, the proposals have the potential to cause air quality impacts at sensitive receptor locations as a result of emissions associated with the construction and operational phases. As such, an Air Quality Assessment was required to determine baseline conditions, consider location suitability for residential use and provide consideration of potential effects as a result of the proposals. This is detailed in the following report.

1.3 Limitations

This report has been produced in accordance with REC's standard terms of engagement. REC has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from REC; a charge may be levied against such approval.

2.0 LEGISLATION AND POLICY

2.1 European Legislation

European Union (EU) air quality legislation is provided within Directive 2008/50/EC, which came into force on 11^{th} June 2008. This Directive consolidated previous legislation which was designed to deal with specific pollutants in a consistent manner and provided new air quality objectives for particulate matter with an aerodynamic diameter of less than 2.5µm (PM_{2.5}). The consolidated Directives include:

- Directive 99/30/EC the First Air Quality "Daughter" Directive sets ambient Air Quality Limit Value (AQLVs) for NO₂, oxides of nitrogen (NO_x), sulphur dioxide, lead and particulate matter with an aerodynamic diameter of less than 10μm (PM₁₀);
- Directive 2000/69/EC the Second Air Quality "Daughter" Directive sets ambient AQLVs for benzene and carbon monoxide; and,
- Directive 2002/3/EC the Third Air Quality "Daughter" Directive seeks to establish longterm objectives, target values, an alert threshold and an information threshold for concentrations of ozone in ambient air.

The fourth daughter Directive was not included within the consolidation and is described as:

• Directive 2004/107/EC - sets health-based limits on polycyclic aromatic hydrocarbons, cadmium, arsenic, nickel and mercury, for which there is a requirement to reduce exposure to as low as reasonably achievable.

2.2 UK Legislation

The Air Quality Standards Regulations (2010) came into force on 11th June 2010 and transpose the EU Directive 2008/50/EC into UK law. AQOs were published in these regulations for 7 pollutants, as well as Target Values for an additional 5 pollutants.

Part IV of the Environment Act (1995) requires UK government to produce a national Air Quality Strategy (AQS) which contains standards, objectives and measures for improving ambient air quality. The most recent AQS was produced by the Department for Environment, Food and Rural Affairs (DEFRA) and published in July 2007¹. The AQS sets out AQOs that are maximum ambient pollutant concentrations that are not to be exceeded either without exception or with a permitted number of exceedences over a specified timescale. These are generally in line with the AQLVs, although the requirements for compliance vary slightly.

Table 1 presents the AQOs for pollutants considered within this assessment.

¹ The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, DEFRA, 2007.

Table 1Air Quality Objectives

Pollutant	Air Quality Objective		
	Concentration (µg/m ³)	Averaging Period	
NO ₂	40	Annual mean	
	200	1-hour mean; not to be exceeded more than 18 times a year	
PM ₁₀	40	Annual mean	
	50	24-hour mean; not to be exceeded more than 35 times a year	

Table 2 summarises the advice provided in DEFRA guidance LAQM.TG $(09)^2$ on where the AQOs for pollutants considered within this report apply.

Averaging Period	Objectives Should Apply At	Objectives Should Not Apply At
Annual mean	All locations where members of the public might be regularly exposed Building façades of residential properties, schools, hospitals, care homes etc	Building façades of offices or other places of work where members of the public do not have regular access Hotels, unless people live there as their permanent residence Gardens of residential properties Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term
24-hour mean and 8-hour mean	All locations where the annual mean objective would apply, together with hotels Gardens of residential properties	Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term

Table 2 Examples of Where the Air Quality Objectives Apply

² Local Air Quality Management Technical Guidance LAQM.TG(09), DEFRA, 2009.

Averaging Period	Objectives Should Apply At	Objectives Should Not Apply At
1-hour mean	All locations where the annual mean and 24 and 8-hour mean objectives apply. Kerbside sites (for example, pavements of busy shopping streets)	Kerbside sites where the public would not be expected to have regular access
	Those parts of car parks, bus stations and railway stations etc which are not fully enclosed, where members of the public might reasonably be expected to spend one hour or more	
	Any outdoor locations where members of the public might reasonably expected to spend one hour or longer	

2.3 Local Air Quality Management

Under Section 82 of the Environment Act (1995) (Part IV) Local Authorities (LAs) are required to periodically review and assess air quality within their area of jurisdiction under the system of Local Air Quality Management (LAQM). This review and assessment of air quality involves considering present and likely future air quality against the AQOs. If it is predicted that levels at sensitive locations where members of the public are regularly present for the relevant averaging period are likely to be exceeded, the LA is required to declare an AQMA. For each AQMA the LA is required to produce an Air Quality Action Plan (AQAP), the objective of which is to reduce pollutant concentrations in pursuit of the AQOs.

2.4 Dust

The main requirements with respect to dust control from industrial or trade premises not regulated under the Environmental Permitting (England and Wales) Regulations (2010) and subsequent amendments, such as construction sites, is that provided in Section 79 of Part III of the Environmental Protection Act (1990). The Act defines nuisance as:

"any dust, steam, smell or other effluvia arising on industrial, trade or business premises and being prejudicial to health or a nuisance."

Enforcement of the Act, in regard to nuisance, is currently under the jurisdiction of the local Environmental Health Department, whose officers are deemed to provide an independent evaluation of nuisance. If the LA is satisfied that a statutory nuisance exists, or is likely to occur or happen again, it must serve an Abatement Notice under Part III of the Environmental Protection Act (1990). Enforcement can insist that there be no dust beyond the boundary of the works. The only defence is to show that the process to which the nuisance has been attributed and its operation are being controlled according to best practice measures.

2.5 National Planning Policy

2.5.1 National Planning Policy Framework

The National Planning Policy Framework³ (NPPF) was published on 27th March 2012 and sets out the Government's core policies and principles with respect to land use planning, including air quality. The document includes the following considerations which are relevant to this assessment:

"The planning system should contribute to and enhance the natural and local environment by: [...]

Preventing both new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by unacceptable levels of soil, air, water or noise pollution or land instability"

"Planning policies should sustain compliance with and contribute towards EU limit values or national objectives for pollutants, taking into account the presence of Air Quality Management Areas and the cumulative impacts on air quality from individual sites in local areas. Planning decisions should ensure that any new development in Air Quality Management Areas is consistent with the local air quality action plan."

The implications of the NPPF have been considered throughout this assessment.

2.5.2 National Planning Practice Guidance

The National Planning Practice Guidance⁴ (NPPG) web-based resource was launched by the Department for Communities and Local Government on 6th March 2014 to support the NPPF and make it more accessible. The air quality pages are summarised under the following headings:

- 1. Why should planning be concerned about air quality?
- 2. What is the role of Local Plans with regard to air quality?
- 3. Are air quality concerns relevant to neighbourhood planning?
- 4. What information is available about air quality?
- 5. When could air quality be relevant to a planning decision?
- 6. Where to start if bringing forward a proposal where air quality could be a concern?
- 7. How detailed does an air quality assessment need to be?
- 8. How can an impact on air quality be mitigated?
- 9. How do considerations about air quality fit into the development management process?

These were reviewed and the relevant guidance considered as necessary throughout the undertaking of this assessment.

³ National Planning Policy Framework, Department for Communities and Local Government, 2012.

⁴ http://planningguidance.planningportal.gov.uk/.

2.6 Local Planning Policy

The City of Liverpool Unitary Development $Plan^5$ (UDP) was formally adopted in 2002 and provides a framework for development within the city. A number of policies contained within the UDP have been saved in accordance with the Planning and Compulsory Purchase Act (2004) and therefore provide the basis for the determination of planning applications prior to the finalisation of the Local Development Framework.

A review of the UDP indicated the following policy in relation to air quality that is relevant to this assessment:

"Policy EP11

1. Planning permissions will not be granted for development which has the potential to create unacceptable air, water, noise or other pollution or nuisance."

This policy has been considered throughout this report by considering potential air quality impacts as a result of the proposed development.

⁵ The City of Liverpool Unitary Development Plan, Liverpool City Council, 2002.

3.0 METHODOLOGY

The proposed development has the potential to cause air quality impacts during the construction and operational phases in addition to exposing future site users to elevated pollution levels. These issues have been assessed in accordance with the following methodology, agreed with Paul Farrell, Principal Officer of Environmental Protection at LCC, on 13th October via email.

3.1 Construction Phase Assessment

There is the potential for fugitive dust emissions to occur as a result of construction phase activities. These have been assessed in accordance with the methodology outlined within the Institute of Air Quality Management (IAQM) document 'Guidance on the Assessment of Dust from Demolition and Construction'⁶.

Activities on the proposed construction site have been divided into three types to reflect their different potential impacts. These are:

- Earthworks;
- Construction; and,
- Trackout.

The potential for dust emissions was assessed for each activity that is likely to take place and considered three separate dust effects:

- Annoyance due to dust soiling;
- Harm to ecological receptors; and,
- The risk of health effects due to a significant increase in exposure to PM₁₀.

The assessment steps are detailed below.

3.1.1 Step 1

Step 1 screens the requirement for a more detailed assessment. Should human receptors be identified within 350m from the site boundary or 50m from the construction vehicle route up to 500m from the site entrance, then the assessment should proceed to Step 2. Additionally, should ecological receptors be identified within 50m of the boundary site or 50m from the construction vehicle route up to 500m from the site entrance, then the assessment should also proceed to Step 2.

Should sensitive receptors not be present within the relevant distances then **negligible** impacts would be expected and further assessment is not necessary.

3.1.2 Step 2

Step 2 assesses the risk of potential dust impacts. A site is allocated to a risk category based on two

⁶ Guidance on the Assessment of Dust from Demolition and Construction, Institute of Air Quality Management, 2014.

factors:

- The scale and nature of the works, which determines the magnitude of dust arising as: small, medium or large (Step 2A); and,
- The sensitivity of the area to dust impacts, which can defined as low, medium or high sensitivity (Step 2B).

The two factors are combined in Step 2C to determine the risk of dust impacts without mitigation applied.

Step 2A defines the potential magnitude of dust emission through the construction phase. The relevant criteria are summarised in Table 3.

Magnitude	Activity	Criteria
Large	Earthworks	 Total site area greater than 10,000m² Potentially dusty soil type (e.g. clay, which will be prone to suspension when dry due to small particle size) More than 10 heavy earth moving vehicles active at any one time Formation of bunds greater than 8m in height More than 100,000 tonnes of material moved
	Construction	 Total building volume greater than 100,000m³ On site concrete batching Sandblasting
	Trackout	 More than 50 Heavy Duty Vehicle (HDV) trips per day Potentially dusty surface material (e.g. high clay content) Unpaved road length greater than 100m
Medium	Earthworks	 Total site area 2,500m² to 10,000m² Moderately dusty soil type (e.g. silt) 5 to 10 heavy earth moving vehicles active at any one time Formation of bunds 4m to 8m in height Total material moved 20,000 tonnes to 100,000 tonnes
	Construction	 Total building volume 25,000m³ to 100,000m³ Potentially dusty construction material (e.g. concrete) On site concrete batching
	Trackout	 10 to 50 HDV trips per day Moderately dusty surface material (e.g. high clay content) Unpaved road length 50m to 100m

Table 3 Construction Dust - Magnitude of Emission

Air Quality Assessment Park Avenue, Liverpool 9th December 2014 34127

Magnitude	Activity	Criteria
Small	Earthworks	 Total site area less than 2,500m² Soil type with large grain size (e.g. sand) Less than 5 heavy earth moving vehicles active at any one time Formation of bunds less than 4m in height Total material moved less than 20,000 tonnes Earthworks during wetter months
	Construction	 Total building volume less than 25,000m³ Construction material with low potential for dust release (e.g. metal cladding or timber)
	Trackout	 Less than 10 HDV trips per day Surface material with low potential for dust release Unpaved road length less than 50m

Step 2B defines the sensitivity of the area around the development site for construction, earthworks and trackout. The factors influencing the sensitivity of the area are shown in Table 4.

Table 4	Examples of Factors Defining Sensitivity of an Area
---------	---

Sensitivity	Examples			
	Human Receptors	Ecological Receptors		
High	 Users expect of high levels of amenity High aesthetic or value property People expected to be present continuously for extended periods of time Locations where members of the public are exposed over a time period relevant to the AQO for PM₁₀ e.g. residential properties, hospitals, schools and residential care homes 	Internationally or nationally designated site e.g. Special Area of Conservation		
Medium	 Users would expect to enjoy a reasonable level of amenity Aesthetics or value of their property could be diminished by soiling People or property wouldn't reasonably be expected to be present here continuously or regularly for extended periods as part of the normal pattern of use of the land e.g. parks and places of work 	 Nationally designated site e.g. Sites of Special Scientific Interest 		

Sensitivity	Examples			
	Human Receptors	Ecological Receptors		
Low	 Enjoyment of amenity would not reasonably be expected 	 Locally designated site e.g. Local Nature Reserve 		
	 Property would not be expected to be diminished in appearance 			
	 Transient exposure, where people would only be expected to be present for limited periods. e.g. public footpaths, playing fields, shopping streets, playing fields, farmland, footpaths, short term car park and roads 			

The guidance also provides the following factors to consider when determining the sensitivity of an area to potential dust impacts during the construction phase:

- Any history of dust generating activities in the area;
- The likelihood of concurrent dust generating activity on nearby sites;
- Any pre-existing screening between the source and the receptors;
- Any conclusions drawn from analysing local meteorological data which accurately represent the area; and if relevant the season during which works will take place;
- Any conclusions drawn from local topography;
- Duration of the potential impact, as a receptor may become more sensitive over time; and,
- Any known specific receptor sensitivities which go beyond the classifications given in the document.

These factors were considered in the undertaking of this assessment.

The sensitivity of the area to dust soiling effects on people and property is shown in Table 5.

Receptor	Number of	Distance from the Source (m)				
Sensitivity	Receptors	Less than 20	Less than 50	Less than 100	Less than 350	
High	More than 100	High	High	Medium	Low	
	10 - 100	High	Medium	Low	Low	
	1 - 10	Medium	Low	Low	Low	
Medium	More than 1	Medium	Low	Low	Low	
Low	More than 1	Low	Low	Low	Low	

 Table 5
 Sensitivity of the Area to Dust Soiling Effects on People and Property

Table 6 outlines the sensitivity of the area to human health impacts.

Receptor	Annual Mean PM ₁₀ Concentration	Number of	Distance fr	om the Sou	rce (m)		
Sensitivity		Receptors	Less than 20	Less than 50	Less than 100	Less than 200	Less than 350
High	Greater than 32µg/m ³	More than 100	High	High	High	Medium	Low
		10 - 100	High	High	Medium	Low	Low
		1 - 10	High	Medium	Low	Low	Low
	28 - 32µg/m ³	More than 100	High	Medium	Low	Low	Low
		10 - 100	High	Medium	Low	Low	Low
		1 - 10	High	Medium	Low	Low	Low
	24 - 28µg/m ³	More than 100	High	Medium	Low	Low	Low
		10 - 100	High	Medium	Low	Low	Low
		1 - 10	Medium	Low	Low	Low	Low
	Less than 24µg/m ³	More than 100	Medium	Low	Low	Low	Low
		10 - 100	Low	Low	Low	Low	Low
		1 - 10	Low	Low	Low	Low	Low
Medium	-	More than 10	High	Medium	Low	Low	Low
	-	1 - 10	Medium	Low	Low	Low	Low
Low	-	More than 1	Low	Low	Low	Low	Low

Table 6Sensitivity of the Area to Human Health Impacts

Table 7 outlines the sensitivity of the area to ecological impacts.

Table 7 Sensitivity of the Area to Ecological Impacts

Receptor	Distance from the Source (m)		
Sensitivity	Less than 20	Less than 50	
High	High	Medium	
Medium	Medium	Low	
Low	Low	Low	

Step 2C combines the dust emission magnitude with the sensitivity of the area to determine the risk of unmitigated impacts. Table 8 outlines the risk category from earthworks and construction activities.

Table 8 Dust Risk Category from Earthworks and Constru	ction
--	-------

Sensitivity of Area	Dust Emission Magnitude		
	Large	Medium	Small
High	High	Medium	Low
Medium	Medium	Medium	Low
Low	Low	Low	Negligible

Table 9 outlines the risk category from trackout.

Table 9Dust Risk Category from Trackout

Sensitivity of Area	Dust Emission Magnitude		
	Large	Medium	Small
High	High	Medium	Low
Medium	Medium	Low	Negligible
Low	Low	Low	Negligible

3.1.3 Step 3

Step 3 requires the identification of site specific mitigation measures within the IAQM guidance to reduce potential dust impacts based upon the relevant risk categories identified in Step 2. For sites with **negligible** risk, mitigation measures beyond those required by legislation are not required. However, additional controls may be applied as part of good practice.

3.1.4 Step 4

Once the risk of dust impacts has been determined and the appropriate mitigation measures identified, the final step is to determine the significance of any residual impacts. For almost all construction activity, the aim should be to control effects through the use of effective mitigation. Experience shows that this is normally possible. Hence the residual effect will normally be 'not significant'. This has been described as **negligible** within this report to provide continuity between assessment terminologies.

The determination of significance relies on professional judgement and reasoning should be provided as far as practicable. This has been considered throughout the assessment when defining predicted impacts. The IAQM⁷ guidance suggests the provision of details of the assessor's

⁷ Guidance on the Assessment of Dust from Demolition and Construction, Institute of Air Quality Management, 2014.

qualifications and experience. These are provided in Appendix III.

3.2 Operational Phase Assessment

The development has the potential to impact on existing air quality as a result of road traffic exhaust emissions, such as NO_2 and PM_{10} , associated with vehicles travelling to and from the site, as well as expose future users to elevated pollutant levels. Potential impacts have been defined by predicting pollutant concentrations at sensitive locations using dispersion modelling for the following scenarios:

- Verification;
- Opening year do-minimum (DM) (predicted traffic flows in 2015 should the proposals not proceed); and,
- Opening year do-something (DS) (predicted traffic flows in 2015 should the proposals be completed).

Reference should be made to Appendix II for assessment input data and details of the verification process.

Receptors potentially sensitive to changes in NO_2 and PM_{10} concentrations were identified within 200m of the affected highway network in accordance with the guidance provided within the Design Manual for Roads and Bridges (DMRB)⁸ on the likely limits of pollutant dispersion from road sources. LAQM.TG(09)⁹ provides the following examples of where annual mean AQOs should apply:

- Residential properties;
- Schools;
- Hospitals; and,
- Care homes.

The sensitivity of each receptor was defined in accordance with the criteria shown in Table 10. These are based upon the guidance provided within the Environmental Protection UK (EPUK) Development Control: Planning for Air Quality (2010 update)¹⁰.

Sensitivity	Description
Very high	 Pollutant levels above environmental assessment criteria e.g. NO₂ or PM₁₀ annual mean greater than 40µg/m³
High	 Pollutant levels between 90% and 100% of environmental assessment criteria e.g. NO₂ or PM₁₀ annual mean 36 - 40μg/m³
Medium	 Pollutant levels between 75% and 90% of environmental assessment criteria e.g. NO₂ and PM₁₀ annual mean 30 - 36μg/m³

Table 10 Operational Traffic Exhaust Emissions - Receptor Sensitivity

⁸ Design Manual for Roads and Bridges Volume 11, Section 3, Part 1, HA207/07, Highways Agency, 2007.

⁹ Local Air Quality Management Technical Guidance LAQM.TG(09), DEFRA, 2009.

¹⁰ Development Control: Planning for Air Quality (2010 update), Environmental Protection UK, 2010.

Sensitivity	Description
Low	 Pollutant levels below 75% of environmental assessment criteria e.g. NO₂ or PM₁₀ annual mean below 30μg/m³

The magnitude of change in pollutant concentrations was defined based on the criteria outlined in Table 11.

Table 11	Operational Traffic Exhaust Emissions	- Magnitude of Change
----------	--	-----------------------

Magnitude of Change	Change in Pollutant Level as Proportion of Assessment Criteria (%)		
Large	Greater than 10		
Medium	5 - 10		
Small	1 - 5		
Imperceptible	Less than 1		

Impact significance was defined based on the interaction between the sensitivity of the affected receptor and the magnitude of change, as outlined in Table 12.

Table 12	Operational Traffic Exhaust Emissions - Significance of Impact
----------	---

Sensitivity	Magnitude of Change				
	Imperceptible	Small	Medium	Large	
Very high	Negligible	Slight	Moderate	Substantial	
High	Negligible	Slight	Moderate	Moderate	
Medium	Negligible	Negligible	Slight	Slight	
Low	Negligible	Negligible	Negligible	Slight	

It should be noted that the criteria shown in Table 10 and Table 11 and the matrix shown in Table 12 are adapted from the EPUK Development Control: Planning for Air Quality (2010 update)¹¹ guidance document with sensitivity descriptors included to allow comparisons of various air quality impacts.

Following the prediction of impacts at discrete receptor locations, the EPUK¹² document provides guidance on determining the overall air quality impact significance of the operation of a development. The following factors are identified for consideration by the assessor:

• Number of properties affected by significant air quality impacts and a judgement on the overall balance;

¹¹ Development Control: Planning for Air Quality (2010 update), Environmental Protection UK, 2010.

¹² Development Control: Planning for Air Quality (2010 update), Environmental Protection UK, 2010.

- Where new exposure is introduced into an existing area of poor air quality, then the number of people exposed to levels above the objective or limit value will be relevant;
- The magnitude of changes and the descriptions of the impacts at the receptors;
- Whether or not an exceedence of an objective or limit value is predicted to arise in the study area where none existed before or an exceedence area is substantially increased;
- Whether or not the study area exceeds an objective or limit value and this exceedence is removed or the exceedence area is reduced; and,
- The extent to which an objective or limit value is exceeded e.g. an annual mean NO₂ concentration of 41µg/m³ should attract less significance than an annual mean of 51µg/m³.

These factors were considered and an overall significance determined for the impact of operational phase road traffic emissions. It should be noted that the determination of significance relies on professional judgement and reasoning should be provided as far as practicable. This has been considered throughout the assessment when defining predicted impacts. The EPUK¹³ guidance suggests the provision of details of the assessor's qualifications and experience. These are provided in Appendix III.

¹³ Development Control: Planning for Air Quality (2010 update), Environmental Protection UK, 2010.

4.0 BASELINE

Existing air quality conditions in the vicinity of the proposed development site were identified in order to provide a baseline for assessment. These are detailed in the following Sections.

4.1 Local Air Quality Management

As required by the Environment Act (1995), LCC has undertaken Review and Assessment of air quality within their area of jurisdiction. This process concluded that concentrations of NO_2 are above the AQOs within the city. As such, an AQMA has been declared, which is described as:

"An area encompassing the whole City of Liverpool"

The site is located with the City of Liverpool AQMA. As such, there is the potential for the development to introduce future site users to elevated pollutant concentrations as well as cause adverse impacts to air quality within this sensitive area. This has been considered within this report.

LCC has concluded that concentrations of all other pollutants considered within the AQS are currently below the relevant AQOs and as such no further AQMAs have designated.

4.2 Air Quality Monitoring

Monitoring of pollutant concentrations is undertaken by LCC using continuous and periodic methods throughout their area of jurisdiction. The closest continuous monitor to the proposed development is Old Haymarket at NGR: 334762, 390686. This is approximately 4.7km north-west of the boundary. Due to the distance between the site and the monitoring location similar pollutant concentrations would not be anticipated. As such, this source of data has not been considered further in the context of this assessment.

LCC also utilise passive diffusion tubes to monitor NO_2 concentrations throughout the city. There are three sites in the vicinity of the proposed development and recent monitoring results are shown in Table 13. Exceedences of the AQO are shown in **bold** text.

Table 13	NO ₂ Monitoring Results
----------	------------------------------------

Location	NGR (m)		Annual Mean Concentration (µg/m ³)		
	х	Y	2010	2011	2012
Smithdown Road Lamp outside Costcutter	338170	388629	67	63	67
Smithdown Road info sign outside Sefton Park pharmacy (by Asda)	337881	388939	a -	59	63
Smithdown Road Lamp in central Res. opp. Budget exhaust	338977	388485	_a _	49	52

^a Monitoring not undertaken in 2011

As indicated in Table 13, the annual mean AQO for NO₂ was exceeded at all monitoring locations

within the vicinity of the site in recent years. This is to be expected as the diffusion tubes are located at roadside locations in the LCC AQMA. Reference should be made to Figure 3 for a graphical representation of the diffusion tube locations.

4.3 Background Pollutant Concentrations

Predictions of background pollutant concentrations on a 1km by 1km grid basis have been produced by DEFRA for the entire of the UK to assist LAs in their Review and Assessment of air quality. The proposed development site is located in grid square NGR: 338500, 387500. Data for this location was downloaded from the DEFRA website¹⁴ for the purpose of this assessment and is summarised in Table 14.

Pollutant	Predicted Background Concentration (μg/m ³)				
	2012 2013 2014				
NO _x	26.46	25.92	25.38		
NO ₂	18.68	18.37	18.05		
PM ₁₀	14.37	14.17	13.98		

Table 14 Predicted Background Pollutant Concentrations

As shown in Table 14, background concentrations in the vicinity of the site are predicted to be relatively low. Comparison with monitoring results shows the influence of the highway network on local pollutant concentrations.

4.4 Sensitive Receptors

A sensitive receptor is defined as any location which may be affected by changes in air quality as a result of a development. These have been defined for dust and road vehicle exhaust emission impacts in the following Sections.

4.4.1 Construction Phase Sensitive Receptors

Receptors sensitive to potential dust impacts during earthworks and construction were identified from a desk-top study of the area up to 350m from the development boundary. These are summarised in Table 15.

Table 15 Earthworks and Construction Dust Sensitive Receptors

Distance from Site Boundary (m)	Approximate Number of Residential Receptors	Approximate Number of Ecological Receptors
Less than 20	1 - 10	0
20 - 50	10 - 100	0

¹⁴ http://laqm.defra.gov.uk/maps/maps2011.html.

Distance from Site Boundary (m)	Approximate Number of Residential Receptors	Approximate Number of Ecological Receptors
50 - 100	More than 100	-
100 - 350	More than 100	-

Reference should be made to Figure 4 for a graphical representation of demolition, earthworks and construction dust receptors. The proposed development is located in a predominantly residential area and adjacent to a large park with the majority of receptors located to the east.

Receptors sensitive to potential dust impacts from trackout were identified from a desk-top study of the area up to 100m from the road network within 500m of the site access. These are summarised in Table 16. The exact construction vehicle access routes were not available for the purpose of this assessment as they will depend on sourcing of materials. This is likely to be decided by the contractor. However, it was assumed traffic would access the site from a number of different routes to ensure the maximum potential trackout distance was considered.

Table 16	Trackout	Dust	Sensitive	Receptors

Distance from Site Boundary (m)	Approximate Number of Residential Receptors	Approximate Number of Ecological Receptors
Less than 20	10 - 100	0
20 - 50	More than 100	0
50 - 100	More than 100	-

Reference should be made to Figure 5 for a graphical representation of trackout dust sensitive receptor locations.

There are no ecological receptors within 50m of the site or trackout boundary. As such, ecological impacts have not been assessed further within this report.

A number of additional factors have been considered when determining the sensitivity of the surrounding area. These are summarised in Table 17.

Table 17Additional Area Sensitivity Factors

Guidance	Comment
Whether there is any history of dust generating activities in the area	There is no history of dust generating activities in the area
The likelihood of concurrent dust generating activity on nearby sites	Currently there are no proposed large scale developments in close proximity to the site which could lead to cumulative dust generating effects
Pre-existing screening between the source and the receptors	The proposed development is surrounded by vegetation which will act as screening between the source and existing receptors in all directions

Guidance	Comment
Conclusions drawn from analysing local meteorological data which accurately represent the area: and if relevant the season during which works will take place	The wind direction is predominantly from the south and west of the development, as shown in Figure 6. As such, properties to the north-east of the development would be most affected by dust emissions
Conclusions drawn from local topography	Although the terrain is predominantly flat, the large areas of woodland within the vicinity of the site provide a natural barrier to dust dispersion
Duration of the potential impact, as a receptor may become more sensitive over time	Currently it is unclear as to the duration of the construction phase. However, it is likely that it will extend over one year
Any known specific receptor sensitivities which go beyond the classifications given in the document.	No specific receptor sensitivities identified during the baseline

Based on the criteria shown in Table 4, the sensitivity of the receiving environment to potential dust impacts was considered to be **high**. This was because users would expect to enjoy a reasonable level of amenity, aesthetics or value of their property could be diminished by soiling and people would be expected to be present for extended periods of time e.g. residential properties.

The sensitivity of the receiving environment to specific potential dust impacts, based on the criteria shown in Section 3.1.2, is shown in Table 18.

Table 18Sensitivity of the Surrounding Area

Potential Impact	Sensitivity of the Surrounding Area				
	Earthworks Construction Trackout				
Dust Soiling	Medium	Medium	High		
Human Health	Low Low				

4.4.2 Operational Phase Sensitive Receptors

Receptors sensitive to potential operational phase road vehicle exhaust emission impacts were identified from a desk-top study and are summarised in Table 19.

Table 19 Road Vehicle Exhaust Emission Sensitive Receptors

Receptor		NGR (m)	
		x	Y
R1 Greenback Primary School		338539	388396
R2 Residential - Greenbank Road		338534	388311
R3 Spire Liverpool Hospital		338644	387958

Receptor		NGR (m)	
		x	Y
R4	Student Accommodation - Derby and Rathbone Hall	338611	387809
R5	Liverpool College	338777	387651
R6	Residential - Mossley Hill Drive	338079	387909
R7	Residential - Mossley Hill Drive	338141	387647
R8	Liverpool College	338512	387599
R9	St Anthony of Padua RC Primary School	338987	387690
R10	Residential - Queens Drive Mossley Hill	339172	387954
R11	Residential - Queens Drive Mossley Hill	339452	388159
R12	Fernlea Care Home	338725	387441
R13	Residential Park Avenue	338507	387388
R14	Residential - North Mossley Hill Road	338789	387321
R15	Residential - Mossley Hill Road	338783	386969
R16	Residential - Aigburth Vale	338233	387326
R17	Residential - Victoria Road	338274	387246
R18	Residential - Victoria Road	338219	387137
R19	Residential - Victoria Road	338120	386960
R20	Residential - Victoria Road	338008	386744
R21	Residential - Mossley Hill Drive	338125	387267
R22	Residential - Mossley Hill Drive	337951	386950
R23	Residential - Ullet Road	337899	388457
R24	Residential - Ullet Road	338193	388561
R25	Residential - Brookdale Road	338201	388650
R26	Residential - Russell Road	338813	388474
R27	Residential - Kenyon Road	339122	388449
R28	Residential - Kingsdale Road	339481	388278

The sensitive receptors identified in Table 19 represent worst-case locations. However, this is not an exhaustive list and there may be other locations within the vicinity of the site that may experience air quality impacts as a result of the proposed development that have not been individually identified above. Reference should be made to Figure 7 for a graphical representation of road

vehicle exhaust emission sensitive receptor locations.

Receptor sensitivity was defined based upon the methodology outlined in Table 10 and predicted pollutant concentrations for the development opening year of 2015. These are detailed within Table 20.

Table 20	Road Vehicle Exhaust Emission Receptor Sensitivity

Receptor	NO ₂		PM ₁₀	
	Predicted Annual Mean Concentration (µg/m ³)	Sensitivity	Predicted Annual Mean Concentration (µg/m ³)	Sensitivity
R1	30.90	Medium	13.90	Low
R2	32.70	Medium	14.34	Low
R3	28.14	Low	13.52	Low
R4	30.78	Medium	14.02	Low
R5	33.65	Medium	14.19	Low
R6	27.33	Low	13.38	Low
R7	28.23	Low	13.59	Low
R8	28.16	Low	13.53	Low
R9	28.20	Low	13.42	Low
R10	32.87	Medium	14.08	Low
R11	31.01	Medium	14.00	Low
R12	30.02	Medium	13.85	Low
R13	26.58	Low	13.25	Low
R14	29.27	Low	13.75	Low
R15	28.73	Low	13.58	Low
R16	29.32	Low	13.71	Low
R17	29.42	Low	13.71	Low
R18	29.26	Low	13.71	Low
R19	31.24	Medium	13.77	Low
R20	29.75	Low	13.73	Low
R21	27.92	Low	13.53	Low
R22	27.82	Low	13.51	Low
R23	28.30	Low	13.51	Low

Receptor	NO ₂		PM ₁₀	
	Predicted Annual Mean Concentration (μg/m ³)	Sensitivity	Predicted Annual Mean Concentration (µg/m ³)	Sensitivity
R24	43.52	Very High	15.23	Low
R25	36.78	High	14.37	Low
R26	34.19	Medium	14.00	Low
R27	32.90	Medium	14.10	Low
R28	34.48	Medium	14.21	Low

As indicated in Table 20, receptor sensitivity to changes in annual mean NO₂ concentrations was low at fifteen locations, medium at eleven locations, high at one location and very high at one location. Receptor sensitivity to changes in annual mean PM_{10} concentrations was **low** at all locations.

5.0 ASSESSMENT

There is the potential for air quality impacts as a result of the construction and operation of the proposed development in addition to the exposure of future site users to elevated pollution levels. These are assessed in the following Sections.

5.1 Construction Phase Assessment

5.1.1 Step 1

The undertaking of activities such as excavation, ground works, cutting, construction, concrete batching and storage of materials has the potential to result in fugitive dust emissions throughout the construction phase. Vehicle movements both on-site and on the local road network also have the potential to result in the re-suspension of dust from haul road and highway surfaces.

The potential for impacts at sensitive locations depends significantly on local meteorology during the undertaking of dust generating activities, with the most significant effects likely to occur during dry and windy conditions.

The desk-study undertaken to inform the baseline identified a number of sensitive receptors within 350m of the site boundary. As such, a detailed assessment of potential dust impacts was required.

5.1.2 Step 2

Earthworks

Earthworks will primarily involve excavating material, haulage, tipping and stockpiling, as well as site levelling and landscaping. Information on soil type was not available for the purpose of this assessment. As such, the soil type was considered to be potentially dusty in order to provide a worst-case scenario.

The proposed development site is estimated to cover an area greater than 10,000m². In accordance with the criteria outlined in Table 3, the magnitude of potential dust emissions from earthworks is therefore **large**.

Table 18 indicates the sensitivity of the area to dust soiling effects on people and property is **medium**. In accordance with the criteria outlined in Table 8, the development is considered to be a **medium** risk site for dust soiling as a result of earthworks activities.

Table 18 indicates the sensitivity of the area to human health is **low**. In accordance with the criteria outlined in Table 8, the development is considered to be a **low** risk site for human health as a result of earthwork activities.

Construction

Due to the size of the development site the total building volume is likely to be greater than 100,000m³. In accordance with the criteria outlined in Table 3, the magnitude of potential dust emissions from construction is therefore **large**.

Table 18 indicates the sensitivity of the area to dust soiling effects on people and property is **medium**. In accordance with the criteria outlined in Table 8, the development is considered to be a **medium** risk site for dust soiling as a result of construction activities.

Table 18 indicates the sensitivity of the area to human health is **low**. In accordance with the criteria outlined in Table 8, the development is considered to be a **low** risk site for human health as a result of construction activities.

Trackout

Information on the number of HDV trips to be generated during the construction phase of the development was not available at the time of assessment. Similarly, the surface material and unpaved road length was not known at this stage of the project.

Based on the site area, it is anticipated that the unpaved road length is likely to be between 50m and 100m. In accordance with the criteria outlined in Table 3, the magnitude of potential dust emissions from trackout is therefore **medium**.

Table 18 indicates the sensitivity of the area to dust soiling effects to people and property is **high**. In accordance with the criteria outlined in Table 9, the development is considered to be a **medium** risk site for dust soiling as a result of trackout activities.

Table 18 indicates the sensitivity of the area to human health is **low**. In accordance within the criteria outlined in Table 9, the development is considered to be a **low** risk site for human health as a result of trackout activities.

Summary of the Risk of Dust Effects

A summary of the risk from each dust generating activity is provided in Table 21.

Table 21	Summary of Potential Unmitigated Dust Risks
----------	---

Potential Impact	Risk				
	Earthworks	Construction	Trackout		
Dust Soiling	Medium	Medium	Medium		
Human Health	Low	Low	Low		

As indicated in Table 21, the potential risk of dust soiling is **medium** from earthworks, construction activities and trackout activities. The potential risk of human health impacts is **low** from earthworks, construction and trackout activities.

It should be noted that the potential for impacts depends significantly on the distance between the dust generating activity and receptor location. Risk was predicted based on a worst-case scenario of works being undertaken at the site boundary closest to each sensitive area. Therefore, actual risk is likely to be lower than that predicted during the majority of the construction phase.

5.1.3 Step 3

The IAQM guidance provides a number of potential mitigation measures to reduce impacts during the construction phase. These measures have been adapted for the development site as summarised in Table 22. These may be reviewed prior to the commencement of construction works and incorporated into a Construction Environmental Management Plan if required by the Local Planning Authority.

Issue	Control Measure
Communications	 Develop and implement a Stakeholder Communications Plan that includes community engagement
	 Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary
	 Display the head or regional office contact information
	 Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the LA
Site Management	Record all dust and air quality complaints
	 Record any exceptional incidents that cause dust/or air emissions, and the action taken to resolve the situation
Monitoring	 Undertake daily on-site and off-site inspection to monitor dust. This should include regular dust soiling checks of surfaces within 100m of site boundary. Cleaning to be provided if necessary
	Carry out regular site inspections to monitor compliance with the DMP
	 Increase frequency of site inspections when activities with a high potential to produce dust are being carried out
Preparing and Maintaining the	 Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible
Site	 Fully enclose site or specific operations where there is a high potential for dust production and the site as actives for an extensive period
	Avoid site runoff of water or mud
	Use water as dust suppressant where applicable
	 Remove materials that have a potential to produce dust from site as soon as possible
	Cover, seed or fence stockpiles to prevent wind whipping
Operating	All vehicles to switch off engines - no idling vehicles
Vehicle/	Avoid the use of diesel or petrol powered generators where practicable
Sustainable Travel	 Impose a maximum-speed-limit of 15mph on surfaced and 10mph on un-surfaced haul roads and work areas
	Produce a Construction Logistics Plan to manage sustainable deliveries
	 Implement a Travel Plan that supports and encourages sustainable travel

Table 22	Fugitive	Dust	Mitigation	Measures

Issue	Control Measure
Operations	 Cutting equipment to use water as dust suppressant or suitable local extract ventilation Use enclosed chutes and covered skips Minimise drop heights Ensure equipment is readily available on site to clean any spillages
Waste Management	No bonfires
Earthworks and Construction	 Re-vegetate earthworks and exposed areas Use Hessian, mulches or trackifiers where it is not possible to re-vegetate Only remove the cover in small areas during work and not all at once Avoid scabbling Ensure sand and other aggregates are stored and not able to dry out Ensure bulk cement and other fine power materials are delivered and stored to prevent escape
Trackout	 Use water-assisted dust sweeper on the access and local roads Avoid dry sweeping of large areas Ensure vehicles entering and leaving sites are covered to prevent escape of materials Inspect on-site routes for integrity, instigate necessary repairs and record in site log book Install hard surfaced haul routes which are regularly damped down Implement a wheel washing system at a suitable location near site exit Access gates 10m from receptors where possible

5.1.4 Step 4

Assuming the relevant mitigation measures outlined in Table 22 are implemented, the residual effect from all dust generating activities is predicted to be **negligible**, in accordance with the IAQM guidance.

5.2 Operational Phase Assessment

Additional vehicle movements associated with the operation of the proposed development will generate exhaust emissions, such as NO₂ and PM₁₀, on the local and regional road networks. An assessment was therefore undertaken using dispersion modelling in order to quantify potential changes in pollutant concentrations at sensitive locations in the vicinity of the site.

The assessment considered the following scenarios:

- 2012 Verification;
- 2015 DM; and,
- 2015 DS.

The DM (i.e. without development) scenario is representative of anticipated traffic data for 2015. The DS (i.e. with development) scenario is representative of anticipated traffic data for 2015 with the addition of predicted variations in traffic flow patterns as a result of the proposals.

For the purpose of this assessment traffic data was supplied for 2015, the development opening year. Air quality is predicted to improve in the future. However, in order to provide a robust assessment, emission factors for 2012 were utilised within the dispersion model. The use of 2015 traffic data and 2012 emission factors is considered to provide a worst-case scenario and therefore a sufficient level of confidence can be placed within the predicted pollution concentrations.

Reference should be made to Appendix II for full assessment input details.

5.2.1 Nitrogen Dioxide

Predicted Concentrations at the Development Site

Annual mean NO₂ concentrations were predicted for each scenario. Reference should be made to Figure 8, Figure 9 and Figure 10 for graphical representations of predicted levels throughout the assessment extents. This indicates exceedences of the AQO of $40\mu g/m^3$ across a very small part of the north-west of the site, adjacent to the roundabout. Vegetation is proposed for this area. As such, it is not considered a location of relevant exposure for annual mean concentrations in accordance with DEFRA guidance LAQM.TG(09)¹⁵. It should be noted that the predicted level at the façade of the closest residential receptor was $31.7\mu g/m^3$, which is below the relevant AQO.

Based on the results of the dispersion modelling assessment, the site is considered to be suitable for the proposed end use without the implementation of mitigation techniques to protect future residents to elevated NO₂ concentrations.

Predicted Concentrations at Sensitive Receptors

Annual mean NO₂ concentrations were predicted for each scenario and are summarised in Table 23.

Sensitive Receptor		Predicted Annual Mean NO ₂ Concentration (μ g/m ³)			
		DM	DS	Change	
R1	Greenback Primary School	30.87	30.90	0.03	
R2	Residential - Greenbank Road	32.65	32.70	0.05	
R3	Spire Liverpool Hospital	28.12	28.14	0.02	
R4	Student Accommodation - Derby and Rathbone Hall	30.75	30.78	0.03	
R5	Liverpool College	33.60	33.65	0.05	

Table 23 Predicted Annual Mean NO2 Concentrations

¹⁵ Local Air Quality Management Technical Guidance LAQM.TG(09), DEFRA, 2009.

Sensitive Receptor		Predicted Annual Mean NO ₂ Concentration (μ g/m ³)		
		DM	DS	Change
R6	Residential - Mossley Hill Drive	27.32	27.33	0.01
R7	Residential - Mossley Hill Drive	28.21	28.23	0.02
R8	Liverpool College	28.14	28.16	0.02
R9	St Anthony of Padua RC Primary School	28.18	28.20	0.02
R10	Residential - Queens Drive Mossley Hill	32.82	32.87	0.05
R11	Residential - Queens Drive Mossley Hill	30.98	31.01	0.03
R12	Fernlea Care Home	29.99	30.02	0.03
R13	Residential Park Avenue	26.57	26.58	0.01
R14	Residential - North Mossley Hill Road	29.24	29.27	0.03
R15	Residential - Mossley Hill Road	28.71	28.73	0.02
R16	Residential - Aigburth Vale	29.28	29.32	0.04
R17	Residential - Victoria Road	29.38	29.42	0.04
R18	Residential - Victoria Road	29.22	29.26	0.04
R19	Residential - Victoria Road	31.19	31.24	0.05
R20	Residential - Victoria Road	29.72	29.75	0.03
R21	Residential - Mossley Hill Drive	27.90	27.92	0.02
R22	Residential - Mossley Hill Drive	27.80	27.82	0.02
R23	Residential - Ullet Road	28.29	28.30	0.01
R24	Residential - Ullet Road	43.47	43.52	0.05
R25	Residential - Brookdale Road	36.75	36.78	0.03
R26	Residential - Russell Road	34.15	34.19	0.04
R27	Residential - Kenyon Road	32.86	32.90	0.04
R28	Residential - Kingsdale Road	34.44	34.48	0.04

As indicated in Table 23, predicted annual mean NO_2 concentrations were below the relevant AQO at all sensitive receptors, with the exception of R24, for both scenarios considered. It should be noted that there are no new predicted exceedences of the annual mean AQO for NO_2 at receptor locations as a result of the proposed development.

Predicted impacts on annual mean NO_2 concentrations at the sensitive receptor locations are summarised in Table 24.

Table 24 Predicted NO₂ Impacts

Sensi	tive Receptor	Magnitude of Change	Receptor Sensitivity	Significance of Impact
R1	Greenback Primary School	Imperceptible	Medium	Negligible
R2	Residential - Greenbank Road	Imperceptible	Medium	Negligible
R3	Spire Liverpool Hospital	Imperceptible	Low	Negligible
R4	Student Accommodation - Derby and Rathbone Hall	Imperceptible	Medium	Negligible
R5	Liverpool College	Imperceptible	Medium	Negligible
R6	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R7	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R8	Liverpool College	Imperceptible	Low	Negligible
R9	St Anthony of Padua RC Primary School	Imperceptible	Low	Negligible
R10	Residential - Queens Drive Mossley Hill	Imperceptible	Medium	Negligible
R11	Residential - Queens Drive Mossley Hill	Imperceptible	Medium	Negligible
R12	Fernlea Care Home	Imperceptible	Medium	Negligible
R13	Residential Park Avenue	Imperceptible	Low	Negligible
R14	Residential - North Mossley Hill Road	Imperceptible	Low	Negligible
R15	Residential - Mossley Hill Road	Imperceptible	Low	Negligible
R16	Residential - Aigburth Vale	Imperceptible	Low	Negligible
R17	Residential - Victoria Road	Imperceptible	Low	Negligible
R18	Residential - Victoria Road	Imperceptible	Low	Negligible
R19	Residential - Victoria Road	Imperceptible	Medium	Negligible
R20	Residential - Victoria Road	Imperceptible	Low	Negligible
R21	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R22	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R23	Residential - Ullet Road	Imperceptible	Low	Negligible
R24	Residential - Ullet Road	Imperceptible	Very High	Negligible
R25	Residential - Brookdale Road	Imperceptible	High	Negligible
R26	Residential - Russell Road	Imperceptible	Medium	Negligible
R27	Residential - Kenyon Road	Imperceptible	Medium	Negligible

Sensitive Receptor		Magnitude of	Receptor	Significance of
		Change	Sensitivity	Impact
R28	Residential - Kingsdale Road	Imperceptible	Medium	Negligible

As indicated in Table 24, the significance of impacts on annual mean NO₂ concentrations as a result of the development was predicted to be **negligible** at all locations.

5.2.2 Particulate Matter

Predicted Concentrations at the Development Site

Annual mean PM_{10} concentrations were predicted for each scenario. Reference should be made to Figure 11, Figure 12 and Figure 13 for graphical representations of predicted levels throughout the assessment extents with and without the development. Concentrations were predicted to be below the AQO at all locations across the development with concentrations ranging from $13.3\mu g/m^3$ to $15.35\mu g/m^3$ in the DS scenario.

Based on the results of the dispersion modelling assessment, the site is considered to be suitable for residential use without the implementation of mitigation techniques to protect future residents from elevated PM_{10} concentrations.

Predicted Concentrations at Sensitive Receptors

Annual mean PM_{10} concentrations were predicted for each scenario and are summarised in Table 25.

Sensitive Receptor		Predicted Annual Mean PM_{10} Concentration (µg/m ³)			
		DM	DS	Change	
R1	Greenback Primary School	13.89	13.90	0.01	
R2	Residential - Greenbank Road	14.33	14.34	0.01	
R3	Spire Liverpool Hospital	13.52	13.52	0.00	
R4	Student Accommodation - Derby and Rathbone Hall	14.01	14.02	0.01	
R5	Liverpool College	14.18	14.19	0.01	
R6	Residential - Mossley Hill Drive	13.38	13.38	0.00	
R7	Residential - Mossley Hill Drive	13.59	13.59	0.00	
R8	Liverpool College	13.53	13.53	0.00	
R9	St Anthony of Padua RC Primary School	13.42	13.42	0.00	
R10	Residential - Queens Drive Mossley Hill	14.07	14.08	0.01	

Table 25 Predicted Annual Mean PM₁₀ Concentrations

Sensitive Receptor		Predicted Annual Mean PM_{10} Concentration (µg/m ³)			
		DM	DS	Change	
R11	Residential - Queens Drive Mossley Hill	13.99	14.00	0.01	
R12	Fernlea Care Home	13.84	13.85	0.01	
R13	Residential Park Avenue	13.25	13.25	0.00	
R14	Residential - North Mossley Hill Road	13.75	13.75	0.01	
R15	Residential - Mossley Hill Road	13.57	13.58	0.00	
R16	Residential - Aigburth Vale	13.71	13.71	0.01	
R17	Residential - Victoria Road	13.71	13.71	0.01	
R18	Residential - Victoria Road	13.70	13.71	0.01	
R19	Residential - Victoria Road	13.76	13.77	0.01	
R20	Residential - Victoria Road	13.73	13.73	0.00	
R21	Residential - Mossley Hill Drive	13.53	13.53	0.00	
R22	Residential - Mossley Hill Drive	13.50	13.51	0.00	
R23	Residential - Ullet Road	13.51	13.51	0.00	
R24	Residential - Ullet Road	15.23	15.23	0.01	
R25	Residential - Brookdale Road	14.36	14.37	0.00	
R26	Residential - Russell Road	13.99	14.00	0.00	
R27	Residential - Kenyon Road	14.10	14.10	0.01	
R28	Residential - Kingsdale Road	14.21	14.21	0.01	

As indicated in Table 25, annual mean PM_{10} concentrations were below the relevant AQO at all sensitive receptor locations for both scenarios considered.

Predicted impacts on annual mean PM_{10} concentrations are summarised in Table 26.

Table 26 Predicted PM₁₀ Impacts

Sensitive Receptor		Magnitude of Change	Receptor Sensitivity	Significance of Impact
R1	Greenback Primary School	Imperceptible	Low	Negligible
R2	Residential - Greenbank Road	Imperceptible	Low	Negligible
R3	Spire Liverpool Hospital	Imperceptible	Low	Negligible

Sensit	tive Receptor	Magnitude of Change	Receptor Sensitivity	Significance of Impact
R4	Student Accommodation - Derby and Rathbone Hall	Imperceptible	Low	Negligible
R5	Liverpool College	Imperceptible	Low	Negligible
R6	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R7	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R8	Liverpool College	Imperceptible	Low	Negligible
R9	St Anthony of Padua RC Primary School	Imperceptible	Low	Negligible
R10	Residential - Queens Drive Mossley Hill	Imperceptible	Low	Negligible
R11	Residential - Queens Drive Mossley Hill	Imperceptible	Low	Negligible
R12	Fernlea Care Home	Imperceptible	Low	Negligible
R13	Residential Park Avenue	Imperceptible	Low	Negligible
R14	Residential - North Mossley Hill Road	Imperceptible	Low	Negligible
R15	Residential - Mossley Hill Road	Imperceptible	Low	Negligible
R16	Residential - Aigburth Vale	Imperceptible	Low	Negligible
R17	Residential - Victoria Road	Imperceptible	Low	Negligible
R18	Residential - Victoria Road	Imperceptible	Low	Negligible
R19	Residential - Victoria Road	Imperceptible	Low	Negligible
R20	Residential - Victoria Road	Imperceptible	Low	Negligible
R21	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R22	Residential - Mossley Hill Drive	Imperceptible	Low	Negligible
R23	Residential - Ullet Road	Imperceptible	Low	Negligible
R24	Residential - Ullet Road	Imperceptible	Low	Negligible
R25	Residential - Brookdale Road	Imperceptible	Low	Negligible
R26	Residential - Russell Road	Imperceptible	Low	Negligible
R27	Residential - Kenyon Road	Imperceptible	Low	Negligible
R28	Residential - Kingsdale Road	Imperceptible	Low	Negligible

As indicated in Table 26, predicted impacts on annual mean PM_{10} concentrations as a result of road vehicle exhaust emissions associated with the development were predicted to be **negligible** at all receptor locations.

5.2.3 **Impact Significance**

The overall significance of operational phase road traffic emission impacts was determined as negligible. This was based on the predicted impacts at discrete receptor locations and the considerations outlined in Section 3. Further justification is provided in Table 27.

Table 27 Overall Road Traine Exhaust Enhission impact Significance	Table 27	Overall Road	Fraffic Exhaust E	Emission Impa	t Significance
--	----------	--------------	-------------------	---------------	----------------

Guidance	Comment
Number of properties affected by slight, moderate or substantial air quality impacts and a judgement on the overall balance	Air quality impacts on both NO_2 and PM_{10} concentrations were predicted to be negligible at all sensitive receptors. These represent worst-case locations and therefore it is unlikely that any other receptors would be significantly affected by the proposed development
Where new exposure is introduced into an existing area of poor air quality, then the number of people exposed to levels above the objective or limit value will be relevant	Pollutant concentrations across the site were assessed and results indicate that future users will not be exposed to elevated NO ₂ or PM ₁₀ levels
The magnitude of changes and the descriptions of the impacts at the receptors	Imperceptible changes in NO ₂ and PM ₁₀ were predicted at all sensitive receptors. As such, impacts were negligible
Whether or not an exceedence of an objective or limit value is predicted to arise in the study area where none existed before or an exceedence area is substantially increased	There were exceedences of the annual mean AQLV for NO ₂ within non-sensitive areas of the local highway network for scenarios considered. The area of exceedence is not predicted to substantially increase as a result of the development
Whether or not the study area exceeds an objective or limit value and this exceedence is removed or the exceedence area is reduced	The area of exceedence will not be removed or reduced as a result of the development
The extent to which an objective or limit value is exceeded e.g. an annual mean NO_2 concentration of $41\mu g/m^3$ should attract less significance than an annual mean of $51\mu g/m^3$	There were no predicted AQO exceedences at any sensitive locations in either scenario for PM_{10} . One sensitive receptor, R24, was above the annual mean AQO for NO ₂ in both the DM and DS scenarios. It should be noted that the resultant impact was negligible at all locations

6.0 CONCLUSION

REC Ltd was commissioned by Redrow Homes Limited to undertake an Air Quality Assessment in support of a planning application for a residential development on land at Park Avenue, Liverpool.

The proposals comprise 34 residential units and associated infrastructure.

The site is located in an area identified by LCC as experiencing elevated pollutant concentrations and subsequently there are concerns that the proposals will introduce future users into an area of poor air quality. Additionally, the development has the potential to cause air quality impacts at sensitive locations. These may include fugitive dust emissions from construction works and road vehicle exhaust emissions associated with traffic generated by the site during the operational phase. As such, an Air Quality Assessment was required to quantify pollution levels across the site, consider its suitability for the proposed use and assess potential impacts as a result of the development.

During the construction phase of the development there is the potential for air quality impacts as a result of fugitive dust emissions from the site. These were assessed in accordance with the IAQM methodology. Assuming good practice dust control measures are implemented, the residual significance of potential air quality impacts from dust generated by earthworks, construction and trackout activities was predicted to be **negligible**.

Dispersion modelling was undertaken in order to quantify existing pollutant concentrations at the site and to predict air quality impacts as a result of road vehicle exhaust emissions associated with traffic generated by the development. Results were subsequently verified using monitoring results obtained from LCC.

The dispersion modelling results indicated that pollution levels at the development were below the relevant AQOs. The location is therefore considered suitable for residential use without the inclusion of mitigation methods. Predicted impacts on NO_2 and PM_{10} concentrations as a result of operational phase exhaust emissions were predicted to be **negligible** at all sensitive receptor locations within the vicinity of the site. The overall significance of potential impacts was determined to be **negligible**, in accordance with the EPUK guidance.

Based on the assessment results, air quality is not considered a constraint to planning consent for the proposed development.

Air Quality Assessment Park Avenue, Liverpool 9th December 2014 34127

7.0 ABBREVIATIONS

AADT	Annual Average Daily Traffic
AQAP	Air Quality Action Plan
AQLV	Air Quality Limit Value
AQMA	Air Quality Management Area
AQO	Air Quality Objectives
AQS	Air Quality Strategy
CERC	Cambridge Environmental Research Consultants
DEFRA	Department for Environment, Food and Rural Affairs
DMP	Dust Management Plan
DMRB	Design Manual for Roads and Bridges
EPUK	Environmental Protection UK
EU	European Union
HDV	Heavy Duty Vehicle
IAQM	Institute of Air Quality Management
LA	Local Authority
LAQM	Local Air Quality Management
LCC	Liverpool City Council
NGR	National Grid Reference
NO ₂	Nitrogen dioxide
NO _x	Oxides of nitrogen
NPPF	National Planning Policy Framework
NPPG	National Planning Practice Guidance
PM _{2.5}	Particulate matter with an aerodynamic diameter of less than $2.5\mu m$
PM ₁₀	Particulate matter with an aerodynamic diameter of less than $10\mu m$
REC	Resource and Environmental Consultants
Z ₀	Roughness Length

Air Quality Assessment Park Avenue, Liverpool 9th December 2014 34127

a CONCEPT LIFE SCIENCES company

ĥ

Air Quality Assessment Park Avenue, Liverpool 9th December 2014 34127

ASSESSMENT INPUTS

Vehicle trips associated with the development have the potential to result in air quality impacts as a result of increased traffic exhaust emissions. Additionally, the site is located within an AQMA and the development may result in exposure of future users to elevated pollution levels. Dispersion modelling using ADMS-Roads was therefore undertaken to predict NO₂ and PM₁₀ concentrations at sensitive locations both with and without the development in order to consider potential changes as a result of the proposals.

The dispersion model requires input data that details the following parameters:

- Assessment area;
- Traffic flow data;
- Vehicle emission factors;
- Spatial co-ordinates of emissions;
- Street width;
- Meteorological data;
- Roughness length; and,
- Monin-Obukhov length.

Assessment inputs are described in the following subsections.

Dispersion Model

Dispersion modelling was undertaken using the ADMS Roads dispersion model (version 3.2). ADMS Roads is developed by Cambridge Environmental Research Consultants (CERC) and is routinely used throughout the world for the prediction of pollutant dispersion from road sources. Modelling predictions from this software package are accepted within the UK by the Environment Agency and DEFRA.

Assessment Area

Ambient concentrations were predicted over the area NGR: 337700, 339500 to 386650, 388750. One Cartesian grid at a height of 1.5m was used within the model to produce data suitable for contour plotting using the Surfer software package.

Reference should be made to Figure 14 for a graphical representation of the assessment grid extents.

Traffic Flow Data

Traffic data for use in the assessment, including 24-hour Annual Average Daily Traffic (AADT) flows and fleet composition as HDV proportion, was provided by SCP Transportation Planning, the Transport Consultants for the project. Additional traffic data for the surrounding road network was downloaded from the Department for Transport (DfT) Matrix¹⁶ for links not provided by the

¹⁶ www.dft.gov.uk/matrix.

transport consultants. This web tool enables the user to view and download traffic flows on every link of the 'A' road and motorway network in Great Britain for the years 1999 to 2012. It should be noted that the DfT matrix is referenced in DEFRA guidance LAQM.TG(09)¹⁷ as being a suitable source of data for air quality assessments and is therefore considered to provide a reasonable representation of traffic flows in the vicinity of the site.

Road widths were estimated from aerial photography and UK highway design standards. Reference should be made to Figure 14 for a graphical representation of the road link locations. A summary of the traffic data used in the verification scenarios is provided in Table AII.1.

Road L	ink	Road Width (m)	24-hour AADT Flow	HDV Prop. (%)	Mean Vehicle Speed (km/h)
L1	Smithdown Road	12.4	17,593	5.8	45
L2	Smithdown Road/ Thornycroft Road junction	16.4	17,593	5.8	10
L3	Smithdown Road	13.0	17,593	5.8	25
L4	Smithdown Road/ Gainsborough Road junction	11.6	17,593	5.8	15
L5	Smithdown Road	11.6	17,593	5.8	45
L6	Smithdown Road/ Ullet Road junction approach	18.0	17,593	5.8	10
L7	Smithdown Road/ Ullet Road junction	9.8	17,593	5.8	15
L8	Smithdown Road/ Ullet Road junction depart	12.3	19,179	7.4	40
L9	Smithdown Road/ Greenback Road junction	16.9	19,179	7.4	15
L10	Smithdown Road	9.5	19,179	7.4	40
L11	Smithdown Road Bypass split/ Grant Avenue junction	6.8	9,590	7.4	45
L12	Smithdown Road Bypass split/ Grant Avenue junction	7.0	9,590	7.4	45
L13	Smithdown Road Bypass split	9.0	9,590	7.4	15
L14	Smithdown Road Bypass split	9.0	9,590	7.4	15
L15	Smithdown Road Bypass split depart	5.9	9,590	7.4	40
L16	Smithdown Road Bypass split depart	6.1	9,590	7.4	40
L17	Smithdown Road	12.9	19,179	7.4	45
L18	Smithdown Road Bypass split/ Church Road junction	6.3	9,590	7.4	20

Table All.12012 Traffic Data

¹⁷ Local Air Quality Management Guidance LAQM.TG(09), DEFRA, 2009.

Road Li	ink	Road Width (m)	24-hour AADT Flow	HDV Prop. (%)	Mean Vehicle Speed (km/h)
L19	Smithdown Road Bypass split/ Church Road junction	9.3	9,590	7.4	20
L20	Smithdown Road Bypass split depart	6.4	9,590	7.4	45
L21	Smithdown Road Bypass split depart	6.8	9,590	7.4	45
L22	Smithdown Road Bypass split depart/ Queens Drive	7.3	9,590	7.4	20
L23	Smithdown Road Bypass split depart/ Queens Drive	8.7	9,590	7.4	20
L24	Allerton Road	7.3	9,590	7.4	45
L25	Allerton Road	8.7	9,590	7.4	45
L26	Ullet Road	7.8	14,462	4.7	45
L27	Ullet Road/ Smithdown Road junction	9.1	14,462	4.7	15
L28	Greenbank Road/ Smithdown junction	13.2	12,697	2.4	15
L29	Greenbank Road	12.5	12,697	2.4	45
L30	Greenbank Road/ Queens Drive Mossley Hill junction	10.3	12,697	2.4	15
L31	North Mossley Hill Road / Queens Drive Mossley Hill junction	10.3	12,697	2.4	15
L32	North Mossley Hill Road/ Park Avenue junction	7.4	12,697	2.4	45
L33	North Mossley Hill Road	6.9	12,697	2.4	45
L34	Rose Lane	9.9	12,697	2.4	20
L35	Mossley Hill Road	5.8	12,697	2.4	45
L36	Mossley Hill Drive	9.7	7,975	1.0	45
L37	Mossley Hill Drive/ Greenbank junction	9.1	7,975	1.0	20
L38	Mossley Hill Drive	9.3	7,975	1.0	45
L39	Mossley Hill Drive roundabout	9.8	143	0.0	15
L40	Mossley Hill Drive roundabout	9.8	7,975	1.0	15
L41	Mossley Hill Drive	8.8	7,975	1.0	45
L42	Aigburth Road split	6.9	9,929	4.6	45
L43	Aigburth Road split	7.9	9,929	4.6	45
L44	Aigburth Road split/ Ashfield Road junction	7.3	9,929	4.6	20
L45	Aigburth Road split/ Ashfield Road junction	10.9	9,929	4.6	20

Road Li	ink	Road Width (m)	24-hour AADT Flow	HDV Prop. (%)	Mean Vehicle Speed (km/h)
L46	Queens Drive Mossley Hill/ Smithdown junction split	6.9	6,349	2.4	15
L47	Queens Drive Mossley Hill/ Smithdown junction split	6.7	6,349	2.4	15
L48	Queens Drive Mossley Hill	7.1	12,697	2.4	45
L49	Queens Drive Mossley Hill/ Elm Hall Drive junction	6.9	12,697	2.4	25
L50	Queens Drive Mossley Hill	6.4	12,697	2.4	45
L51	Queens Drive Mossley Hill/ Dovedale Road junction approach	6.7	12,697	2.4	20
L52	Queens Drive Mossley Hill	8.5	12,697	2.4	15
L53	Queens Drive Mossley Hill/ North Mossley Hill Road	9.4	12,697	2.4	15
L54	Queens Drive Mossley Hill/ North Mossley Hill Road junction	10.5	8,618	2.4	15
L55	Queens Drive Mossley Hill	8.0	8,618	2.4	45
L56	Queens Drive Mossley Hill	7.9	8,618	2.4	45
L57	Queens Drive Mossley Hill roundabout approach	7.9	8,618	2.4	15
L58	Park Avenue roundabout approach	8.5	1,284	1.1	15
L59	Park Avenue	6.1	1,284	1.1	45
L60	Park Avenue/ Aigburth Vale junction	6.3	1,284	1.1	15
L61	Park Avenue/ Aigburth Vale junction	6.3	1,553	2.3	15
L62	Park Avenue	6.0	1,553	2.3	40
L63	Park Avenue/ North Mossley Hill Road	5.8	1,553	2.3	15
L64	Aigburth Vale/ Queens Drive Mossley Hill junction	8.6	4,574	4.1	15
L65	Aigburth Vale	7.2	4,574	4.1	45
L66	Aigburth Vale	7.2	5,244	4.3	45
L67	Aigburth Vale/ Carnatic Road	6.6	5,244	4.3	40
L68	Victoria Road	6.5	5,244	4.3	45
L69	Victoria Road/ Elmswood Road	7.4	5,244	4.3	15
L70	Ashfield Road	7.4	5,244	4.3	45
L71	Ashfield Road/ Aigburth junction	7.5	5,244	4.3	15

Road Li	ink	Road Width (m)	24-hour AADT Flow	HDV Prop. (%)	Mean Vehicle Speed (km/h)
R1	Roundabout	11.0	9,902	1.2	15

The road width and mean vehicle speed shown in Table All.1 remained the same for the DM and DS scenarios. A summary of the 2015 traffic data is shown in Table All.2.

|--|

Road Link		DM		DS	
		24-hour AADT Flow	HDV Prop. (%)	24-hour AADT Flow	HDV Prop. (%)
L1	Smithdown Road	18,001	5.8	18,047	5.8
L2	Smithdown Road/ Thornycroft Road junction	18,001	5.8	18,047	5.8
L3	Smithdown Road	18,001	5.8	18,047	5.8
L4	Smithdown Road/ Gainsborough Road junction	18,001	5.8	18,047	5.8
L5	Smithdown Road	18,001	5.8	18,047	5.8
L6	Smithdown Road/ Ullet Road junction approach	18,001	5.8	18,047	5.8
L7	Smithdown Road/ Ullet Road junction	18,001	5.8	18,047	5.8
L8	Smithdown Road/ Ullet Road junction depart	19,642	7.4	19,734	7.4
L9	Smithdown Road/ Greenback Road junction	19,642	7.4	19,734	7.4
L10	Smithdown Road	19,642	7.4	19,734	7.4
L11	Smithdown Road Bypass split/ Grant Avenue junction	9,821	7.4	9,867	7.4
L12	Smithdown Road Bypass split/ Grant Avenue junction	9,821	7.4	9,867	7.4
L13	Smithdown Road Bypass split	9,821	7.4	9,867	7.4
L14	Smithdown Road Bypass split	9,821	7.4	9,867	7.4
L15	Smithdown Road Bypass split depart	9,821	7.4	9,867	7.4
L16	Smithdown Road Bypass split depart	9,821	7.4	9,867	7.4
L17	Smithdown Road	19,642	7.4	19,734	7.4
L18	Smithdown Road Bypass split/ Church Road junction	9,821	7.4	9,867	7.4
L19	Smithdown Road Bypass split/ Church Road junction	9,821	7.4	9,867	7.4
L20	Smithdown Road Bypass split depart	9,821	7.4	9,867	7.4

a CONCEPT LIFE SCIENCES company

Road Link		DM		DS	
		24-hour AADT Flow	HDV Prop. (%)	24-hour AADT Flow	HDV Prop. (%)
L21	Smithdown Road Bypass split depart	9,821	7.4	9,867	7.4
L22	Smithdown Road Bypass split depart/ Queens Drive	9,821	7.4	9,867	7.4
L23	Smithdown Road Bypass split depart/ Queens Drive	9,821	7.4	9,867	7.4
L24	Allerton Road	9,821	7.4	9,867	7.4
L25	Allerton Road	9,821	7.4	9,867	7.4
L26	Ullet Road	14,797	4.7	14,843	4.7
L27	Ullet Road/ Smithdown Road junction	14,797	4.7	14,843	4.7
L28	Greenbank Road/ Smithdown junction	13,422	2.4	13,514	2.4
L29	Greenbank Road	13,422	2.4	13,514	2.4
L30	Greenbank Road/ Queens Drive Mossley Hill junction	13,422	2.4	13,514	2.4
L31	North Mossley Hill Road / Queens Drive Mossley Hill junction	13,422	2.4	13,514	2.4
L32	North Mossley Hill Road/ Park Avenue junction	13,422	2.4	13,514	2.4
L33	North Mossley Hill Road	13,422	2.4	13,514	2.4
L34	Rose Lane	13,422	2.4	13,514	2.4
L35	Mossley Hill Road	13,422	2.4	13,514	2.4
L36	Mossley Hill Drive	8,415	1.0	8,476	1.0
L37	Mossley Hill Drive/ Greenbank junction	8,415	1.0	8,476	1.0
L38	Mossley Hill Drive	8,415	1.0	8,476	1.0
L39	Mossley Hill Drive roundabout	151	0.0	151	0.0
L40	Mossley Hill Drive roundabout	8,415	1.0	8,476	1.0
L41	Mossley Hill Drive	8,415	1.0	8,476	1.0
L42	Aigburth Road split	10,159	4.6	10,180	4.6
L43	Aigburth Road split	10,159	4.6	10,180	4.6
L44	Aigburth Road split/ Ashfield Road junction	10,159	4.6	10,180	4.6
L45	Aigburth Road split/ Ashfield Road junction	10,159	4.6	10,180	4.6
L46	Queens Drive Mossley Hill/ Smithdown junction split	6,711	2.4	6,757	2.4

Road Link		DM		DS	
		24-hour AADT Flow	HDV Prop. (%)	24-hour AADT Flow	HDV Prop. (%)
L47	Queens Drive Mossley Hill/ Smithdown junction split	6,711	2.4	6,757	2.4
L48	Queens Drive Mossley Hill	13,422	2.4	13,514	2.4
L49	Queens Drive Mossley Hill/ Elm Hall Drive junction	13,422	2.4	13,514	2.4
L50	Queens Drive Mossley Hill	13,422	2.4	13,514	2.4
L51	Queens Drive Mossley Hill/ Dovedale Road junction approach	13,422	2.4	13,514	2.4
L52	Queens Drive Mossley Hill	13,422	2.4	13,514	2.4
L53	Queens Drive Mossley Hill/ North Mossley Hill Road	13,422	2.4	13,514	2.4
L54	Queens Drive Mossley Hill/ North Mossley Hill Road junction	9,111	2.4	9,162	2.4
L55	Queens Drive Mossley Hill	9,111	2.4	9,162	2.4
L56	Queens Drive Mossley Hill	9,111	2.4	9,162	2.4
L57	Queens Drive Mossley Hill roundabout approach	9,111	2.4	9,162	2.4
L58	Park Avenue roundabout approach	1,337	1.1	1,429	1.1
L59	Park Avenue	1,337	1.1	1,429	1.1
L60	Park Avenue/ Aigburth Vale junction	1,337	1.1	1,429	1.1
L61	Park Avenue/ Aigburth Vale junction	1,629	2.3	1,639	2.3
L62	Park Avenue	1,629	2.3	1,639	2.3
L63	Park Avenue/ North Mossley Hill Road	1,629	2.3	1,639	2.3
L64	Aigburth Vale/ Queens Drive Mossley Hill junction	4,847	4.1	4,887	4.1
L65	Aigburth Vale	4,847	4.1	4,887	4.1
L66	Aigburth Vale	4,847	4.3	4,887	4.3
L67	Aigburth Vale/ Carnatic Road	4,847	4.3	4,887	4.3
L68	Victoria Road	4,847	4.3	4,887	4.3
L69	Victoria Road/ Elmswood Road	4,847	4.3	4,887	4.3
L70	Ashfield Road	4,847	4.3	4,887	4.3
L71	Ashfield Road/ Aigburth junction	4,847	4.3	4,887	4.3
R1	Roundabout	10,448	1.2	10,591	1.2

Emission Factors

Emission factors for each link were calculated using the relevant traffic flows and the Emissions Factor Toolkit (version 6.0.1) released in June 2014, which incorporates updated COPERT4v10 vehicle emissions factors for NO_x and vehicle fleet information.

There is current uncertainty over NO_2 concentrations within the UK, with roadside levels not reducing as previously expected due to the implementation of new vehicle emission standards. Therefore, 2012 emission factors have been utilised for the prediction of pollution levels for all scenarios in preference to the development opening year in order to provide a robust assessment.

Meteorological Data

Meteorological data used in this assessment was taken from Liverpool meteorological station over the period 1st January 2012 to 31st December 2012 (inclusive). Liverpool observation station is located at NGR: 343488, 381791 which is approximately 5.2km south-east of the proposed development. DEFRA guidance LAQM.TG(09)¹⁸ recommends meteorological stations within 30km of an assessment area as being suitable for detailed modelling.

All meteorological records used in the assessment were provided by Atmospheric Dispersion Modelling (ADM) Ltd, which is an established distributor of data within the UK. Reference should be made to Figure 6 for a wind rose of utilised meteorological data.

Roughness Length

A roughness length (z_0) of 1m was used in this dispersion modelling study. This value of z_0 is considered appropriate for the morphology of the dispersion modelling assessment area and is suggested within ADMS-Roads as being suitable for 'cities, woodlands'.

Monin-Obukhov Length

The Monin-Obukhov length provides a measure of the stability of the atmosphere. A minimum Monin-Obukhov length of 30m was used in this dispersion modelling study. This value is considered appropriate for the nature of the assessment area and is suggested within ADMS-Roads as being suitable for 'cities and large towns'.

Background Concentrations

The annual mean NO_2 and PM_{10} concentrations monitored at the Speke automatic analyser during 2012, as displayed in Table All.3, were used in the dispersion modelling assessment to represent existing pollutant levels in the vicinity of the site. The concentrations monitored at the Speke automatic analyser were higher than the background data available from DEFRA and was therefore utilised in order to provide a worst case scenario.

¹⁸ Local Air Quality Management Technical Guidance LAQM.TG(09), DEFRA, 2009.

Table All.3	Automatic Monitoring	Results
-------------	----------------------	---------

Site	Annual Mean Concentration (μg/m ³) 2012		
	NO ₂	PM ₁₀	
Speke	25.00	13.00	

Similarly to emission factors, background concentrations for 2012 were utilised in preference to the development opening year. This provided a robust assessment and is likely to overestimate actual pollutant concentrations during the operation of the proposal.

NO_x to NO₂ Conversion

Predicted annual mean NO_x concentrations from the dispersion model were converted to NO_2 concentrations using the spreadsheet provided by DEFRA, which is the method detailed within LAQM.TG(09).

Verification

The predicted results from a dispersion model may differ from measured concentrations for a large number of reasons, including:

- Estimates of background concentrations;
- Uncertainties in source activity data such as traffic flows and emission factors;
- Variations in meteorological conditions;
- Overall model limitations; and,
- Uncertainties associated with monitoring data, including locations.

Model verification is the process by which these and other uncertainties are investigated and where possible minimised. In reality, the differences between modelled and monitored results are likely to be a combination of all of these aspects.

For the purpose of this assessment model verification was undertaken for 2012, using traffic data, meteorological data and monitoring results from this year.

LCC undertakes monitoring of NO₂ concentrations at a number of locations within the assessment extents. The road contribution to total NO_x concentration was calculated from the monitored NO₂ results for use in the verification process. This was undertaken following the methodology contained within DEFRA guidance LAQM.TG(09)¹⁹. The monitored annual mean NO₂ concentration and calculated roadside NO_x concentration is summarised in Table AlI.4.

¹⁹ Local Air Quality Management Technical Guidance LAQM.TG(09), DEFRA, 2009.

Table AII.42013 Monitoring Results

Monitoring Location	Monitored NO ₂ Concentration (µg/m ³)	Calculated Roadside NO _x Concentration (µg/m ³)
Smithdown Road Lamp outside Costcutter	67.0	119.3
Smithdown Road Lamp outside Sefton Park pharmacy	63.0	104.6
Smithdown Road Lamp in central Res. opp. Budget exhausts	52.0	68.0

The dispersion model was run with the traffic input data previously detailed for 2013 to predict the NO_x concentration at the monitoring locations. The results are shown in Table AII.5.

Table AII.5 Verification Results

Monitoring Location	Modelled Roadside NO _x Concentration (μ g/m ³)
Smithdown Road Lamp outside Costcutter	48.7
Smithdown Road Lamp outside Sefton Park pharmacy	20.0
Smithdown Road Lamp in central Res. opp. Budget exhausts	27.5

The monitored and modelled NO_x road contribution concentrations were graphed and the equation of this trendline based on the linear progression through zero calculated, as shown in Graph 1. This indicated a verification factor of **2.7723** was required to be applied to all modelling results.

As PM_{10} monitoring is not undertaken within the assessment extents, a verification factor of **2.7723** was also used to adjust model predictions of this pollutant in accordance with the guidance provided within LAQM.TG(09)²⁰.

²⁰ Local Air Quality Management Technical Guidance LAQM.TG(09), DEFRA, 2009.

Air Quality Assessment Park Avenue, Liverpool 9th December 2014 34127

JETHRO REDMORE

Associate Director

BEng (Hons), MSc, MIAQM, MIEnvSc, AIEMA, CEnv

KEY EXPERIENCE:

Jethro is a Chartered Environmentalist with specialist experience in the air quality sector. His key capabilities include:

- Production and management of Air Quality and Odour Assessments to DEFRA, Environment Agency and EPUK methodologies for a wide-range of clients from the retail, residential, infrastructure, commercial and industrial sectors.
- Significant proportion of assessments produced as part of over-arching Environmental Statements (ES) for large developments throughout the UK and internationally.
- Detailed dispersion modelling of road vehicle and industrial emissions using ADMS-Roads, ADMS-4, AERMOD-PRIME and BREEZE-ROADS. Studies have included impact assessment of ground level pollutant and odour concentrations and assessment of suitability of development sites for proposed end-use.
- Project management and coordination of EIAs and scoping reports for developments throughout the UK.
- Design and project management of pollutant monitoring campaigns to define baseline conditions and inform future assessment in accordance with DEFRA and Environment Agency guidance.
- Co-ordination and management of large-scale multi-disciplinary projects and submissions.
- Production and co-ordination of Environmental Permit applications for a variety of industrial sectors.
- Provision of expert advice to local government and international environmental bodies.

SELECT PROJECTS SUMMARY:

Residential Developments

Wood St Mill, Bury - residential development adjacent to scrap metal yard.

Church Way Doncaster - mixed use scheme adjacent to AQMA.

North Wharf Gardens, London - peer review of EIA undertaken for residential development.

Mill Street, Crewe - residential development in proximity of 2-AQMAs.

Wheatstone House, London - mixed use scheme in AQMA.

Elephant and Castle Leisure Centre - baseline AQA for redevelopment.

Carr Lodge, Doncaster - EIA for large residential development.

Poplar Business Park, Tower Hamlets - AQA for residential development.

Queensland Road, Highbury - residential scheme including CHP.

Bicester Ecotown - dispersion modelling of energy centre for EIA.

Castleford Growth Delivery Plan baseline air quality constraints assessment for town redevelopment.

York St, Bury - residential development adjacent to AQMA.

Temple Point Leeds - residential development adjacent to M1.

Currock Yard, Carlisle - residential development adjacent to rail line.

Commercial and Retail Developments

Pleasington Lakes, Blackburn - EIA for holiday village adjacent to M65.

Wakefield College - redevelopment of city centre campus in AQMA.

Pleckgate School, Blackburn - biomass boiler and odour assessment.

Deptford Terrace, Sunderland - AQA for mixed use development.

Pakeezah Gourmet, Bradford - AQA including DMRB for new food store.

Witton Park School, Blackburn - AQA for school redevelopment close to AQMA.

Manchester Airport Cargo Shed - commercial development.

New Crown Wood School, Greenwich - biomass boiler emission assessment.

Morton District Shopping Centre, Carlisle - air quality EIA for commercial development.

Manchester Airport Apron Extension -EIA including aircraft emission modelling.

Industrial Developments

Tatweer Petroleum - dispersion modelling of Bahrain oil field.

Doha South Sewage Treatment Works - AQA for works extension in Qatar.

IRIS Environmental Appraisal Report Reviews, Isle of Man Government odour assessment reviews.

Newport Docks Bulk Drying, Pelleting and CHP Facility - air quality EIA for gas CHP.

Agrivert - dispersion modelling of AD plant.

James Cropper Paper Mill, Cumbria - air quality EIA, Environmental Permit Variation and Human Health Risk Assessment for new biomass boiler adjacent to SSSI.

Blue Star Fibres, Grimsby - fibre manufacturing plant adjacent to SPA.

Maesgwyn Biomass Plant - AQA including ecological assessment.

Lynchford Lane Waste Transfer Station - biomass facility energy recovery plant.

Barnes Wallis Heat and Power, Cobham - biomass facility adjacent to AQMA.

Countrystyle Biomass Plant, Kent - EIA for biomass facility.

Beddington Heat and Power, London - biomass energy recovery plant.

Fleetwood Transfer Station - dispersion modelling of energy recovery plant.

Brook Bridge Poultry Farm - Ammonia dispersion modelling of quail farm.

JONATHAN ASHCROFT Graduate Air Quality Consultant

BSc (Hons), LLM, IEMA

KEY EXPERIENCE:

Jonathan is a Graduate Environmental Consultant with specialist experience in the air quality sector. His key capabilities include:

- Production of Air Quality Assessments to the Department for Environment, Food and Rural Affairs (DEFRA), Environment Agency and Environmental Protection UK (EPUK) methodologies for clients from the residential, retail, infrastructure and commercial sectors.
- Detailed dispersion modelling of road vehicle emissions using ADMS-Roads. Studies have included impact assessment of ground level pollutant concentrations and assessment of suitability of development sites for proposed end-use.
- Assessment of road vehicle exhaust emissions using the Design Manual for Roads and Bridges (DMRB) calculation s
- Assessment of dust impacts from construction sites to the Institute of Air Quality Management (IAQM) methodology.
- Execution of field odour surveys and assessments in accordance with the Environment Agency methodology.
- Production of air quality mitigation strategies for developments throughout the UK.
- Defining baseline air quality conditions and identification of sensitive areas.

QUALIFICATIONS:

- Bachelor of Science
- Master of Laws
- 🗾 Graduate IEMA

SELECT PROJECTS SUMMARY:

Residential and Mixed Use Developments

North Northallerton Development Area - Air Quality Assessment for large scale, mixed-use development.

Klondyke Phase II - Air Quality Assessment for large residential development in close proximity to an AQMA.

Corus Steelworks Workington - An Air Quality Assessment addressing a planning condition for a mixed use development comprising residential, commercial, small-scale retail, community and leisure land uses over approximately 50 hectares at the former Corus Steelworks.

Land off Strathaven Road, Stonehouse, West Scotland - Air Quality Assessment in support of a residential development of 119 residential units.

Blake Avenue, Barking - Air Quality Assessment in support of the creation of a residential development comprising 14 residential units located within an AQMA.

Manchester Road West, Cutacre - Air Quality Assessment in support of a new residential development of up to a 100 dwellings located partially in and adjacent to an AQMA.

Buckley Street, Droylsden - Air Quality Assessment in support of a residential led development of up to 117 dwellings, with additional commercial retail units and associated infrastructure.

Betafence, Wigan - Air Quality Assessment in support of a new residential development of up to130 dwellings in close proximity to an AQMA.

351 Rotherhithe Street, Southwark - Air Quality Assessment in support of the creation of a residential development comprising 6 residential units located within an AQMA.

Commercial and Retail Developments

LIDL, Altofts Road, Normanton - Air Quality Assessment for the proposed redevelopment of LIDL to provide a larger retail store.

Education Developments

Fenby Avenue Academy, Bradford - Air Quality Assessment in support of an educational development consisting of a new secondary school for 1,050 pupils.

1283 Manchester Road, Huddersfield -Air Quality Assessment in support of the development of two student accommodation buildings which will both comprise 252 self-contained studio units and associated infrastructure over 11 floor levels.

Infrastructure Developments

Langho Station Park and Ride, Langho -Air Quality Assessment assessing impacts of residential development with site access roads for a park and ride scheme.

35 Station Road, Northwich - Air Quality Assessment for residential development located within a redeveloped roundabout scheme.

Southwood Close Biomass Installation, Kent - Air Quality Assessment of the potential emissions associated with a proposed 199kw biomass boiler and associated plant items at an existing residential development.